aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonConstPropagation.cpp
blob: a82501cabb9bfeab5d7e22c5f417f64a5cdb5e22 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
//===- HexagonConstPropagation.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hcp"

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

  // Properties of a value that are tracked by the propagation.
  // A property that is marked as present (i.e. bit is set) dentes that the
  // value is known (proven) to have this property. Not all combinations
  // of bits make sense, for example Zero and NonZero are mutually exclusive,
  // but on the other hand, Zero implies Finite. In this case, whenever
  // the Zero property is present, Finite should also be present.
  class ConstantProperties {
  public:
    enum {
      Unknown   = 0x0000,
      Zero      = 0x0001,
      NonZero   = 0x0002,
      Finite    = 0x0004,
      Infinity  = 0x0008,
      NaN       = 0x0010,
      SignedZero = 0x0020,
      NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
      PosOrZero       = 0x0100,
      NegOrZero       = 0x0200,
      SignProperties  = (PosOrZero|NegOrZero),
      Everything      = (NumericProperties|SignProperties)
    };

    // For a given constant, deduce the set of trackable properties that this
    // constant has.
    static uint32_t deduce(const Constant *C);
  };

  // A representation of a register as it can appear in a MachineOperand,
  // i.e. a pair register:subregister.

  // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in
  // HexagonGenPredicate
  struct RegisterSubReg {
    unsigned Reg, SubReg;

    explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
    explicit RegisterSubReg(const MachineOperand &MO)
      : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}

    void print(const TargetRegisterInfo *TRI = nullptr) const {
      dbgs() << printReg(Reg, TRI, SubReg);
    }

    bool operator== (const RegisterSubReg &R) const {
      return (Reg == R.Reg) && (SubReg == R.SubReg);
    }
  };

  // Lattice cell, based on that was described in the W-Z paper on constant
  // propagation.
  // Latice cell will be allowed to hold multiple constant values. While
  // multiple values would normally indicate "bottom", we can still derive
  // some useful information from them. For example, comparison X > 0
  // could be folded if all the values in the cell associated with X are
  // positive.
  class LatticeCell {
  private:
    enum { Normal, Top, Bottom };

    static const unsigned MaxCellSize = 4;

    unsigned Kind:2;
    unsigned Size:3;
    unsigned IsSpecial:1;
    unsigned :0;

  public:
    union {
      uint32_t Properties;
      const Constant *Value;
      const Constant *Values[MaxCellSize];
    };

    LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
      for (unsigned i = 0; i < MaxCellSize; ++i)
        Values[i] = nullptr;
    }

    bool meet(const LatticeCell &L);
    bool add(const Constant *C);
    bool add(uint32_t Property);
    uint32_t properties() const;
    unsigned size() const { return Size; }

    LatticeCell &operator= (const LatticeCell &L) {
      if (this != &L) {
        // This memcpy also copies Properties (when L.Size == 0).
        uint32_t N = L.IsSpecial ? sizeof L.Properties
                                 : L.Size*sizeof(const Constant*);
        memcpy(Values, L.Values, N);
        Kind = L.Kind;
        Size = L.Size;
        IsSpecial = L.IsSpecial;
      }
      return *this;
    }

    bool isSingle() const { return size() == 1; }
    bool isProperty() const { return IsSpecial; }
    bool isTop() const { return Kind == Top; }
    bool isBottom() const { return Kind == Bottom; }

    bool setBottom() {
      bool Changed = (Kind != Bottom);
      Kind = Bottom;
      Size = 0;
      IsSpecial = false;
      return Changed;
    }

    void print(raw_ostream &os) const;

  private:
    void setProperty() {
      IsSpecial = true;
      Size = 0;
      Kind = Normal;
    }

    bool convertToProperty();
  };

#ifndef NDEBUG
  raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
    L.print(os);
    return os;
  }
#endif

  class MachineConstEvaluator;

  class MachineConstPropagator {
  public:
    MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
      Bottom.setBottom();
    }

    // Mapping: vreg -> cell
    // The keys are registers _without_ subregisters. This won't allow
    // definitions in the form of "vreg:subreg = ...". Such definitions
    // would be questionable from the point of view of SSA, since the "vreg"
    // could not be initialized in its entirety (specifically, an instruction
    // defining the "other part" of "vreg" would also count as a definition
    // of "vreg", which would violate the SSA).
    // If a value of a pair vreg:subreg needs to be obtained, the cell for
    // "vreg" needs to be looked up, and then the value of subregister "subreg"
    // needs to be evaluated.
    class CellMap {
    public:
      CellMap() {
        assert(Top.isTop());
        Bottom.setBottom();
      }

      void clear() { Map.clear(); }

      bool has(unsigned R) const {
        // All non-virtual registers are considered "bottom".
        if (!Register::isVirtualRegister(R))
          return true;
        MapType::const_iterator F = Map.find(R);
        return F != Map.end();
      }

      const LatticeCell &get(unsigned R) const {
        if (!Register::isVirtualRegister(R))
          return Bottom;
        MapType::const_iterator F = Map.find(R);
        if (F != Map.end())
          return F->second;
        return Top;
      }

      // Invalidates any const references.
      void update(unsigned R, const LatticeCell &L) {
        Map[R] = L;
      }

      void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;

    private:
      using MapType = std::map<unsigned, LatticeCell>;

      MapType Map;
      // To avoid creating "top" entries, return a const reference to
      // this cell in "get". Also, have a "Bottom" cell to return from
      // get when a value of a physical register is requested.
      LatticeCell Top, Bottom;

    public:
      using const_iterator = MapType::const_iterator;

      const_iterator begin() const { return Map.begin(); }
      const_iterator end() const { return Map.end(); }
    };

    bool run(MachineFunction &MF);

  private:
    void visitPHI(const MachineInstr &PN);
    void visitNonBranch(const MachineInstr &MI);
    void visitBranchesFrom(const MachineInstr &BrI);
    void visitUsesOf(unsigned R);
    bool computeBlockSuccessors(const MachineBasicBlock *MB,
          SetVector<const MachineBasicBlock*> &Targets);
    void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);

    void propagate(MachineFunction &MF);
    bool rewrite(MachineFunction &MF);

    MachineRegisterInfo      *MRI;
    MachineConstEvaluator    &MCE;

    using CFGEdge = std::pair<unsigned, unsigned>;
    using SetOfCFGEdge = std::set<CFGEdge>;
    using SetOfInstr = std::set<const MachineInstr *>;
    using QueueOfCFGEdge = std::queue<CFGEdge>;

    LatticeCell     Bottom;
    CellMap         Cells;
    SetOfCFGEdge    EdgeExec;
    SetOfInstr      InstrExec;
    QueueOfCFGEdge  FlowQ;
  };

  // The "evaluator/rewriter" of machine instructions. This is an abstract
  // base class that provides the interface that the propagator will use,
  // as well as some helper functions that are target-independent.
  class MachineConstEvaluator {
  public:
    MachineConstEvaluator(MachineFunction &Fn)
      : TRI(*Fn.getSubtarget().getRegisterInfo()),
        MF(Fn), CX(Fn.getFunction().getContext()) {}
    virtual ~MachineConstEvaluator() = default;

    // The required interface:
    // - A set of three "evaluate" functions. Each returns "true" if the
    //       computation succeeded, "false" otherwise.
    //   (1) Given an instruction MI, and the map with input values "Inputs",
    //       compute the set of output values "Outputs". An example of when
    //       the computation can "fail" is if MI is not an instruction that
    //       is recognized by the evaluator.
    //   (2) Given a register R (as reg:subreg), compute the cell that
    //       corresponds to the "subreg" part of the given register.
    //   (3) Given a branch instruction BrI, compute the set of target blocks.
    //       If the branch can fall-through, add null (0) to the list of
    //       possible targets.
    // - A function "rewrite", that given the cell map after propagation,
    //   could rewrite instruction MI in a more beneficial form. Return
    //   "true" if a change has been made, "false" otherwise.
    using CellMap = MachineConstPropagator::CellMap;
    virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
                          CellMap &Outputs) = 0;
    virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
                          LatticeCell &Result) = 0;
    virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
                          SetVector<const MachineBasicBlock*> &Targets,
                          bool &CanFallThru) = 0;
    virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;

    const TargetRegisterInfo &TRI;

  protected:
    MachineFunction &MF;
    LLVMContext     &CX;

    struct Comparison {
      enum {
        Unk = 0x00,
        EQ  = 0x01,
        NE  = 0x02,
        L   = 0x04, // Less-than property.
        G   = 0x08, // Greater-than property.
        U   = 0x40, // Unsigned property.
        LTs = L,
        LEs = L | EQ,
        GTs = G,
        GEs = G | EQ,
        LTu = L      | U,
        LEu = L | EQ | U,
        GTu = G      | U,
        GEu = G | EQ | U
      };

      static uint32_t negate(uint32_t Cmp) {
        if (Cmp == EQ)
          return NE;
        if (Cmp == NE)
          return EQ;
        assert((Cmp & (L|G)) != (L|G));
        return Cmp ^ (L|G);
      }
    };

    // Helper functions.

    bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC);
    bool constToInt(const Constant *C, APInt &Val) const;
    bool constToFloat(const Constant *C, APFloat &Val) const;
    const ConstantInt *intToConst(const APInt &Val) const;

    // Compares.
    bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, bool &Result);
    bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, bool &Result);
    bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2,
          const CellMap &Inputs, bool &Result);
    bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
          bool &Result);
    bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
          bool &Result);
    bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
          bool &Result);

    bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs,
          LatticeCell &Result);

    // Logical operations.
    bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
    bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateORri(const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
    bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);

