aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/ARC/ARCInstrInfo.td
blob: edd853fe150da3318a4805f13b688b4d1d77f59c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
//===- ARCInstrInfo.td - Target Description for ARC --------*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARC instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

include "ARCInstrFormats.td"

// ---------------------------------------------------------------------------
// Selection DAG Nodes.
// ---------------------------------------------------------------------------

// Selection DAG types.
def SDT_ARCcmptst : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARCcmov : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>]>;
def SDT_ARCmov : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>]>;
def SDT_ARCbrcc : SDTypeProfile<0, 4, []>;
def SDT_ARCBranchLink : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
                                           SDTCisVT<1, i32> ]>;
def SDT_ARCCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
                                         SDTCisVT<1, i32> ]>;


// Global Address.
def ARCGAWrapper : SDNode<"ARCISD::GAWRAPPER", SDT_ARCmov, []>;

// Comparison
def ARCcmp : SDNode<"ARCISD::CMP", SDT_ARCcmptst, [SDNPOutGlue]>;

// Conditionanal mov
def ARCcmov : SDNode<"ARCISD::CMOV", SDT_ARCcmov, [SDNPInGlue]>;

// Conditional Branch
def ARCbrcc : SDNode<"ARCISD::BRcc", SDT_ARCbrcc,
                       [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;

// Direct Call
def ARCBranchLink     : SDNode<"ARCISD::BL",SDT_ARCBranchLink,
                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                             SDNPVariadic]>;

// Indirect Call
def ARCJumpLink       : SDNode<"ARCISD::JL",SDT_ARCBranchLink,
                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                                  SDNPVariadic]>;
// Call return
def ret      : SDNode<"ARCISD::RET", SDTNone,
                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

// Call sequencing nodes.
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARCCallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARCCallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//

def imm32 : ImmLeaf<i32, [{
  return (Imm & 0xFFFFFFFF) == Imm;
}]>;

// Addressing modes
def FrameADDR_ri : ComplexPattern<i32, 2, "SelectFrameADDR_ri",
                                  [add, frameindex], []>;
def AddrModeS9 : ComplexPattern<i32, 2, "SelectAddrModeS9", []>;
def AddrModeImm : ComplexPattern<i32, 2, "SelectAddrModeImm", []>;
def AddrModeFar : ComplexPattern<i32, 2, "SelectAddrModeFar", []>;

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//

let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : PseudoInstARC<(outs), (ins i32imm:$amt, i32imm:$amt2),
                               "# ADJCALLSTACKDOWN $amt, $amt2",
                               [(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : PseudoInstARC<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                            "# ADJCALLSTACKUP $amt1",
                            [(callseq_end timm:$amt1, timm:$amt2)]>;
}

def GETFI : PseudoInstARC<(outs GPR32:$dst), (ins MEMii:$addr),
                             "pldfi $dst, $addr",
                             [(set GPR32:$dst, FrameADDR_ri:$addr)]>;


def ST_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr),
                             "ST_FAR $dst, $addr",
                             [(store GPR32:$dst, AddrModeFar:$addr)]>;

def STH_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr),
                             "STH_FAR $dst, $addr",
                             [(truncstorei16 GPR32:$dst, AddrModeFar:$addr)]>;

def STB_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr),
                             "STB_FAR $dst, $addr",
                             [(truncstorei8 GPR32:$dst, AddrModeFar:$addr)]>;

//===----------------------------------------------------------------------===//
// Instruction Generation multiclasses.
// Generate many variants of a single instruction with a single defining
// multiclass.  These classes do not contain Selection DAG patterns.
//===----------------------------------------------------------------------===//

// Generic 3 operand binary instructions (i.e., add r0, r1, r2).
multiclass ArcBinaryInst<bits<5> major, bits<6> mincode,
                       string opasm> {
  // 3 register variant.
  def _rrr : F32_DOP_RR<major, mincode, 0, (outs GPR32:$A),
                        (ins GPR32:$B, GPR32:$C),
                        !strconcat(opasm, "\t$A, $B, $C"),
                        []>;

  // 2 register with unsigned 6-bit immediate variant.
  def _rru6 : F32_DOP_RU6<major, mincode, 0, (outs GPR32:$A),
                          (ins GPR32:$B, immU6:$U6),
                          !strconcat(opasm, "\t$A, $B, $U6"),
                          []>;
  // 2 register with 32-bit immediate variant.
  def _rrlimm : F32_DOP_RLIMM<major, mincode, 0,
                      (outs GPR32:$A),
                      (ins GPR32:$B, i32imm:$LImm),
                      !strconcat(opasm, "\t$A, $B, $LImm"),
                      []>;
  // 2 matched-register with signed 12-bit immediate variant (add r0, r0, -1).
  def _rrs12 : F32_DOP_RS12<major, mincode, 0,
                            (outs GPR32:$B),
                            (ins GPR32:$in, immS<12>:$S12),
                            !strconcat(opasm, "\t$B, $in, $S12"),
                            []>
  { let Constraints = "$B = $in"; }
}