    // Extensions.
    bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
          APInt &Result);
    bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
          APInt &Result);

    // Leading/trailing bits.
    bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
    bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);

    // Bitfield extract.
    bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
          unsigned Offset, bool Signed, const CellMap &Inputs,
          LatticeCell &Result);
    bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
          bool Signed, APInt &Result);
    // Vector operations.
    bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
          APInt &Result);
  };

} // end anonymous namespace

uint32_t ConstantProperties::deduce(const Constant *C) {
  if (isa<ConstantInt>(C)) {
    const ConstantInt *CI = cast<ConstantInt>(C);
    if (CI->isZero())
      return Zero | PosOrZero | NegOrZero | Finite;
    uint32_t Props = (NonZero | Finite);
    if (CI->isNegative())
      return Props | NegOrZero;
    return Props | PosOrZero;
  }

  if (isa<ConstantFP>(C)) {
    const ConstantFP *CF = cast<ConstantFP>(C);
    uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
                                      : PosOrZero;
    if (CF->isZero())
      return (Props & ~NumericProperties) | (Zero|Finite);
    Props = (Props & ~NumericProperties) | NonZero;
    if (CF->isNaN())
      return (Props & ~NumericProperties) | NaN;
    const APFloat &Val = CF->getValueAPF();
    if (Val.isInfinity())
      return (Props & ~NumericProperties) | Infinity;
    Props |= Finite;
    return Props;
  }

  return Unknown;
}

// Convert a cell from a set of specific values to a cell that tracks
// properties.
bool LatticeCell::convertToProperty() {
  if (isProperty())
    return false;
  // Corner case: converting a fresh (top) cell to "special".
  // This can happen, when adding a property to a top cell.
  uint32_t Everything = ConstantProperties::Everything;
  uint32_t Ps = !isTop() ? properties()
                         : Everything;
  if (Ps != ConstantProperties::Unknown) {
    Properties = Ps;
    setProperty();
  } else {
    setBottom();
  }
  return true;
}

#ifndef NDEBUG
void LatticeCell::print(raw_ostream &os) const {
  if (isProperty()) {
    os << "{ ";
    uint32_t Ps = properties();
    if (Ps & ConstantProperties::Zero)
      os << "zero ";
    if (Ps & ConstantProperties::NonZero)
      os << "nonzero ";
    if (Ps & ConstantProperties::Finite)
      os << "finite ";
    if (Ps & ConstantProperties::Infinity)
      os << "infinity ";
    if (Ps & ConstantProperties::NaN)
      os << "nan ";
    if (Ps & ConstantProperties::PosOrZero)
      os << "poz ";
    if (Ps & ConstantProperties::NegOrZero)
      os << "nez ";
    os << '}';
    return;
  }

  os << "{ ";
  if (isBottom()) {
    os << "bottom";
  } else if (isTop()) {
    os << "top";
  } else {
    for (unsigned i = 0; i < size(); ++i) {
      const Constant *C = Values[i];
      if (i != 0)
        os << ", ";
      C->print(os);
    }
  }
  os << " }";
}
#endif

// "Meet" operation on two cells. This is the key of the propagation
// algorithm.
bool LatticeCell::meet(const LatticeCell &L) {
  bool Changed = false;
  if (L.isBottom())
    Changed = setBottom();
  if (isBottom() || L.isTop())
    return Changed;
  if (isTop()) {
    *this = L;
    // L can be neither Top nor Bottom, so *this must have changed.
    return true;
  }

  // Top/bottom cases covered. Need to integrate L's set into ours.
  if (L.isProperty())
    return add(L.properties());
  for (unsigned i = 0; i < L.size(); ++i) {
    const Constant *LC = L.Values[i];
    Changed |= add(LC);
  }
  return Changed;
}

// Add a new constant to the cell. This is actually where the cell update
// happens. If a cell has room for more constants, the new constant is added.
// Otherwise, the cell is converted to a "property" cell (i.e. a cell that
// will track properties of the associated values, and not the values
// themselves. Care is taken to handle special cases, like "bottom", etc.
bool LatticeCell::add(const Constant *LC) {
  assert(LC);
  if (isBottom())
    return false;

  if (!isProperty()) {
    // Cell is not special. Try to add the constant here first,
    // if there is room.
    unsigned Index = 0;
    while (Index < Size) {
      const Constant *C = Values[Index];
      // If the constant is already here, no change is needed.
      if (C == LC)
        return false;
      Index++;
    }
    if (Index < MaxCellSize) {
      Values[Index] = LC;
      Kind = Normal;
      Size++;
      return true;
    }
  }

  bool Changed = false;

  // This cell is special, or is not special, but is full. After this
  // it will be special.
  Changed = convertToProperty();
  uint32_t Ps = properties();
  uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
  if (NewPs == ConstantProperties::Unknown) {
    setBottom();
    return true;
  }
  if (Ps != NewPs) {
    Properties = NewPs;
    Changed = true;
  }
  return Changed;
}

// Add a property to the cell. This will force the cell to become a property-
// tracking cell.
bool LatticeCell::add(uint32_t Property) {
  bool Changed = convertToProperty();
  uint32_t Ps = properties();
  if (Ps == (Ps & Property))
    return Changed;
  Properties = Property & Ps;
  return true;
}

// Return the properties of the values in the cell. This is valid for any
// cell, and does not alter the cell itself.
uint32_t LatticeCell::properties() const {
  if (isProperty())
    return Properties;
  assert(!isTop() && "Should not call this for a top cell");
  if (isBottom())
    return ConstantProperties::Unknown;

  assert(size() > 0 && "Empty cell");
  uint32_t Ps = ConstantProperties::deduce(Values[0]);
  for (unsigned i = 1; i < size(); ++i) {
    if (Ps == ConstantProperties::Unknown)
      break;
    Ps &= ConstantProperties::deduce(Values[i]);
  }
  return Ps;
}

#ifndef NDEBUG
void MachineConstPropagator::CellMap::print(raw_ostream &os,
      const TargetRegisterInfo &TRI) const {
  for (auto &I : Map)
    dbgs() << "  " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
}
#endif

void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
  const MachineBasicBlock *MB = PN.getParent();
  unsigned MBN = MB->getNumber();
  LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);

  const MachineOperand &MD = PN.getOperand(0);
  RegisterSubReg DefR(MD);
  assert(Register::isVirtualRegister(DefR.Reg));

  bool Changed = false;

  // If the def has a sub-register, set the corresponding cell to "bottom".
  if (DefR.SubReg) {
Bottomize:
    const LatticeCell &T = Cells.get(DefR.Reg);
    Changed = !T.isBottom();
    Cells.update(DefR.Reg, Bottom);
    if (Changed)
      visitUsesOf(DefR.Reg);
    return;
  }

  LatticeCell DefC = Cells.get(DefR.Reg);

  for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
    const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
    unsigned PBN = PB->getNumber();
    if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
      LLVM_DEBUG(dbgs() << "  edge " << printMBBReference(*PB) << "->"
                        << printMBBReference(*MB) << " not executable\n");
      continue;
    }
    const MachineOperand &SO = PN.getOperand(i);
    RegisterSubReg UseR(SO);
    // If the input is not a virtual register, we don't really know what
    // value it holds.
    if (!Register::isVirtualRegister(UseR.Reg))
      goto Bottomize;
    // If there is no cell for an input register, it means top.
    if (!Cells.has(UseR.Reg))
      continue;

    LatticeCell SrcC;
    bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
    LLVM_DEBUG(dbgs() << "  edge from " << printMBBReference(*PB) << ": "
                      << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC
                      << '\n');
    Changed |= Eval ? DefC.meet(SrcC)
                    : DefC.setBottom();
    Cells.update(DefR.Reg, DefC);
    if (DefC.isBottom())
      break;
  }
  if (Changed)
    visitUsesOf(DefR.Reg);
}

void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
  LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
                    << "): " << MI);
  CellMap Outputs;
  bool Eval = MCE.evaluate(MI, Cells, Outputs);
  LLVM_DEBUG({
    if (Eval) {
      dbgs() << "  outputs:";
      for (auto &I : Outputs)
        dbgs() << ' ' << I.second;
      dbgs() << '\n';
    }
  });

  // Update outputs. If the value was not computed, set all the
  // def cells to bottom.
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    RegisterSubReg DefR(MO);
    // Only track virtual registers.
    if (!Register::isVirtualRegister(DefR.Reg))
      continue;
    bool Changed = false;
    // If the evaluation failed, set cells for all output registers to bottom.
    if (!Eval) {
      const LatticeCell &T = Cells.get(DefR.Reg);
      Changed = !T.isBottom();
      Cells.update(DefR.Reg, Bottom);
    } else {
      // Find the corresponding cell in the computed outputs.
      // If it's not there, go on to the next def.
      if (!Outputs.has(DefR.Reg))
        continue;
      LatticeCell RC = Cells.get(DefR.Reg);
      Changed = RC.meet(Outputs.get(DefR.Reg));
      Cells.update(DefR.Reg, RC);
    }
    if (Changed)
      visitUsesOf(DefR.Reg);
  }
}

// Starting at a given branch, visit remaining branches in the block.
// Traverse over the subsequent branches for as long as the preceding one
// can fall through. Add all the possible targets to the flow work queue,
// including the potential fall-through to the layout-successor block.
void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
  const MachineBasicBlock &B = *BrI.getParent();
  unsigned MBN = B.getNumber();
  MachineBasicBlock::const_iterator It = BrI.getIterator();
  MachineBasicBlock::const_iterator End = B.end();

  SetVector<const MachineBasicBlock*> Targets;
  bool EvalOk = true, FallsThru = true;
  while (It != End) {
    const MachineInstr &MI = *It;
    InstrExec.insert(&MI);
    LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
                      << printMBBReference(B) << "): " << MI);
    // Do not evaluate subsequent branches if the evaluation of any of the
    // previous branches failed. Keep iterating over the branches only
    // to mark them as executable.
    EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
    if (!EvalOk)
      FallsThru = true;
    if (!FallsThru)
      break;
    ++It;
  }

  if (EvalOk) {
    // Need to add all CFG successors that lead to EH landing pads.
    // There won't be explicit branches to these blocks, but they must
    // be processed.
    for (const MachineBasicBlock *SB : B.successors()) {
      if (SB->isEHPad())
        Targets.insert(SB);
    }
    if (FallsThru) {
      const MachineFunction &MF = *B.getParent();
      MachineFunction::const_iterator BI = B.getIterator();
      MachineFunction::const_iterator Next = std::next(BI);
      if (Next != MF.end())
        Targets.insert(&*Next);
    }
  } else {
    // If the evaluation of the branches failed, make "Targets" to be the
    // set of all successors of the block from the CFG.
    // If the evaluation succeeded for all visited branches, then if the
    // last one set "FallsThru", then add an edge to the layout successor
    // to the targets.
    Targets.clear();
    LLVM_DEBUG(dbgs() << "  failed to evaluate a branch...adding all CFG "
                         "successors\n");
    for (const MachineBasicBlock *SB : B.successors())
      Targets.insert(SB);
  }

  for (const MachineBasicBlock *TB : Targets) {
    unsigned TBN = TB->getNumber();
    LLVM_DEBUG(dbgs() << "  pushing edge " << printMBBReference(B) << " -> "
                      << printMBBReference(*TB) << "\n");
    FlowQ.push(CFGEdge(MBN, TBN));
  }
}

void MachineConstPropagator::visitUsesOf(unsigned Reg) {
  LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
                    << Cells.get(Reg) << '\n');
  for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
    // Do not process non-executable instructions. They can become exceutable
    // later (via a flow-edge in the work queue). In such case, the instruc-
    // tion will be visited at that time.
    if (!InstrExec.count(&MI))
      continue;
    if (MI.isPHI())
      visitPHI(MI);
    else if (!MI.isBranch())
      visitNonBranch(MI);
    else
      visitBranchesFrom(MI);
  }
}

bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
      SetVector<const MachineBasicBlock*> &Targets) {
  MachineBasicBlock::const_iterator FirstBr = MB->end();
  for (const MachineInstr &MI : *MB) {
    if (MI.isDebugInstr())
      continue;
    if (MI.isBranch()) {
      FirstBr = MI.getIterator();
      break;
    }
  }

  Targets.clear();
  MachineBasicBlock::const_iterator End = MB->end();

  bool DoNext = true;
  for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
    const MachineInstr &MI = *I;
    // Can there be debug instructions between branches?
    if (MI.isDebugInstr())
      continue;
    if (!InstrExec.count(&MI))
      continue;
    bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
    if (!Eval)
      return false;
    if (!DoNext)
      break;
  }
  // If the last branch could fall-through, add block's layout successor.
  if (DoNext) {
    MachineFunction::const_iterator BI = MB->getIterator();
    MachineFunction::const_iterator NextI = std::next(BI);
    if (NextI != MB->getParent()->end())
      Targets.insert(&*NextI);
  }

  // Add all the EH landing pads.
  for (const MachineBasicBlock *SB : MB->successors())
    if (SB->isEHPad())
      Targets.insert(SB);

  return true;
}

void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
      MachineBasicBlock *To) {
  // First, remove the CFG successor/predecessor information.
  From->removeSuccessor(To);
  // Remove all corresponding PHI operands in the To block.
  for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
    MachineInstr *PN = &*I;
    // reg0 = PHI reg1, bb2, reg3, bb4, ...
    int N = PN->getNumOperands()-2;
    while (N > 0) {
      if (PN->getOperand(N+1).getMBB() == From) {
        PN->RemoveOperand(N+1);
        PN->RemoveOperand(N);
      }
      N -= 2;
    }
  }
}

void MachineConstPropagator::propagate(MachineFunction &MF) {
  MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
  unsigned EntryNum = Entry->getNumber();

  // Start with a fake edge, just to process the entry node.
  FlowQ.push(CFGEdge(EntryNum, EntryNum));

  while (!FlowQ.empty()) {
    CFGEdge Edge = FlowQ.front();
    FlowQ.pop();

    LLVM_DEBUG(
        dbgs() << "Picked edge "
               << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
               << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n');
    if (Edge.first != EntryNum)
      if (EdgeExec.count(Edge))
        continue;
    EdgeExec.insert(Edge);
    MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);

    // Process the block in three stages:
    // - visit all PHI nodes,
    // - visit all non-branch instructions,
    // - visit block branches.
    MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();

    // Visit PHI nodes in the successor block.
    while (It != End && It->isPHI()) {
      InstrExec.insert(&*It);
      visitPHI(*It);
      ++It;
    }

    // If the successor block just became executable, visit all instructions.
    // To see if this is the first time we're visiting it, check the first
    // non-debug instruction to see if it is executable.
    while (It != End && It->isDebugInstr())
      ++It;
    assert(It == End || !It->isPHI());
    // If this block has been visited, go on to the next one.
    if (It != End && InstrExec.count(&*It))
      continue;
    // For now, scan all non-branch instructions. Branches require different
    // processing.
    while (It != End && !It->isBranch()) {
      if (!It->isDebugInstr()) {
        InstrExec.insert(&*It);
        visitNonBranch(*It);
      }
      ++It;
    }

    // Time to process the end of the block. This is different from
    // processing regular (non-branch) instructions, because there can
    // be multiple branches in a block, and they can cause the block to
    // terminate early.
    if (It != End) {
      visitBranchesFrom(*It);
    } else {
      // If the block didn't have a branch, add all successor edges to the
      // work queue. (There should really be only one successor in such case.)
      unsigned SBN = SB->getNumber();
      for (const MachineBasicBlock *SSB : SB->successors())
        FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
    }
  } // while (FlowQ)

  LLVM_DEBUG({
    dbgs() << "Cells after propagation:\n";
    Cells.print(dbgs(), MCE.TRI);
    dbgs() << "Dead CFG edges:\n";
    for (const MachineBasicBlock &B : MF) {
      unsigned BN = B.getNumber();
      for (const MachineBasicBlock *SB : B.successors()) {
        unsigned SN = SB->getNumber();
        if (!EdgeExec.count(CFGEdge(BN, SN)))
          dbgs() << "  " << printMBBReference(B) << " -> "
                 << printMBBReference(*SB) << '\n';
      }
    }
  });
}

bool MachineConstPropagator::rewrite(MachineFunction &MF) {
  bool Changed = false;
  // Rewrite all instructions based on the collected cell information.
  //
  // Traverse the instructions in a post-order, so that rewriting an
  // instruction can make changes "downstream" in terms of control-flow
  // without affecting the rewriting process. (We should not change
  // instructions that have not yet been visited by the rewriter.)
  // The reason for this is that the rewriter can introduce new vregs,
  // and replace uses of old vregs (which had corresponding cells
  // computed during propagation) with these new vregs (which at this
  // point would not have any cells, and would appear to be "top").
  // If an attempt was made to evaluate an instruction with a fresh
  // "top" vreg, it would cause an error (abend) in the evaluator.

  // Collect the post-order-traversal block ordering. The subsequent
  // traversal/rewrite will update block successors, so it's safer
  // if the visiting order it computed ahead of time.
  std::vector<MachineBasicBlock*> POT;
  for (MachineBasicBlock *B : post_order(&MF))
    if (!B->empty())
      POT.push_back(B);

  for (MachineBasicBlock *B : POT) {
    // Walk the block backwards (which usually begin with the branches).
    // If any branch is rewritten, we may need to update the successor
    // information for this block. Unless the block's successors can be
    // precisely determined (which may not be the case for indirect
    // branches), we cannot modify any branch.

    // Compute the successor information.
    SetVector<const MachineBasicBlock*> Targets;
    bool HaveTargets = computeBlockSuccessors(B, Targets);
    // Rewrite the executable instructions. Skip branches if we don't
    // have block successor information.
    for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
      MachineInstr &MI = *I;
      if (InstrExec.count(&MI)) {
        if (MI.isBranch() && !HaveTargets)
          continue;
        Changed |= MCE.rewrite(MI, Cells);
      }
    }
    // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
    // regular instructions to appear in between PHI nodes. Bring all
    // the PHI nodes to the beginning of the block.
    for (auto I = B->begin(), E = B->end(); I != E; ++I) {
      if (I->isPHI())
        continue;
      // I is not PHI. Find the next PHI node P.
      auto P = I;
      while (++P != E)
        if (P->isPHI())
          break;
      // Not found.
      if (P == E)
        break;
      // Splice P right before I.
      B->splice(I, B, P);
      // Reset I to point at the just spliced PHI node.
      --I;
    }
    // Update the block successor information: remove unnecessary successors.
    if (HaveTargets) {
      SmallVector<MachineBasicBlock*,2> ToRemove;
      for (MachineBasicBlock *SB : B->successors()) {
        if (!Targets.count(SB))
          ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
        Targets.remove(SB);
      }
      for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
        removeCFGEdge(B, ToRemove[i]);
      // If there are any blocks left in the computed targets, it means that
      // we think that the block could go somewhere, but the CFG does not.
      // This could legitimately happen in blocks that have non-returning
      // calls---we would think that the execution can continue, but the
      // CFG will not have a successor edge.
    }
  }
  // Need to do some final post-processing.
  // If a branch was not executable, it will not get rewritten, but should
  // be removed (or replaced with something equivalent to a A2_nop). We can't
  // erase instructions during rewriting, so this needs to be delayed until
  // now.
  for (MachineBasicBlock &B : MF) {
    MachineBasicBlock::iterator I = B.begin(), E = B.end();
    while (I != E) {
      auto Next = std::next(I);
      if (I->isBranch() && !InstrExec.count(&*I))
        B.erase(I);
      I = Next;
    }
  }
  return Changed;
}