// Special multivariant GEN4 DOP format instruction that take 2 registers.
// This is the class that is used for various comparison instructions.
multiclass ArcSpecialDOPInst<bits<6> subop, string opasm, bit F> {
  def _rr : F32_DOP_RR<0b00100, subop, F, (outs), (ins GPR32:$B, GPR32:$C),
               !strconcat(opasm, "\t$B, $C"),
               []>;

  def _ru6 : F32_DOP_RU6<0b00100, subop, F, (outs), (ins GPR32:$B, i32imm:$U6),
               !strconcat(opasm, "\t$B, $U6"),
               []>;

  def _rlimm : F32_DOP_RLIMM<0b00100, subop, F, (outs),
               (ins GPR32:$B, i32imm:$LImm),
               !strconcat(opasm, "\t$B, $LImm"),
               []>;
}

// Generic 2-operand unary instructions.
multiclass ArcUnaryInst<bits<5> major, bits<6> subop,
                        string opasm> {
  def _rr : F32_SOP_RR<major, subop, 0, (outs GPR32:$B), (ins GPR32:$C),
                       !strconcat(opasm, "\t$B, $C"), []>;
}


multiclass ArcBinaryGEN4Inst<bits<6> mincode, string opasm> :
  ArcBinaryInst<0b00100, mincode, opasm>;
multiclass ArcBinaryEXT5Inst<bits<6> mincode, string opasm> :
  ArcBinaryInst<0b00101, mincode, opasm>;

multiclass ArcUnaryGEN4Inst<bits<6> mincode, string opasm> :
  ArcUnaryInst<0b00100, mincode, opasm>;

// Pattern generation for differnt instruction variants.
multiclass MultiPat<SDPatternOperator InFrag,
               Instruction RRR, Instruction RRU6, Instruction RRLImm> {
  def _rrr : Pat<(InFrag i32:$B, i32:$C), (RRR i32:$B, i32:$C)>;
  def _rru6 : Pat<(InFrag i32:$B, immU6:$U6), (RRU6 i32:$B, immU6:$U6)>;
  def _rrlimm : Pat<(InFrag i32:$B, imm32:$LImm), (RRLImm i32:$B, imm32:$LImm)>;
}

// ---------------------------------------------------------------------------
// Instruction defintions and patterns for 3 operand binary instructions.
// ---------------------------------------------------------------------------

// Definitions for 3 operand binary instructions.
defm ADD : ArcBinaryGEN4Inst<0b000000, "add">;
defm SUB : ArcBinaryGEN4Inst<0b000010, "sub">;
defm SUB1 : ArcBinaryGEN4Inst<0b010111, "sub1">;
defm SUB2 : ArcBinaryGEN4Inst<0b011000, "sub2">;
defm SUB3 : ArcBinaryGEN4Inst<0b011001, "sub3">;
defm OR  : ArcBinaryGEN4Inst<0b000101, "or">;
defm AND : ArcBinaryGEN4Inst<0b000100, "and">;
defm XOR : ArcBinaryGEN4Inst<0b000111, "xor">;
defm MAX : ArcBinaryGEN4Inst<0b001000, "max">;
defm MIN : ArcBinaryGEN4Inst<0b001001, "min">;
defm ASL : ArcBinaryEXT5Inst<0b000000, "asl">;
defm LSR : ArcBinaryEXT5Inst<0b000001, "lsr">;
defm ASR : ArcBinaryEXT5Inst<0b000010, "asr">;
defm ROR : ArcBinaryEXT5Inst<0b000011, "ror">;
defm MPY  : ArcBinaryGEN4Inst<0b011010, "mpy">;
defm MPYM : ArcBinaryGEN4Inst<0b011011, "mpym">;
defm MPYMU : ArcBinaryGEN4Inst<0b011100, "mpymu">;
defm SETEQ : ArcBinaryGEN4Inst<0b111000, "seteq">;

// Patterns for 3 operand binary instructions.
defm : MultiPat<add, ADD_rrr, ADD_rru6, ADD_rrlimm>;
defm : MultiPat<sub, SUB_rrr, SUB_rru6, SUB_rrlimm>;
defm : MultiPat<or, OR_rrr, OR_rru6, OR_rrlimm>;
defm : MultiPat<and, AND_rrr, AND_rru6, AND_rrlimm>;
defm : MultiPat<xor, XOR_rrr, XOR_rru6, XOR_rrlimm>;
defm : MultiPat<smax, MAX_rrr, MAX_rru6, MAX_rrlimm>;
defm : MultiPat<smin, MIN_rrr, MIN_rru6, MIN_rrlimm>;
defm : MultiPat<shl, ASL_rrr, ASL_rru6, ASL_rrlimm>;
defm : MultiPat<srl, LSR_rrr, LSR_rru6, LSR_rrlimm>;
defm : MultiPat<sra, ASR_rrr, ASR_rru6, ASR_rrlimm>;
defm : MultiPat<rotr, ROR_rrr, ROR_rru6, ROR_rrlimm>;
defm : MultiPat<mul, MPY_rrr, MPY_rru6, MPY_rrlimm>;
defm : MultiPat<mulhs, MPYM_rrr, MPYM_rru6, MPYM_rrlimm>;
defm : MultiPat<mulhu, MPYMU_rrr, MPYMU_rru6, MPYMU_rrlimm>;

// ---------------------------------------------------------------------------
// Unary Instruction definitions.
// ---------------------------------------------------------------------------
// General unary instruction definitions.
defm SEXB : ArcUnaryGEN4Inst<0b000101, "sexb">;
defm SEXH : ArcUnaryGEN4Inst<0b000110, "sexh">;