// This is the constant propagation algorithm as described by Wegman-Zadeck.
// Most of the terminology comes from there.
bool MachineConstPropagator::run(MachineFunction &MF) {
  LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));

  MRI = &MF.getRegInfo();

  Cells.clear();
  EdgeExec.clear();
  InstrExec.clear();
  assert(FlowQ.empty());

  propagate(MF);
  bool Changed = rewrite(MF);

  LLVM_DEBUG({
    dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
    if (Changed)
      MF.print(dbgs(), nullptr);
  });
  return Changed;
}

// --------------------------------------------------------------------
// Machine const evaluator.

bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs,
      LatticeCell &RC) {
  if (!Register::isVirtualRegister(R.Reg))
    return false;
  const LatticeCell &L = Inputs.get(R.Reg);
  if (!R.SubReg) {
    RC = L;
    return !RC.isBottom();
  }
  bool Eval = evaluate(R, L, RC);
  return Eval && !RC.isBottom();
}

bool MachineConstEvaluator::constToInt(const Constant *C,
      APInt &Val) const {
  const ConstantInt *CI = dyn_cast<ConstantInt>(C);
  if (!CI)
    return false;
  Val = CI->getValue();
  return true;
}

const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
  return ConstantInt::get(CX, Val);
}

bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  LatticeCell LS1, LS2;
  if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
    return false;

  bool IsProp1 = LS1.isProperty();
  bool IsProp2 = LS2.isProperty();
  if (IsProp1) {
    uint32_t Prop1 = LS1.properties();
    if (IsProp2)
      return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
    uint32_t NegCmp = Comparison::negate(Cmp);
    return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
  }
  if (IsProp2) {
    uint32_t Prop2 = LS2.properties();
    return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
  }

  APInt A;
  bool IsTrue = true, IsFalse = true;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    bool Res;
    bool Computed = constToInt(LS2.Values[i], A) &&
                    evaluateCMPri(Cmp, R1, A, Inputs, Res);
    if (!Computed)
      return false;
    IsTrue &= Res;
    IsFalse &= !Res;
  }
  assert(!IsTrue || !IsFalse);
  // The actual logical value of the comparison is same as IsTrue.
  Result = IsTrue;
  // Return true if the result was proven to be true or proven to be false.
  return IsTrue || IsFalse;
}

bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, bool &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS;
  if (!getCell(R1, Inputs, LS))
    return false;
  if (LS.isProperty())
    return evaluateCMPpi(Cmp, LS.properties(), A2, Result);

  APInt A;
  bool IsTrue = true, IsFalse = true;
  for (unsigned i = 0; i < LS.size(); ++i) {
    bool Res;
    bool Computed = constToInt(LS.Values[i], A) &&
                    evaluateCMPii(Cmp, A, A2, Res);
    if (!Computed)
      return false;
    IsTrue &= Res;
    IsFalse &= !Res;
  }
  assert(!IsTrue || !IsFalse);
  // The actual logical value of the comparison is same as IsTrue.
  Result = IsTrue;
  // Return true if the result was proven to be true or proven to be false.
  return IsTrue || IsFalse;
}

bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1,
      uint64_t Props2, const CellMap &Inputs, bool &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS;
  if (!getCell(R1, Inputs, LS))
    return false;
  if (LS.isProperty())
    return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);

  APInt A;
  uint32_t NegCmp = Comparison::negate(Cmp);
  bool IsTrue = true, IsFalse = true;
  for (unsigned i = 0; i < LS.size(); ++i) {
    bool Res;
    bool Computed = constToInt(LS.Values[i], A) &&
                    evaluateCMPpi(NegCmp, Props2, A, Res);
    if (!Computed)
      return false;
    IsTrue &= Res;
    IsFalse &= !Res;
  }
  assert(!IsTrue || !IsFalse);
  Result = IsTrue;
  return IsTrue || IsFalse;
}

bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
      const APInt &A2, bool &Result) {
  // NE is a special kind of comparison (not composed of smaller properties).
  if (Cmp == Comparison::NE) {
    Result = !APInt::isSameValue(A1, A2);
    return true;
  }
  if (Cmp == Comparison::EQ) {
    Result = APInt::isSameValue(A1, A2);
    return true;
  }
  if (Cmp & Comparison::EQ) {
    if (APInt::isSameValue(A1, A2))
      return (Result = true);
  }
  assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
  Result = false;

  unsigned W1 = A1.getBitWidth();
  unsigned W2 = A2.getBitWidth();
  unsigned MaxW = (W1 >= W2) ? W1 : W2;
  if (Cmp & Comparison::U) {
    const APInt Zx1 = A1.zextOrSelf(MaxW);
    const APInt Zx2 = A2.zextOrSelf(MaxW);
    if (Cmp & Comparison::L)
      Result = Zx1.ult(Zx2);
    else if (Cmp & Comparison::G)
      Result = Zx2.ult(Zx1);
    return true;
  }

  // Signed comparison.
  const APInt Sx1 = A1.sextOrSelf(MaxW);
  const APInt Sx2 = A2.sextOrSelf(MaxW);
  if (Cmp & Comparison::L)
    Result = Sx1.slt(Sx2);
  else if (Cmp & Comparison::G)
    Result = Sx2.slt(Sx1);
  return true;
}

bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
      const APInt &A2, bool &Result) {
  if (Props == ConstantProperties::Unknown)
    return false;

  // Should never see NaN here, but check for it for completeness.
  if (Props & ConstantProperties::NaN)
    return false;
  // Infinity could theoretically be compared to a number, but the
  // presence of infinity here would be very suspicious. If we don't
  // know for sure that the number is finite, bail out.
  if (!(Props & ConstantProperties::Finite))
    return false;

  // Let X be a number that has properties Props.

  if (Cmp & Comparison::U) {
    // In case of unsigned comparisons, we can only compare against 0.
    if (A2 == 0) {
      // Any x!=0 will be considered >0 in an unsigned comparison.
      if (Props & ConstantProperties::Zero)
        Result = (Cmp & Comparison::EQ);
      else if (Props & ConstantProperties::NonZero)
        Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
      else
        return false;
      return true;
    }
    // A2 is not zero. The only handled case is if X = 0.
    if (Props & ConstantProperties::Zero) {
      Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
      return true;
    }
    return false;
  }

  // Signed comparisons are different.
  if (Props & ConstantProperties::Zero) {
    if (A2 == 0)
      Result = (Cmp & Comparison::EQ);
    else
      Result = (Cmp == Comparison::NE) ||
               ((Cmp & Comparison::L) && !A2.isNegative()) ||
               ((Cmp & Comparison::G) &&  A2.isNegative());
    return true;
  }
  if (Props & ConstantProperties::PosOrZero) {
    // X >= 0 and !(A2 < 0) => cannot compare
    if (!A2.isNegative())
      return false;
    // X >= 0 and A2 < 0
    Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
    return true;
  }
  if (Props & ConstantProperties::NegOrZero) {
    // X <= 0 and Src1 < 0 => cannot compare
    if (A2 == 0 || A2.isNegative())
      return false;
    // X <= 0 and A2 > 0
    Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
    return true;
  }

  return false;
}

bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
      uint32_t Props2, bool &Result) {
  using P = ConstantProperties;

  if ((Props1 & P::NaN) && (Props2 & P::NaN))
    return false;
  if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
    return false;

  bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
  bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
  if (Zero1 && Zero2) {
    Result = (Cmp & Comparison::EQ);
    return true;
  }
  if (Cmp == Comparison::NE) {
    if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
      return (Result = true);
    return false;
  }

  if (Cmp & Comparison::U) {
    // In unsigned comparisons, we can only compare against a known zero,
    // or a known non-zero.
    if (Zero1 && NonZero2) {
      Result = (Cmp & Comparison::L);
      return true;
    }
    if (NonZero1 && Zero2) {
      Result = (Cmp & Comparison::G);
      return true;
    }
    return false;
  }

  // Signed comparison. The comparison is not NE.
  bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
  bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
  if (Nez1 && Poz2) {
    if (NonZero1 || NonZero2) {
      Result = (Cmp & Comparison::L);
      return true;
    }
    // Either (or both) could be zero. Can only say that X <= Y.
    if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
      return (Result = true);
  }
  if (Poz1 && Nez2) {
    if (NonZero1 || NonZero2) {
      Result = (Cmp & Comparison::G);
      return true;
    }
    // Either (or both) could be zero. Can only say that X >= Y.
    if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
      return (Result = true);
  }

  return false;
}

bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1,
      const CellMap &Inputs, LatticeCell &Result) {
  return getCell(R1, Inputs, Result);
}

bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  const LatticeCell &L1 = Inputs.get(R2.Reg);
  const LatticeCell &L2 = Inputs.get(R2.Reg);
  // If both sources are bottom, exit. Otherwise try to evaluate ANDri
  // with the non-bottom argument passed as the immediate. This is to
  // catch cases of ANDing with 0.
  if (L2.isBottom()) {
    if (L1.isBottom())
      return false;
    return evaluateANDrr(R2, R1, Inputs, Result);
  }
  LatticeCell LS2;
  if (!evaluate(R2, L2, LS2))
    return false;
  if (LS2.isBottom() || LS2.isProperty())
    return false;

  APInt A;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    LatticeCell RC;
    bool Eval = constToInt(LS2.Values[i], A) &&
                evaluateANDri(R1, A, Inputs, RC);
    if (!Eval)
      return false;
    Result.meet(RC);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  if (A2 == -1)
    return getCell(R1, Inputs, Result);
  if (A2 == 0) {
    LatticeCell RC;
    RC.add(intToConst(A2));
    // Overwrite Result.
    Result = RC;
    return true;
  }
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, ResA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateANDii(A, A2, ResA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(ResA);
    Result.add(C);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
      const APInt &A2, APInt &Result) {
  Result = A1 & A2;
  return true;
}

bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  const LatticeCell &L1 = Inputs.get(R2.Reg);
  const LatticeCell &L2 = Inputs.get(R2.Reg);
  // If both sources are bottom, exit. Otherwise try to evaluate ORri
  // with the non-bottom argument passed as the immediate. This is to
  // catch cases of ORing with -1.
  if (L2.isBottom()) {
    if (L1.isBottom())
      return false;
    return evaluateORrr(R2, R1, Inputs, Result);
  }
  LatticeCell LS2;
  if (!evaluate(R2, L2, LS2))
    return false;
  if (LS2.isBottom() || LS2.isProperty())
    return false;

  APInt A;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    LatticeCell RC;
    bool Eval = constToInt(LS2.Values[i], A) &&
                evaluateORri(R1, A, Inputs, RC);
    if (!Eval)
      return false;
    Result.meet(RC);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  if (A2 == 0)
    return getCell(R1, Inputs, Result);
  if (A2 == -1) {
    LatticeCell RC;
    RC.add(intToConst(A2));
    // Overwrite Result.
    Result = RC;
    return true;
  }
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, ResA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateORii(A, A2, ResA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(ResA);
    Result.add(C);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateORii(const APInt &A1,
      const APInt &A2, APInt &Result) {
  Result = A1 | A2;
  return true;
}

bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  LatticeCell LS1, LS2;
  if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
    return false;
  if (LS1.isProperty()) {
    if (LS1.properties() & ConstantProperties::Zero)
      return !(Result = LS2).isBottom();
    return false;
  }
  if (LS2.isProperty()) {
    if (LS2.properties() & ConstantProperties::Zero)
      return !(Result = LS1).isBottom();
    return false;
  }

  APInt A;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    LatticeCell RC;
    bool Eval = constToInt(LS2.Values[i], A) &&
                evaluateXORri(R1, A, Inputs, RC);
    if (!Eval)
      return false;
    Result.meet(RC);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isProperty()) {
    if (LS1.properties() & ConstantProperties::Zero) {
      const Constant *C = intToConst(A2);
      Result.add(C);
      return !Result.isBottom();
    }
    return false;
  }

  APInt A, XA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateXORii(A, A2, XA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(XA);
    Result.add(C);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
      const APInt &A2, APInt &Result) {
  Result = A1 ^ A2;
  return true;
}

bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width,
      unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isProperty())
    return false;

  APInt A, XA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateZEXTi(A, Width, Bits, XA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(XA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
      unsigned Bits, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  (void)BW;
  assert(Width >= Bits && BW >= Bits);
  APInt Mask = APInt::getLowBitsSet(Width, Bits);
  Result = A1.zextOrTrunc(Width) & Mask;
  return true;
}

bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width,
      unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, XA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateSEXTi(A, Width, Bits, XA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(XA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
      unsigned Bits, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  assert(Width >= Bits && BW >= Bits);
  // Special case to make things faster for smaller source widths.
  // Sign extension of 0 bits generates 0 as a result. This is consistent
  // with what the HW does.
  if (Bits == 0) {
    Result = APInt(Width, 0);
    return true;
  }
  // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
  if (BW <= 64 && Bits != 0) {
    int64_t V = A1.getSExtValue();
    switch (Bits) {
      case 8:
        V = static_cast<int8_t>(V);
        break;
      case 16:
        V = static_cast<int16_t>(V);
        break;
      case 32:
        V = static_cast<int32_t>(V);
        break;
      default:
        // Shift left to lose all bits except lower "Bits" bits, then shift
        // the value back, replicating what was a sign bit after the first
        // shift.
        V = (V << (64-Bits)) >> (64-Bits);
        break;
    }
    // V is a 64-bit sign-extended value. Convert it to APInt of desired
    // width.
    Result = APInt(Width, V, true);
    return true;
  }
  // Slow case: the value doesn't fit in int64_t.
  if (Bits < BW)
    Result = A1.trunc(Bits).sext(Width);
  else // Bits == BW
    Result = A1.sext(Width);
  return true;
}

bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros,
      bool Ones, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, CA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateCLBi(A, Zeros, Ones, CA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(CA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
      bool Ones, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  if (!Zeros && !Ones)
    return false;
  unsigned Count = 0;
  if (Zeros && (Count == 0))
    Count = A1.countLeadingZeros();
  if (Ones && (Count == 0))
    Count = A1.countLeadingOnes();
  Result = APInt(BW, static_cast<uint64_t>(Count), false);
  return true;
}

bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros,
      bool Ones, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, CA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateCTBi(A, Zeros, Ones, CA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(CA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
      bool Ones, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  if (!Zeros && !Ones)
    return false;
  unsigned Count = 0;
  if (Zeros && (Count == 0))
    Count = A1.countTrailingZeros();
  if (Ones && (Count == 0))
    Count = A1.countTrailingOnes();
  Result = APInt(BW, static_cast<uint64_t>(Count), false);
  return true;
}

bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1,
      unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
      const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  assert(Bits+Offset <= Width);
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom())
    return false;
  if (LS1.isProperty()) {
    uint32_t Ps = LS1.properties();
    if (Ps & ConstantProperties::Zero) {
      const Constant *C = intToConst(APInt(Width, 0, false));
      Result.add(C);
      return true;
    }
    return false;
  }

  APInt A, CA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(CA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
      unsigned Offset, bool Signed, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  assert(Bits+Offset <= BW);
  // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
  if (Bits == 0) {
    Result = APInt(BW, 0);
    return true;
  }
  if (BW <= 64) {
    int64_t V = A1.getZExtValue();
    V <<= (64-Bits-Offset);
    if (Signed)
      V >>= (64-Bits);
    else
      V = static_cast<uint64_t>(V) >> (64-Bits);
    Result = APInt(BW, V, Signed);
    return true;
  }
  if (Signed)
    Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
  else
    Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
  return true;
}

bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1,
      unsigned Bits, unsigned Count, const CellMap &Inputs,
      LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, SA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateSplati(A, Bits, Count, SA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(SA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
      unsigned Count, APInt &Result) {
  assert(Count > 0);
  unsigned BW = A1.getBitWidth(), SW = Count*Bits;
  APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
  if (Count > 1)
    LoBits = LoBits.zext(SW);

  APInt Res(SW, 0, false);
  for (unsigned i = 0; i < Count; ++i) {
    Res <<= Bits;
    Res |= LoBits;
  }
  Result = Res;
  return true;
}

// ----------------------------------------------------------------------
// Hexagon-specific code.

namespace llvm {

  FunctionPass *createHexagonConstPropagationPass();
  void initializeHexagonConstPropagationPass(PassRegistry &Registry);

} // end namespace llvm

namespace {

  class HexagonConstEvaluator : public MachineConstEvaluator {
  public:
    HexagonConstEvaluator(MachineFunction &Fn);

    bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs) override;
    bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
          LatticeCell &Result) override;
    bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
          SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
          override;
    bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;

  private:
    unsigned getRegBitWidth(unsigned Reg) const;

    static uint32_t getCmp(unsigned Opc);
    static APInt getCmpImm(unsigned Opc, unsigned OpX,
          const MachineOperand &MO);
    void replaceWithNop(MachineInstr &MI);

    bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs,
          LatticeCell &Result);
    bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    // This is suitable to be called for compare-and-jump instructions.
    bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
          const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
    bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);

    void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg);
    bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
    bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
          bool &AllDefs);
    bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);

    MachineRegisterInfo *MRI;
    const HexagonInstrInfo &HII;
    const HexagonRegisterInfo &HRI;
  };

  class HexagonConstPropagation : public MachineFunctionPass {
  public:
    static char ID;

    HexagonConstPropagation() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override {
      return "Hexagon Constant Propagation";
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      const Function &F = MF.getFunction();
      if (skipFunction(F))
        return false;

      HexagonConstEvaluator HCE(MF);
      return MachineConstPropagator(HCE).run(MF);
    }
  };

} // end anonymous namespace

char HexagonConstPropagation::ID = 0;

INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp",
  "Hexagon Constant Propagation", false, false)

HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
  : MachineConstEvaluator(Fn),
    HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
    HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
  MRI = &Fn.getRegInfo();
}

bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  if (MI.isCall())
    return false;
  if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
    return false;
  const MachineOperand &MD = MI.getOperand(0);
  if (!MD.isDef())
    return false;

  unsigned Opc = MI.getOpcode();
  RegisterSubReg DefR(MD);
  assert(!DefR.SubReg);
  if (!Register::isVirtualRegister(DefR.Reg))
    return false;

  if (MI.isCopy()) {
    LatticeCell RC;
    RegisterSubReg SrcR(MI.getOperand(1));
    bool Eval = evaluateCOPY(SrcR, Inputs, RC);
    if (!Eval)
      return false;
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  if (MI.isRegSequence()) {
    unsigned Sub1 = MI.getOperand(2).getImm();
    unsigned Sub2 = MI.getOperand(4).getImm();
    const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
    unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
    unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
    if (Sub1 != SubLo && Sub1 != SubHi)
      return false;
    if (Sub2 != SubLo && Sub2 != SubHi)
      return false;
    assert(Sub1 != Sub2);
    bool LoIs1 = (Sub1 == SubLo);
    const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
    const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
    LatticeCell RC;
    RegisterSubReg SrcRL(OpLo), SrcRH(OpHi);
    bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
    if (!Eval)
      return false;
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  if (MI.isCompare()) {
    bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
    return Eval;
  }

  switch (Opc) {
    default:
      return false;
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32:
    case Hexagon::CONST64:
    {
      const MachineOperand &VO = MI.getOperand(1);
      // The operand of CONST32 can be a blockaddress, e.g.
      //   %0 = CONST32 <blockaddress(@eat, %l)>
      // Do this check for all instructions for safety.
      if (!VO.isImm())
        return false;
      int64_t V = MI.getOperand(1).getImm();
      unsigned W = getRegBitWidth(DefR.Reg);
      if (W != 32 && W != 64)
        return false;
      IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
                                  : Type::getInt64Ty(CX);
      const ConstantInt *CI = ConstantInt::get(Ty, V, true);
      LatticeCell RC = Outputs.get(DefR.Reg);
      RC.add(CI);
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::PS_true:
    case Hexagon::PS_false:
    {
      LatticeCell RC = Outputs.get(DefR.Reg);
      bool NonZero = (Opc == Hexagon::PS_true);
      uint32_t P = NonZero ? ConstantProperties::NonZero
                           : ConstantProperties::Zero;
      RC.add(P);
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::A2_and:
    case Hexagon::A2_andir:
    case Hexagon::A2_andp:
    case Hexagon::A2_or:
    case Hexagon::A2_orir:
    case Hexagon::A2_orp:
    case Hexagon::A2_xor:
    case Hexagon::A2_xorp:
    {
      bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    case Hexagon::A2_combineii:  // combine(#s8Ext, #s8)
    case Hexagon::A4_combineii:  // combine(#s8, #u6Ext)
    {
      if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm())
        return false;
      uint64_t Hi = MI.getOperand(1).getImm();
      uint64_t Lo = MI.getOperand(2).getImm();
      uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
      IntegerType *Ty = Type::getInt64Ty(CX);
      const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
      LatticeCell RC = Outputs.get(DefR.Reg);
      RC.add(CI);
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S2_setbit_i:
    {
      int64_t B = MI.getOperand(2).getImm();
      assert(B >=0 && B < 32);
      APInt A(32, (1ull << B), false);
      RegisterSubReg R(MI.getOperand(1));
      LatticeCell RC = Outputs.get(DefR.Reg);
      bool Eval = evaluateORri(R, A, Inputs, RC);
      if (!Eval)
        return false;
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::C2_mux:
    case Hexagon::C2_muxir:
    case Hexagon::C2_muxri:
    case Hexagon::C2_muxii:
    {
      bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    case Hexagon::A2_sxtb:
    case Hexagon::A2_sxth:
    case Hexagon::A2_sxtw:
    case Hexagon::A2_zxtb:
    case Hexagon::A2_zxth:
    {
      bool Eval = evaluateHexExt(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    case Hexagon::S2_ct0:
    case Hexagon::S2_ct0p:
    case Hexagon::S2_ct1:
    case Hexagon::S2_ct1p:
    {
      using namespace Hexagon;

      bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
      RegisterSubReg R1(MI.getOperand(1));
      assert(Inputs.has(R1.Reg));
      LatticeCell T;
      bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
      if (!Eval)
        return false;
      // All of these instructions return a 32-bit value. The evaluate
      // will generate the same type as the operand, so truncate the
      // result if necessary.
      APInt C;
      LatticeCell RC = Outputs.get(DefR.Reg);
      for (unsigned i = 0; i < T.size(); ++i) {
        const Constant *CI = T.Values[i];
        if (constToInt(CI, C) && C.getBitWidth() > 32)
          CI = intToConst(C.trunc(32));
        RC.add(CI);
      }
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S2_cl0:
    case Hexagon::S2_cl0p:
    case Hexagon::S2_cl1:
    case Hexagon::S2_cl1p:
    case Hexagon::S2_clb:
    case Hexagon::S2_clbp:
    {
      using namespace Hexagon;

      bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
      bool OnlyOnes =  (Opc == S2_cl1) || (Opc == S2_cl1p);
      RegisterSubReg R1(MI.getOperand(1));
      assert(Inputs.has(R1.Reg));
      LatticeCell T;
      bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
      if (!Eval)
        return false;
      // All of these instructions return a 32-bit value. The evaluate
      // will generate the same type as the operand, so truncate the
      // result if necessary.
      APInt C;
      LatticeCell RC = Outputs.get(DefR.Reg);
      for (unsigned i = 0; i < T.size(); ++i) {
        const Constant *CI = T.Values[i];
        if (constToInt(CI, C) && C.getBitWidth() > 32)
          CI = intToConst(C.trunc(32));
        RC.add(CI);
      }
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S4_extract:
    case Hexagon::S4_extractp:
    case Hexagon::S2_extractu:
    case Hexagon::S2_extractup:
    {
      bool Signed = (Opc == Hexagon::S4_extract) ||
                    (Opc == Hexagon::S4_extractp);
      RegisterSubReg R1(MI.getOperand(1));
      unsigned BW = getRegBitWidth(R1.Reg);
      unsigned Bits = MI.getOperand(2).getImm();
      unsigned Offset = MI.getOperand(3).getImm();
      LatticeCell RC = Outputs.get(DefR.Reg);
      if (Offset >= BW) {
        APInt Zero(BW, 0, false);
        RC.add(intToConst(Zero));
        break;
      }
      if (Offset+Bits > BW) {
        // If the requested bitfield extends beyond the most significant bit,
        // the extra bits are treated as 0s. To emulate this behavior, reduce
        // the number of requested bits, and make the extract unsigned.
        Bits = BW-Offset;
        Signed = false;
      }
      bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
      if (!Eval)
        return false;
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S2_vsplatrb:
    case Hexagon::S2_vsplatrh:
    // vabsh, vabsh:sat
    // vabsw, vabsw:sat
    // vconj:sat
    // vrndwh, vrndwh:sat
    // vsathb, vsathub, vsatwuh
    // vsxtbh, vsxthw
    // vtrunehb, vtrunohb
    // vzxtbh, vzxthw
    {
      bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    // TODO:
    // A2_vaddh
    // A2_vaddhs
    // A2_vaddw
    // A2_vaddws
  }

  return true;
}

bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R,
      const LatticeCell &Input, LatticeCell &Result) {
  if (!R.SubReg) {
    Result = Input;
    return true;
  }
  const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
  if (RC != &Hexagon::DoubleRegsRegClass)
    return false;
  if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
    return false;

  assert(!Input.isTop());
  if (Input.isBottom())
    return false;

  using P = ConstantProperties;

  if (Input.isProperty()) {
    uint32_t Ps = Input.properties();
    if (Ps & (P::Zero|P::NaN)) {
      uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
      Result.add(Ns);
      return true;
    }
    if (R.SubReg == Hexagon::isub_hi) {
      uint32_t Ns = (Ps & P::SignProperties);
      Result.add(Ns);
      return true;
    }
    return false;
  }

  // The Input cell contains some known values. Pick the word corresponding
  // to the subregister.
  APInt A;
  for (unsigned i = 0; i < Input.size(); ++i) {
    const Constant *C = Input.Values[i];
    if (!constToInt(C, A))
      return false;
    if (!A.isIntN(64))
      return false;
    uint64_t U = A.getZExtValue();
    if (R.SubReg == Hexagon::isub_hi)
      U >>= 32;
    U &= 0xFFFFFFFFULL;
    uint32_t U32 = Lo_32(U);
    int32_t V32;
    memcpy(&V32, &U32, sizeof V32);
    IntegerType *Ty = Type::getInt32Ty(CX);
    const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
    Result.add(C32);
  }
  return true;
}

bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
      const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
      bool &FallsThru) {
  // We need to evaluate one branch at a time. TII::analyzeBranch checks
  // all the branches in a basic block at once, so we cannot use it.
  unsigned Opc = BrI.getOpcode();
  bool SimpleBranch = false;
  bool Negated = false;
  switch (Opc) {
    case Hexagon::J2_jumpf:
    case Hexagon::J2_jumpfnew:
    case Hexagon::J2_jumpfnewpt:
      Negated = true;
      LLVM_FALLTHROUGH;
    case Hexagon::J2_jumpt:
    case Hexagon::J2_jumptnew:
    case Hexagon::J2_jumptnewpt:
      // Simple branch:  if([!]Pn) jump ...
      // i.e. Op0 = predicate, Op1 = branch target.
      SimpleBranch = true;
      break;
    case Hexagon::J2_jump:
      Targets.insert(BrI.getOperand(0).getMBB());
      FallsThru = false;
      return true;
    default:
Undetermined:
      // If the branch is of unknown type, assume that all successors are
      // executable.
      FallsThru = !BrI.isUnconditionalBranch();
      return false;
  }

  if (SimpleBranch) {
    const MachineOperand &MD = BrI.getOperand(0);
    RegisterSubReg PR(MD);
    // If the condition operand has a subregister, this is not something
    // we currently recognize.
    if (PR.SubReg)
      goto Undetermined;
    assert(Inputs.has(PR.Reg));
    const LatticeCell &PredC = Inputs.get(PR.Reg);
    if (PredC.isBottom())
      goto Undetermined;

    uint32_t Props = PredC.properties();
    bool CTrue = false, CFalse = false;
    if (Props & ConstantProperties::Zero)
      CFalse = true;
    else if (Props & ConstantProperties::NonZero)
      CTrue = true;
    // If the condition is not known to be either, bail out.
    if (!CTrue && !CFalse)
      goto Undetermined;

    const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();