// General Unary Instruction fragments.
def : Pat<(sext_inreg i32:$a, i8), (SEXB_rr i32:$a)>;
def : Pat<(sext_inreg i32:$a, i16), (SEXH_rr i32:$a)>;

// Comparison instruction definition
let isCompare = 1, Defs = [STATUS32] in {
defm CMP : ArcSpecialDOPInst<0b001100, "cmp", 1>;
}

def cmp : PatFrag<(ops node:$op1, node:$op2), (ARCcmp $op1, $op2)>;
defm : MultiPat<cmp, CMP_rr, CMP_ru6, CMP_rlimm>;

// ---------------------------------------------------------------------------
// MOV instruction and variants (conditional mov).
// ---------------------------------------------------------------------------
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def MOV_rs12 : F32_DOP_RS12<0b00100, 0b001010, 0,
                 (outs GPR32:$B), (ins immS<12>:$S12),
                 "mov\t$B, $S12",
                 [(set GPR32:$B, immS<12>:$S12)]>;
}

def MOV_rr : F32_DOP_RR<0b00100, 0b001010, 0,
                (outs GPR32:$B), (ins GPR32:$C),
                "mov\t$B, $C", []>;

def MOV_rlimm : F32_DOP_RLIMM<0b00100, 0b001010, 0,
                      (outs GPR32:$B), (ins i32imm:$LImm),
                      "mov\t$B, $LImm", []>;

def MOV_ru6 : F32_DOP_RU6<0b00100, 0b001010, 0,
                          (outs GPR32:$B), (ins immU6:$U6),
                          "mov\t$B, $U6", []>;

def cmov : PatFrag<(ops node:$op1, node:$op2, node:$cc),
                   (ARCcmov $op1, $op2, $cc)>;
let Uses = [STATUS32] in {
def MOVcc : F32_DOP_CC_RR<0b00100, 0b001010, 0,
               (outs GPR32:$B),
               (ins GPR32:$C, GPR32:$fval, cmovpred:$cc),
               !strconcat("mov.", "$cc\t$B, $C"),
               [(set GPR32:$B, (cmov i32:$C, i32:$fval, cmovpred:$cc))]> {
  let Constraints = "$B = $fval";
}
}
def : Pat<(ARCGAWrapper tglobaladdr:$addr),
           (MOV_rlimm tglobaladdr:$addr)>;

def : Pat<(ARCGAWrapper tjumptable:$addr),
           (MOV_rlimm tjumptable:$addr)>;


// ---------------------------------------------------------------------------
// Control flow instructions (branch, return, calls, etc).
// ---------------------------------------------------------------------------

// Branch instructions
let isBranch = 1, isTerminator = 1 in {

  // Unconditional branch.
  let isBarrier = 1 in
  def BR : F32_BR0_UCOND_FAR<(outs), (ins btargetS25:$S25),
                             "b\t$S25", [(br bb:$S25)]>;

  let Uses=[STATUS32] in
  // Conditional branch.
  def Bcc : F32_BR0_COND<(outs), (ins btargetS21:$S21, ccond:$cc),
                         "b$cc\t$S21", []>;

  // Compare and branch (limited range).
  def BRcc_rr  : F32_BR1_BCC<(outs),
                             (ins btargetS9:$S9, GPR32:$B, GPR32:$C, brccond:$cc),
                             "br$cc\t$B, $C, $S9", 0, []>;
  def BRcc_ru6 : F32_BR1_BCC<(outs),
                             (ins btargetS9:$S9, GPR32:$B, immU6:$C, brccond:$cc),
                             "br$cc\t$B, $C, $S9", 1, []>;

  // Pseudo compare and branch.
  // After register allocation, this can expand into either a limited range
  // Compare and branch (BRcc), or into CMP + Bcc.
  // At worst, this expands into 2 4-byte instructions.
  def BRcc_rr_p : PseudoInstARC<(outs),
                                (ins btarget:$T, GPR32:$B, GPR32:$C, ccond:$cc),
                                "pbr$cc\t$B, $C, $T", 
                                [(ARCbrcc bb:$T, i32:$B, i32:$C, imm32:$cc)]>
                                { let Size = 8; }

  def BRcc_ru6_p : PseudoInstARC<(outs),
                                 (ins btarget:$T, GPR32:$B, i32imm:$C, ccond:$cc),
                                 "pbr$cc\t$B, $C, $T",
                                 [(ARCbrcc bb:$T, i32:$B, immU6:$C, imm32:$cc)]>
                                 { let Size = 8; }
} // let isBranch, isTerminator

// Indirect, unconditional Jump.
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
def J :  F32_DOP_RR<0b00100, 0b100000, 0,
               (outs), (ins GPR32:$C),
               "j\t[$C]", [(brind i32:$C)]>;

// Call instructions.
let isCall = 1, isBarrier = 1, Defs = [BLINK], Uses = [SP] in {
  // Direct unconditional call.
  def BL : F32_BR1_BL_UCOND_FAR<(outs), (ins calltargetS25:$S25),
                      "bl\t$S25", [(ARCBranchLink tglobaladdr:$S25)]>;