    FallsThru = false;
    if ((!Negated && CTrue) || (Negated && CFalse))
      Targets.insert(BranchTarget);
    else if ((!Negated && CFalse) || (Negated && CTrue))
      FallsThru = true;
    else
      goto Undetermined;
  }

  return true;
}

bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
  if (MI.isBranch())
    return rewriteHexBranch(MI, Inputs);

  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    default:
      break;
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32:
    case Hexagon::CONST64:
    case Hexagon::PS_true:
    case Hexagon::PS_false:
      return false;
  }

  unsigned NumOp = MI.getNumOperands();
  if (NumOp == 0)
    return false;

  bool AllDefs, Changed;
  Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
  // If not all defs have been rewritten (i.e. the instruction defines
  // a register that is not compile-time constant), then try to rewrite
  // register operands that are known to be constant with immediates.
  if (!AllDefs)
    Changed |= rewriteHexConstUses(MI, Inputs);

  return Changed;
}

unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
    return 32;
  if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
    return 64;
  if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
    return 8;
  llvm_unreachable("Invalid register");
  return 0;
}

uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpeqp:
    case Hexagon::A4_cmpbeq:
    case Hexagon::A4_cmpheq:
    case Hexagon::A4_cmpbeqi:
    case Hexagon::A4_cmpheqi:
    case Hexagon::C2_cmpeqi:
    case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
    case Hexagon::J4_cmpeqn1_t_jumpnv_t:
    case Hexagon::J4_cmpeqi_t_jumpnv_nt:
    case Hexagon::J4_cmpeqi_t_jumpnv_t:
    case Hexagon::J4_cmpeq_t_jumpnv_nt:
    case Hexagon::J4_cmpeq_t_jumpnv_t:
      return Comparison::EQ;

    case Hexagon::C4_cmpneq:
    case Hexagon::C4_cmpneqi:
    case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
    case Hexagon::J4_cmpeqn1_f_jumpnv_t:
    case Hexagon::J4_cmpeqi_f_jumpnv_nt:
    case Hexagon::J4_cmpeqi_f_jumpnv_t:
    case Hexagon::J4_cmpeq_f_jumpnv_nt:
    case Hexagon::J4_cmpeq_f_jumpnv_t:
      return Comparison::NE;

    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtp:
    case Hexagon::A4_cmpbgt:
    case Hexagon::A4_cmphgt:
    case Hexagon::A4_cmpbgti:
    case Hexagon::A4_cmphgti:
    case Hexagon::C2_cmpgti:
    case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
    case Hexagon::J4_cmpgtn1_t_jumpnv_t:
    case Hexagon::J4_cmpgti_t_jumpnv_nt:
    case Hexagon::J4_cmpgti_t_jumpnv_t:
    case Hexagon::J4_cmpgt_t_jumpnv_nt:
    case Hexagon::J4_cmpgt_t_jumpnv_t:
      return Comparison::GTs;

    case Hexagon::C4_cmplte:
    case Hexagon::C4_cmpltei:
    case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
    case Hexagon::J4_cmpgtn1_f_jumpnv_t:
    case Hexagon::J4_cmpgti_f_jumpnv_nt:
    case Hexagon::J4_cmpgti_f_jumpnv_t:
    case Hexagon::J4_cmpgt_f_jumpnv_nt:
    case Hexagon::J4_cmpgt_f_jumpnv_t:
      return Comparison::LEs;

    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpgtup:
    case Hexagon::A4_cmpbgtu:
    case Hexagon::A4_cmpbgtui:
    case Hexagon::A4_cmphgtu:
    case Hexagon::A4_cmphgtui:
    case Hexagon::C2_cmpgtui:
    case Hexagon::J4_cmpgtui_t_jumpnv_nt:
    case Hexagon::J4_cmpgtui_t_jumpnv_t:
    case Hexagon::J4_cmpgtu_t_jumpnv_nt:
    case Hexagon::J4_cmpgtu_t_jumpnv_t:
      return Comparison::GTu;

    case Hexagon::J4_cmpltu_f_jumpnv_nt:
    case Hexagon::J4_cmpltu_f_jumpnv_t:
      return Comparison::GEu;

    case Hexagon::J4_cmpltu_t_jumpnv_nt:
    case Hexagon::J4_cmpltu_t_jumpnv_t:
      return Comparison::LTu;

    case Hexagon::J4_cmplt_f_jumpnv_nt:
    case Hexagon::J4_cmplt_f_jumpnv_t:
      return Comparison::GEs;

    case Hexagon::C4_cmplteu:
    case Hexagon::C4_cmplteui:
    case Hexagon::J4_cmpgtui_f_jumpnv_nt:
    case Hexagon::J4_cmpgtui_f_jumpnv_t:
    case Hexagon::J4_cmpgtu_f_jumpnv_nt:
    case Hexagon::J4_cmpgtu_f_jumpnv_t:
      return Comparison::LEu;

    case Hexagon::J4_cmplt_t_jumpnv_nt:
    case Hexagon::J4_cmplt_t_jumpnv_t:
      return Comparison::LTs;

    default:
      break;
  }
  return Comparison::Unk;
}

APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
      const MachineOperand &MO) {
  bool Signed = false;
  switch (Opc) {
    case Hexagon::A4_cmpbgtui:   // u7
    case Hexagon::A4_cmphgtui:   // u7
      break;
    case Hexagon::A4_cmpheqi:    // s8
    case Hexagon::C4_cmpneqi:   // s8
      Signed = true;
      break;
    case Hexagon::A4_cmpbeqi:    // u8
      break;
    case Hexagon::C2_cmpgtui:      // u9
    case Hexagon::C4_cmplteui:  // u9
      break;
    case Hexagon::C2_cmpeqi:       // s10
    case Hexagon::C2_cmpgti:       // s10
    case Hexagon::C4_cmpltei:   // s10
      Signed = true;
      break;
    case Hexagon::J4_cmpeqi_f_jumpnv_nt:   // u5
    case Hexagon::J4_cmpeqi_f_jumpnv_t:    // u5
    case Hexagon::J4_cmpeqi_t_jumpnv_nt:   // u5
    case Hexagon::J4_cmpeqi_t_jumpnv_t:    // u5
    case Hexagon::J4_cmpgti_f_jumpnv_nt:   // u5
    case Hexagon::J4_cmpgti_f_jumpnv_t:    // u5
    case Hexagon::J4_cmpgti_t_jumpnv_nt:   // u5
    case Hexagon::J4_cmpgti_t_jumpnv_t:    // u5
    case Hexagon::J4_cmpgtui_f_jumpnv_nt:  // u5
    case Hexagon::J4_cmpgtui_f_jumpnv_t:   // u5
    case Hexagon::J4_cmpgtui_t_jumpnv_nt:  // u5
    case Hexagon::J4_cmpgtui_t_jumpnv_t:   // u5
      break;
    default:
      llvm_unreachable("Unhandled instruction");
      break;
  }

  uint64_t Val = MO.getImm();
  return APInt(32, Val, Signed);
}

void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
  MI.setDesc(HII.get(Hexagon::A2_nop));
  while (MI.getNumOperands() > 0)
    MI.RemoveOperand(0);
}

bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH,
      const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
  LatticeCell LSL, LSH;
  if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
    return false;
  if (LSL.isProperty() || LSH.isProperty())
    return false;

  unsigned LN = LSL.size(), HN = LSH.size();
  SmallVector<APInt,4> LoVs(LN), HiVs(HN);
  for (unsigned i = 0; i < LN; ++i) {
    bool Eval = constToInt(LSL.Values[i], LoVs[i]);
    if (!Eval)
      return false;
    assert(LoVs[i].getBitWidth() == 32);
  }
  for (unsigned i = 0; i < HN; ++i) {
    bool Eval = constToInt(LSH.Values[i], HiVs[i]);
    if (!Eval)
      return false;
    assert(HiVs[i].getBitWidth() == 32);
  }

  for (unsigned i = 0; i < HiVs.size(); ++i) {
    APInt HV = HiVs[i].zextOrSelf(64) << 32;
    for (unsigned j = 0; j < LoVs.size(); ++j) {
      APInt LV = LoVs[j].zextOrSelf(64);
      const Constant *C = intToConst(HV | LV);
      Result.add(C);
      if (Result.isBottom())
        return false;
    }
  }
  return !Result.isBottom();
}

bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  unsigned Opc = MI.getOpcode();
  bool Classic = false;
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpeqp:
    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtp:
    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpgtup:
    case Hexagon::C2_cmpeqi:
    case Hexagon::C2_cmpgti:
    case Hexagon::C2_cmpgtui:
      // Classic compare:  Dst0 = CMP Src1, Src2
      Classic = true;
      break;
    default:
      // Not handling other compare instructions now.
      return false;
  }

  if (Classic) {
    const MachineOperand &Src1 = MI.getOperand(1);
    const MachineOperand &Src2 = MI.getOperand(2);

    bool Result;
    unsigned Opc = MI.getOpcode();
    bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
    if (Computed) {
      // Only create a zero/non-zero cell. At this time there isn't really
      // much need for specific values.
      RegisterSubReg DefR(MI.getOperand(0));
      LatticeCell L = Outputs.get(DefR.Reg);
      uint32_t P = Result ? ConstantProperties::NonZero
                          : ConstantProperties::Zero;
      L.add(P);
      Outputs.update(DefR.Reg, L);
      return true;
    }
  }