  // Indirect unconditional call.
  let isIndirectBranch = 1 in
  def JL : F32_DOP_RR<0b00100, 0b100010, 0, (outs), (ins GPR32:$C),
                     "jl\t[$C]", [(ARCJumpLink i32:$C)]>;
} // let isCall, isBarrier, Defs, Uses

// Pattern to generate BL instruction.
def : Pat<(ARCBranchLink texternalsym:$dst), (BL texternalsym:$dst)>;

// Return from call.
let isReturn = 1, isTerminator = 1, isBarrier = 1  in
// This is a specialized 2-byte instruction that doesn't generalize
// to any larger 2-byte class, so go ahead and define it here.
def J_S_BLINK : InstARC<2, (outs), (ins), "j_s\t[%blink]", [(ret)]> {
  let Inst{15-0} = 0b0111111011100000;
}

//----------------------------------------------------------------------------
// Compact stack-based operations.
//----------------------------------------------------------------------------

// 2-byte push/pop blink instructions commonly used for prolog/epilog
// generation.  These 2 instructions are actually specialized 2-byte
// format instructions that aren't generalized to a larger 2-byte
// class, so we might as well have them here.
let Uses = [BLINK], Defs = [SP] in
def PUSH_S_BLINK : F16_SP_OPS_buconst<0b111, "push_s">;

let Defs = [BLINK, SP] in
def POP_S_BLINK : F16_SP_OPS_buconst<0b110, "pop_s">;

def PUSH_S_r : F16_SP_OPS_uconst<0b110,
  (outs), (ins GPR32Reduced:$b3), "push_s">;
def POP_S_r : F16_SP_OPS_uconst<0b111,
  (outs GPR32Reduced:$b3), (ins), "pop_s">;

def SP_SUB_SP_S : F16_SP_OPS_bconst<0b001, "sub_s">;
def SP_ADD_SP_S : F16_SP_OPS_bconst<0b000, "add_s">;
def SP_ADD_S : F16_SP_OPS_u7_aligned<0b100,
                (outs GPR32Reduced:$b3), (ins immU<7>:$u7),
                "add_s\t$b3, %sp, $u7">;

def SP_LD_S : F16_SP_LD<0b000, "ld_s">;
def SP_LDB_S : F16_SP_LD<0b001, "ldb_s">;
def SP_ST_S : F16_SP_ST<0b010, "st_s">;
def SP_STB_S : F16_SP_ST<0b011, "stb_s">;

def LEAVE_S : F16_SP_OPS<0b110,
  (outs), (ins immU<7>:$u7), "leave_s\t$u7"> {

  bits<7> u7;
  
  let fieldB = u7{6-4};
  let fieldU{4-1} = u7{3-0};
  let fieldU{0} = 0b0;
}

def ENTER_S : F16_SP_OPS<0b111,
  (outs), (ins immU<6>:$u6), "enter_s\t$u6"> {

  bits<6> u6;
  
  let fieldB{2} = 0;
  let fieldB{1-0} = u6{5-4};
  let fieldU{4-1} = u6{3-0};
  let fieldU{0} = 0b0;
}

//----------------------------------------------------------------------------
// Compact Move/Load instructions.
//----------------------------------------------------------------------------
class COMPACT_MOV_S :
  F16_COMPACT<0b0, (outs GPR32:$g), (ins GPR32:$h),
          "mov_s\t$g, $h"> {  
  let DecoderMethod = "DecodeMoveHRegInstruction";
}

def COMPACT_MOV_S_limm : COMPACT_MOV_S {
  bits<32> LImm;  
  let Inst{47-16} = LImm;

  bits<5> LImmReg = 0b11110;  
  let Inst{7-5} = LImmReg{2-0};
  let Inst{1-0} = LImmReg{4-3};

  let Size = 6;  
}

def COMPACT_MOV_S_hreg : COMPACT_MOV_S;

def COMPACT_LD_S :
  F16_COMPACT<0b1, (outs GPR32:$r), (ins GPR32:$h, immU<5>:$u5),
          "ld_s\t$r, [$h, $u5]"> {
  bits<5> u5;
  bits<2> r;

  let Inst{10} = u5{4};
  let Inst{9-8} = r;
  let Inst{4-3} = u5{3-2};
  let u5{1-0} = 0b00;
}

//----------------------------------------------------------------------------
// Compact Load/Add/Sub.
//----------------------------------------------------------------------------
def LD_S_AS_rrr : F16_LD_SUB<0b0, "ld_s.as\t$a, [$b, $c]">;
def SUB_S_rrr : F16_LD_SUB<0b1, "sub_s\t$a, $b, $c">;
def ADD_S_rru6 : F16_ADD;

//----------------------------------------------------------------------------
// Compact Load/Store.
//----------------------------------------------------------------------------
def LD_S_s11 : F16_LD_ST_s11<0b0, "ld_s\t%r1, [%gp, $s11]">;
def ST_S_s11 : F16_LD_ST_s11<0b1, "st_s\t%r0, [%gp, $s11]">;
def LDI_S_u7 : F16_LDI_u7;

//----------------------------------------------------------------------------
// Indexed Jump or Execute.
//----------------------------------------------------------------------------
def JLI_S : F16_JLI_EI<0, "jli_s">;
def EI_S : F16_JLI_EI<1, "ei_s">;

//----------------------------------------------------------------------------
// Load/Add Register-Register.
//----------------------------------------------------------------------------
def LD_S_rrr : F16_LD_ADD_RR<0b00, "ld_s\t$a, [$b, $c]">;
def LDB_S_rrr : F16_LD_ADD_RR<0b01, "ldb_s\t$a, [$b, $c]">;
def LDH_S_rrr : F16_LD_ADD_RR<0b10, "ldh_s\t$a, [$b, $c]">;
def ADD_S_rrr : F16_LD_ADD_RR<0b11, "add_s\t$a, $b, $c">;

//----------------------------------------------------------------------------
// Load/Add GP-Relative.
//----------------------------------------------------------------------------
def GP_LD_S : F16_GP_LD_ADD<0b00, (ins immS<11>:$s),
  "ld_s\t%r0, [%gp, $s]"> {

  bits<11> s;
  let Inst{8-0} = s{10-2};
  let s{1-0} = 0b00;
}

def GP_LDB_S : F16_GP_LD_ADD<0b01, (ins immS<9>:$s),
  "ldb_s\t%r0, [%gp, $s]"> {

  bits<9> s;
  let Inst{8-0} = s{8-0};
}

def GP_LDH_S : F16_GP_LD_ADD<0b10, (ins immS<10>:$s),
  "ldh_s\t%r0, [%gp, $s]"> {

  bits<10> s;
  let Inst{8-0} = s{9-1};
  let s{0} = 0b0;
}

def GP_ADD_S : F16_GP_LD_ADD<0b11, (ins immS<11>:$s),
  "add_s\t%r0, %gp, $s"> {

  bits<11> s;
  let Inst{8-0} = s{10-2};
  let s{1-0} = 0b00;
}

//----------------------------------------------------------------------------
// Load PCL-Relative.
//----------------------------------------------------------------------------
def PCL_LD : InstARC<2, (outs GPR32:$b), (ins immU<10>:$u10),
 "ld_s\t$b, [%pcl, $u10]", []> {
 
  bits<3> b; 
  bits<10> u10; 

  let Inst{15-11} = 0b11010;
  let Inst{10-8} = b;
  let Inst{7-0} = u10{9-2};
  let u10{1-0} = 0b00;
}

let isBranch = 1 in {
  //----------------------------------------------------------------------------
  // Branch on Compare Register with Zero.
  //----------------------------------------------------------------------------
  def BREQ_S : F16_BCC_REG<0b0, "breq_s">;
  def BRNE_S : F16_BCC_REG<0b1, "brne_s">;

  //----------------------------------------------------------------------------
  // Branch Conditionally.
  //----------------------------------------------------------------------------
  let isBarrier = 1 in
  def B_S : F16_BCC_s10<0b00, "b_s">;

  def BEQ_S : F16_BCC_s10<0b01, "beq_s">;
  def BNE_S : F16_BCC_s10<0b10, "bne_s">;
  def BGT_S : F16_BCC_s7<0b000, "bgt_s">;
  def BGE_S : F16_BCC_s7<0b001, "bge_s">;
  def BLT_S : F16_BCC_s7<0b010, "blt_s">;
  def BLE_S : F16_BCC_s7<0b011, "ble_s">;
  def BHI_S : F16_BCC_s7<0b100, "bhi_s">;
  def BHS_S : F16_BCC_s7<0b101, "bhs_s">;
  def BLO_S : F16_BCC_s7<0b110, "blo_s">;
  def BLS_S : F16_BCC_s7<0b111, "bls_s">;
} // let isBranch

def BL_S :
  InstARC<2, (outs), (ins btargetS13:$s13), "bl_s\t$s13", []> {

  let Inst{15-11} = 0b11111;
  
  bits<13> s13;
  let Inst{10-0} = s13{12-2};
  let s13{1-0} = 0b00;
  
  let isCall = 1;
  let isBarrier = 1;
}

//----------------------------------------------------------------------------
// Add/Sub/Shift Register-Immediate.
//----------------------------------------------------------------------------
def ADD_S_ru3 : F16_ADD_IMM<0b00,"add_s">;
def SUB_S_ru3 : F16_ADD_IMM<0b01,"sub_s">;
def ASL_S_ru3 : F16_ADD_IMM<0b10,"asl_s">;
def ASR_S_ru3 : F16_ADD_IMM<0b11,"asr_s">;

//----------------------------------------------------------------------------
// Shift/Subtract/Bit Immediate.
//----------------------------------------------------------------------------
def ASL_S_ru5 : F16_SH_SUB_BIT_DST<0b000,"asl_s">;
def LSR_S_ru5 : F16_SH_SUB_BIT_DST<0b001,"lsr_s">;
def ASR_S_ru5 : F16_SH_SUB_BIT_DST<0b010,"asr_s">;
def SUB_S_ru5 : F16_SH_SUB_BIT_DST<0b011,"sub_s">;
def BSET_S_ru5 : F16_SH_SUB_BIT_DST<0b100,"bset_s">;
def BCLR_S_ru5 : F16_SH_SUB_BIT_DST<0b101,"bclr_s">;
def BMSK_S_ru5 : F16_SH_SUB_BIT_DST<0b110,"bmsk_s">;
def BTST_S_ru5 : F16_SH_SUB_BIT<0b111, "btst_s\t$b, $u5">;

//----------------------------------------------------------------------------
// Dual Register Operations.
//----------------------------------------------------------------------------
def ADD_S_rlimm :
  F16_OP_HREG_LIMM<0b000, (outs GPR32:$b_s3), (ins i32imm:$LImm),
          !strconcat("add_s", "\t$b_s3, $b_s3, $LImm")>;

def ADD_S_rr :
  F16_OP_HREG<0b000, (outs GPR32:$b_s3), (ins GPR32:$h),
          !strconcat("add_s", "\t$b_s3, $b_s3, $h")>;

def ADD_S_rs3 :
  F16_OP_HREG<0b001, (outs GPR32:$h), (ins immC<3>:$b_s3),
          !strconcat("add_s", "\t$h, $h, $b_s3")>;

def ADD_S_limms3 :
  F16_OP_HREG_LIMM<0b001, (outs), (ins immC<3>:$b_s3, i32imm:$LImm),
          !strconcat("add_s", "\t0, $LImm, $b_s3")>;

def MOV_S_NE_rlimm :
  F16_OP_HREG_LIMM<0b111, (outs GPR32:$b_s3), (ins i32imm:$LImm),
          !strconcat("mov_s.ne", "\t$b_s3, $LImm")>;

def MOV_S_NE_rr :
  F16_OP_HREG<0b111,(outs GPR32:$b_s3), (ins GPR32:$h),
          !strconcat("mov_s.ne", "\t$b_s3, $h")>;

def MOV_S_rs3 :
  F16_OP_HREG<0b011, (outs GPR32:$h), (ins immC<3>:$b_s3),
          !strconcat("mov_s", "\t$h, $b_s3")>;

def MOV_S_s3 :
  F16_OP_HREG30<0b011, (outs), (ins immC<3>:$b_s3),
          !strconcat("mov_s", "\t0, $b_s3")>;

def CMP_S_rlimm :
  F16_OP_HREG_LIMM<0b100, (outs GPR32:$b_s3), (ins i32imm:$LImm),
          !strconcat("cmp_s", "\t$b_s3, $LImm")>;

def CMP_S_rr :
  F16_OP_HREG<0b100, (outs GPR32:$b_s3), (ins GPR32:$h),
          !strconcat("cmp_s", "\t$b_s3, $h")>;

def CMP_S_rs3 :
  F16_OP_HREG<0b101, (outs GPR32:$h), (ins immC<3>:$b_s3),
          !strconcat("cmp_s", "\t$h, $b_s3")>;

def CMP_S_limms3 :
  F16_OP_HREG_LIMM<0b101, (outs), (ins immC<3>:$b_s3, i32imm:$LImm),
          !strconcat("cmp_s", "\t$LImm, $b_s3")>;

//----------------------------------------------------------------------------
// Compact MOV/ADD/CMP Immediate instructions.
//----------------------------------------------------------------------------
def MOV_S_u8 :
  F16_OP_IMM<0b11011, (outs GPR32:$b), (ins immU<8>:$u8),
          !strconcat("mov_s", "\t$b, $u8")> {
  bits<8> u8;
  let Inst{7-0} = u8;
}

def ADD_S_u7 :
  F16_OP_U7<0b0, !strconcat("add_s", "\t$b, $b, $u7")>;

def CMP_S_u7 :
  F16_OP_U7<0b1, !strconcat("cmp_s", "\t$b, $u7")>;

//----------------------------------------------------------------------------
// Compact Load/Store instructions with offset.
//----------------------------------------------------------------------------
def LD_S_OFF :
  F16_LD_ST_WORD_OFF<0x10, (outs GPR32:$c), (ins GPR32:$b, immU<7>:$off),
  "ld_s">;

def LDB_S_OFF :
  F16_LD_ST_BYTE_OFF<0x11, (outs GPR32:$c), (ins GPR32:$b, immU<5>:$off),
  "ldb_s">;

class F16_LDH_OFF<bits<5> opc, string asmstr> :
  F16_LD_ST_HALF_OFF<opc, (outs GPR32:$c), (ins GPR32:$b, immU<6>:$off),
  asmstr>;

def LDH_S_OFF : F16_LDH_OFF<0x12, "ldh_s">;
def LDH_S_X_OFF : F16_LDH_OFF<0x13, "ldh_s.x">;

def ST_S_OFF :
  F16_LD_ST_WORD_OFF<0x14, (outs), (ins GPR32:$c, GPR32:$b, immU<7>:$off),
  "st_s">;

def STB_S_OFF :
  F16_LD_ST_BYTE_OFF<0x15, (outs), (ins GPR32:$c, GPR32:$b, immU<5>:$off),
  "stb_s">;

def STH_S_OFF :
  F16_LD_ST_HALF_OFF<0x16, (outs), (ins GPR32:$c, GPR32:$b, immU<6>:$off),
  "sth_s">;

//----------------------------------------------------------------------------
// General compact instructions.
//----------------------------------------------------------------------------
def GEN_SUB_S : F16_GEN_DOP<0x02, "sub_s">;
def GEN_AND_S : F16_GEN_DOP<0x04, "and_s">;
def GEN_OR_S : F16_GEN_DOP<0x05, "or_s">;
def GEN_BIC_S : F16_GEN_DOP<0x06, "bic_s">;
def GEN_XOR_S : F16_GEN_DOP<0x07, "xor_s">;
def GEN_MPYW_S : F16_GEN_DOP<0x09, "mpyw_s">;
def GEN_MPYUW_S : F16_GEN_DOP<0x0a, "mpyuw_s">;
def GEN_TST_S : F16_GEN_DOP_NODST<0x0b, "tst_s">;
def GEN_MPY_S : F16_GEN_DOP<0x0c, "mpy_s">;
def GEN_SEXB_S : F16_GEN_DOP_SINGLESRC<0x0d, "sexb_s">;
def GEN_SEXH_S : F16_GEN_DOP_SINGLESRC<0x0e, "sexh_s">;
def GEN_EXTB_S : F16_GEN_DOP_SINGLESRC<0x0f, "extb_s">;
def GEN_EXTH_S : F16_GEN_DOP_SINGLESRC<0x10, "exth_s">;
def GEN_ABS_S : F16_GEN_DOP_SINGLESRC<0x11, "abs_s">;
def GEN_NOT_S : F16_GEN_DOP_SINGLESRC<0x12, "not_s">;
def GEN_NEG_S : F16_GEN_DOP_SINGLESRC<0x13, "neg_s">;
def GEN_ADD1_S : F16_GEN_DOP<0x14, "add1_s">;
def GEN_ADD2_S : F16_GEN_DOP<0x15, "add2_s">;
def GEN_ADD3_S : F16_GEN_DOP<0x16, "add3_s">;
def GEN_ASL_S : F16_GEN_DOP<0x18, "asl_s">;
def GEN_LSR_S : F16_GEN_DOP<0x19, "lsr_s">;
def GEN_ASR_S : F16_GEN_DOP<0x1a, "asr_s">;
def GEN_AS1L_S : F16_GEN_DOP_SINGLESRC<0x1b, "asl_s">;
def GEN_AS1R_S : F16_GEN_DOP_SINGLESRC<0x1c, "asr_s">;
def GEN_LS1R_S : F16_GEN_DOP_SINGLESRC<0x1d, "lsr_s">;
def GEN_TRAP_S : F16_GEN_DOP_BASE<0x1e, (outs), (ins immU6:$u6),
  "trap_s\t$u6"> {

  bits<6> u6;
  let b = u6{5-3};
  let c = u6{2-0};
}

def GEN_BRK_S : F16_GEN_DOP_BASE<0x1f, (outs), (ins),
  "brk_s"> {

  let b = 0b111;
  let c = 0b111;
}

let isBarrier = 1 in {
  let isBranch = 1 in {
    def GEN_J_S : F16_GEN_SOP<0x0, "j_s\t[$b]">;
    def GEN_J_S_D : F16_GEN_SOP<0x1, "j_s.d\t[$b]">;
  } // let isBranch

  let isCall = 1 in {
    def GEN_JL_S : F16_GEN_SOP<0x2, "jl_s\t[$b]">;
    def GEN_JL_S_D : F16_GEN_SOP<0x3, "jl_s.d\t[$b]">;
  } // let isCall
} // let isBarrier

def GEN_SUB_S_NE : F16_GEN_SOP<0x6, "sub_s.ne\t$b, $b, $b">;

def GEN_NOP_S : F16_GEN_ZOP<0x0, "nop_s">;
def GEN_UNIMP_S : F16_GEN_ZOP<0x1, "unimp_s">;
def GEN_SWI_S : F16_GEN_ZOP<0x2, "swi_s">;

let isReturn = 1, isTerminator = 1 in {
  def GEN_JEQ_S : F16_GEN_ZOP<0x4, "jeq_s\t[%blink]">;
  def GEN_JNE_S : F16_GEN_ZOP<0x5, "jne_s\t[%blink]">;
  let isBarrier = 1 in {
    //def GEN_J_S_BLINK : F16_GEN_ZOP<0x6, "j_s\t[%blink]">;
    def GEN_J_S_D_BLINK : F16_GEN_ZOP<0x7, "j_s.d\t[%blink]">;
  } // let isBarrier
} // let isReturn, isTerminator

//----------------------------------------------------------------------------
// Load/Store instructions.
//----------------------------------------------------------------------------

// Load instruction variants:
// Control bits: x, aa, di, zz
// x - sign extend.
// aa - incrementing mode. (N/A for LIMM).
// di - uncached.
// zz - data size.
multiclass ArcLdInst<bits<2> zz, string asmop> {
  let mayLoad = 1 in {
  def _rs9 : F32_LD_ADDR<0, 0b00, 0, zz,
                         (outs GPR32:$A), (ins MEMrs9:$addr),
                         !strconcat(asmop, "\t$A, [$addr]"), []>;

  def _limm : F32_LD_LIMM<0, 0, zz,
                         (outs GPR32:$A), (ins MEMii:$addr),
                         !strconcat(asmop, "\t$A, [$addr]"), []>;

  def _rlimm : F32_LD_RLIMM<0, 0b00, 0, zz,
                           (outs GPR32:$A), (ins MEMrlimm:$addr),
                           !strconcat(asmop, "\t$A, [$addr]"), []>;

  def _X_rs9 : F32_LD_ADDR<1, 0b00, 0, zz,
                         (outs GPR32:$A), (ins MEMrs9:$addr),
                         !strconcat(asmop, ".x\t$A, [$addr]"), []>;

  def _X_limm : F32_LD_LIMM<1, 0, zz,
                         (outs GPR32:$A), (ins MEMii:$addr),
                         !strconcat(asmop, ".x\t$A, [$addr]"), []>;

  def _X_rlimm : F32_LD_RLIMM<1, 0b00, 0, zz,
                           (outs GPR32:$A), (ins MEMrlimm:$addr),
                           !strconcat(asmop, ".x\t$A, [$addr]"), []>;

  def _AB_rs9 : F32_LD_RS9<0, 0b10, 0, zz,
                      (outs GPR32:$addrout, GPR32:$A),
                      (ins GPR32:$B, immS<9>:$S9),
                      !strconcat(asmop, ".ab\t$A, [$B,$S9]"), []>
    { let Constraints = "$addrout = $B"; }
  }
}
                         
// Load instruction definitions.
defm LD  : ArcLdInst<0b00, "ld">;
defm LDH : ArcLdInst<0b10, "ldh">;
defm LDB : ArcLdInst<0b01, "ldb">;

// Load instruction patterns.
// 32-bit loads.
def : Pat<(load AddrModeS9:$addr), (LD_rs9 AddrModeS9:$addr)>;
def : Pat<(load AddrModeImm:$addr), (LD_limm AddrModeImm:$addr)>;
def : Pat<(load AddrModeFar:$addr), (LD_rs9 AddrModeFar:$addr)>;

// 16-bit loads
def : Pat<(zextloadi16 AddrModeS9:$addr), (LDH_rs9 AddrModeS9:$addr)>;
def : Pat<(extloadi16 AddrModeS9:$addr), (LDH_rs9 AddrModeS9:$addr)>;
def : Pat<(zextloadi16 AddrModeImm:$addr), (LDH_limm AddrModeImm:$addr)>;
def : Pat<(extloadi16 AddrModeImm:$addr), (LDH_limm AddrModeImm:$addr)>;
def : Pat<(zextloadi16 AddrModeFar:$addr), (LDH_rlimm AddrModeFar:$addr)>;
def : Pat<(extloadi16 AddrModeFar:$addr), (LDH_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi16 AddrModeImm:$addr),(LDH_X_limm AddrModeImm:$addr)>;
def : Pat<(sextloadi16 AddrModeFar:$addr),(LDH_X_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi16 AddrModeS9:$addr),(LDH_X_rs9 AddrModeS9:$addr)>;

// 8-bit loads.
def : Pat<(zextloadi8 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(extloadi8 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(zextloadi8 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(extloadi8 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(zextloadi8 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(extloadi8 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(zextloadi1 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(extloadi1 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(zextloadi1 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(extloadi1 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(zextloadi1 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(extloadi1 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi8 AddrModeImm:$addr),(LDB_X_limm AddrModeImm:$addr)>;
def : Pat<(sextloadi8 AddrModeFar:$addr),(LDB_X_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi8 AddrModeS9:$addr),(LDB_X_rs9 AddrModeS9:$addr)>;


// Store instruction variants:
// Control bits: aa, di, zz
// aa - incrementing mode. (N/A for LIMM).
// di - uncached.
// zz - data size.
multiclass ArcStInst<bits<2> zz, string asmop> {
  let mayStore = 1 in {
  def _rs9  : F32_ST_ADDR<0b00, 0, zz, (outs), (ins GPR32:$C, MEMrs9:$addr),
                         !strconcat(asmop, "\t$C, [$addr]"), []>;

  def _limm : F32_ST_LIMM<0, zz, (outs), (ins GPR32:$C, MEMii:$addr),
                         !strconcat(asmop, "\t$C, [$addr]"), []>;

  def _AW_rs9 : F32_ST_RS9<0b01, 0, zz, (outs GPR32:$addrout),
                      (ins GPR32:$C, GPR32:$B, immS<9>:$S9),
                      !strconcat(asmop, ".aw\t$C, [$B,$S9]"), []>
    { let Constraints = "$addrout = $B"; }
  }
}

// Store instruction definitions.
defm ST  : ArcStInst<0b00, "st">;
defm STH : ArcStInst<0b10, "sth">;
defm STB : ArcStInst<0b01, "stb">;

// Store instruction patterns.
// 32-bit stores
def : Pat<(store i32:$C, AddrModeS9:$addr),
          (ST_rs9 i32:$C, AddrModeS9:$addr)>;
def : Pat<(store i32:$C, AddrModeImm:$addr),
          (ST_limm i32:$C, AddrModeImm:$addr)>;

// 16-bit stores
def : Pat<(truncstorei16 i32:$C, AddrModeS9:$addr),
          (STH_rs9 i32:$C, AddrModeS9:$addr)>;
def : Pat<(truncstorei16 i32:$C, AddrModeImm:$addr),
          (STH_limm i32:$C, AddrModeImm:$addr)>;

// 8-bit stores
def : Pat<(truncstorei8 i32:$C, AddrModeS9:$addr),
          (STB_rs9 i32:$C, AddrModeS9:$addr)>;
def : Pat<(truncstorei8 i32:$C, AddrModeImm:$addr),
          (STB_limm i32:$C, AddrModeImm:$addr)>;