  return false;
}

bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
      const MachineOperand &Src1, const MachineOperand &Src2,
      const CellMap &Inputs, bool &Result) {
  uint32_t Cmp = getCmp(Opc);
  bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
  bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
  if (Reg1) {
    RegisterSubReg R1(Src1);
    if (Reg2) {
      RegisterSubReg R2(Src2);
      return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
    } else if (Imm2) {
      APInt A2 = getCmpImm(Opc, 2, Src2);
      return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
    }
  } else if (Imm1) {
    APInt A1 = getCmpImm(Opc, 1, Src1);
    if (Reg2) {
      RegisterSubReg R2(Src2);
      uint32_t NegCmp = Comparison::negate(Cmp);
      return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
    } else if (Imm2) {
      APInt A2 = getCmpImm(Opc, 2, Src2);
      return evaluateCMPii(Cmp, A1, A2, Result);
    }
  }
  // Unknown kind of comparison.
  return false;
}

bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  unsigned Opc = MI.getOpcode();
  if (MI.getNumOperands() != 3)
    return false;
  const MachineOperand &Src1 = MI.getOperand(1);
  const MachineOperand &Src2 = MI.getOperand(2);
  RegisterSubReg R1(Src1);
  bool Eval = false;
  LatticeCell RC;
  switch (Opc) {
    default:
      return false;
    case Hexagon::A2_and:
    case Hexagon::A2_andp:
      Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC);
      break;
    case Hexagon::A2_andir: {
      if (!Src2.isImm())
        return false;
      APInt A(32, Src2.getImm(), true);
      Eval = evaluateANDri(R1, A, Inputs, RC);
      break;
    }
    case Hexagon::A2_or:
    case Hexagon::A2_orp:
      Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC);
      break;
    case Hexagon::A2_orir: {
      if (!Src2.isImm())
        return false;
      APInt A(32, Src2.getImm(), true);
      Eval = evaluateORri(R1, A, Inputs, RC);
      break;
    }
    case Hexagon::A2_xor:
    case Hexagon::A2_xorp:
      Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC);
      break;
  }
  if (Eval) {
    RegisterSubReg DefR(MI.getOperand(0));
    Outputs.update(DefR.Reg, RC);
  }
  return Eval;
}

bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  // Dst0 = Cond1 ? Src2 : Src3
  RegisterSubReg CR(MI.getOperand(1));
  assert(Inputs.has(CR.Reg));
  LatticeCell LS;
  if (!getCell(CR, Inputs, LS))
    return false;
  uint32_t Ps = LS.properties();
  unsigned TakeOp;
  if (Ps & ConstantProperties::Zero)
    TakeOp = 3;
  else if (Ps & ConstantProperties::NonZero)
    TakeOp = 2;
  else
    return false;

  const MachineOperand &ValOp = MI.getOperand(TakeOp);
  RegisterSubReg DefR(MI.getOperand(0));
  LatticeCell RC = Outputs.get(DefR.Reg);

  if (ValOp.isImm()) {
    int64_t V = ValOp.getImm();
    unsigned W = getRegBitWidth(DefR.Reg);
    APInt A(W, V, true);
    const Constant *C = intToConst(A);
    RC.add(C);
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  if (ValOp.isReg()) {
    RegisterSubReg R(ValOp);
    const LatticeCell &LR = Inputs.get(R.Reg);
    LatticeCell LSR;
    if (!evaluate(R, LR, LSR))
      return false;
    RC.meet(LSR);
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  return false;
}

bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  // Dst0 = ext R1
  RegisterSubReg R1(MI.getOperand(1));
  assert(Inputs.has(R1.Reg));

  unsigned Opc = MI.getOpcode();
  unsigned Bits;
  switch (Opc) {
    case Hexagon::A2_sxtb:
    case Hexagon::A2_zxtb:
      Bits = 8;
      break;
    case Hexagon::A2_sxth:
    case Hexagon::A2_zxth:
      Bits = 16;
      break;
    case Hexagon::A2_sxtw:
      Bits = 32;
      break;
    default:
      llvm_unreachable("Unhandled extension opcode");
  }

  bool Signed = false;
  switch (Opc) {
    case Hexagon::A2_sxtb:
    case Hexagon::A2_sxth:
    case Hexagon::A2_sxtw:
      Signed = true;
      break;
  }

  RegisterSubReg DefR(MI.getOperand(0));
  unsigned BW = getRegBitWidth(DefR.Reg);
  LatticeCell RC = Outputs.get(DefR.Reg);
  bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
                     : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
  if (!Eval)
    return false;
  Outputs.update(DefR.Reg, RC);
  return true;
}

bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  // DefR = op R1
  RegisterSubReg DefR(MI.getOperand(0));
  RegisterSubReg R1(MI.getOperand(1));
  assert(Inputs.has(R1.Reg));
  LatticeCell RC = Outputs.get(DefR.Reg);
  bool Eval;

  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_vsplatrb:
      // Rd = 4 times Rs:0..7
      Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
      break;
    case Hexagon::S2_vsplatrh:
      // Rdd = 4 times Rs:0..15
      Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
      break;
    default:
      return false;
  }

  if (!Eval)
    return false;
  Outputs.update(DefR.Reg, RC);
  return true;
}

bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
      const CellMap &Inputs, bool &AllDefs) {
  AllDefs = false;

  // Some diagnostics.
  // LLVM_DEBUG({...}) gets confused with all this code as an argument.
#ifndef NDEBUG
  bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
  if (Debugging) {
    bool Const = true, HasUse = false;
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
        continue;
      RegisterSubReg R(MO);
      if (!Register::isVirtualRegister(R.Reg))
        continue;
      HasUse = true;
      // PHIs can legitimately have "top" cells after propagation.
      if (!MI.isPHI() && !Inputs.has(R.Reg)) {
        dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
               << " in MI: " << MI;
        continue;
      }
      const LatticeCell &L = Inputs.get(R.Reg);
      Const &= L.isSingle();
      if (!Const)
        break;
    }
    if (HasUse && Const) {
      if (!MI.isCopy()) {
        dbgs() << "CONST: " << MI;
        for (const MachineOperand &MO : MI.operands()) {
          if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
            continue;
          Register R = MO.getReg();
          dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
        }
      }
    }
  }
#endif

  // Avoid generating TFRIs for register transfers---this will keep the
  // coalescing opportunities.
  if (MI.isCopy())
    return false;

  // Collect all virtual register-def operands.
  SmallVector<unsigned,2> DefRegs;
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    assert(!MO.getSubReg());
    assert(Inputs.has(R));
    DefRegs.push_back(R);
  }

  MachineBasicBlock &B = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  unsigned ChangedNum = 0;
#ifndef NDEBUG
  SmallVector<const MachineInstr*,4> NewInstrs;
#endif

  // For each defined register, if it is a constant, create an instruction
  //   NewR = const
  // and replace all uses of the defined register with NewR.
  for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
    unsigned R = DefRegs[i];
    const LatticeCell &L = Inputs.get(R);
    if (L.isBottom())
      continue;
    const TargetRegisterClass *RC = MRI->getRegClass(R);
    MachineBasicBlock::iterator At = MI.getIterator();

    if (!L.isSingle()) {
      // If this a zero/non-zero cell, we can fold a definition
      // of a predicate register.
      using P = ConstantProperties;

      uint64_t Ps = L.properties();
      if (!(Ps & (P::Zero|P::NonZero)))
        continue;
      const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
      if (RC != PredRC)
        continue;
      const MCInstrDesc *NewD = (Ps & P::Zero) ?
        &HII.get(Hexagon::PS_false) :
        &HII.get(Hexagon::PS_true);
      Register NewR = MRI->createVirtualRegister(PredRC);
      const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
      (void)MIB;
#ifndef NDEBUG
      NewInstrs.push_back(&*MIB);
#endif
      replaceAllRegUsesWith(R, NewR);
    } else {
      // This cell has a single value.
      APInt A;
      if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
        continue;
      const TargetRegisterClass *NewRC;
      const MCInstrDesc *NewD;

      unsigned W = getRegBitWidth(R);
      int64_t V = A.getSExtValue();
      assert(W == 32 || W == 64);
      if (W == 32)
        NewRC = &Hexagon::IntRegsRegClass;
      else
        NewRC = &Hexagon::DoubleRegsRegClass;
      Register NewR = MRI->createVirtualRegister(NewRC);
      const MachineInstr *NewMI;

      if (W == 32) {
        NewD = &HII.get(Hexagon::A2_tfrsi);
        NewMI = BuildMI(B, At, DL, *NewD, NewR)
                  .addImm(V);
      } else {
        if (A.isSignedIntN(8)) {
          NewD = &HII.get(Hexagon::A2_tfrpi);
          NewMI = BuildMI(B, At, DL, *NewD, NewR)
                    .addImm(V);
        } else {
          int32_t Hi = V >> 32;
          int32_t Lo = V & 0xFFFFFFFFLL;
          if (isInt<8>(Hi) && isInt<8>(Lo)) {
            NewD = &HII.get(Hexagon::A2_combineii);
            NewMI = BuildMI(B, At, DL, *NewD, NewR)
                      .addImm(Hi)
                      .addImm(Lo);
          } else {
            NewD = &HII.get(Hexagon::CONST64);
            NewMI = BuildMI(B, At, DL, *NewD, NewR)
                      .addImm(V);
          }
        }
      }
      (void)NewMI;
#ifndef NDEBUG
      NewInstrs.push_back(NewMI);
#endif
      replaceAllRegUsesWith(R, NewR);
    }
    ChangedNum++;
  }

  LLVM_DEBUG({
    if (!NewInstrs.empty()) {
      MachineFunction &MF = *MI.getParent()->getParent();
      dbgs() << "In function: " << MF.getName() << "\n";
      dbgs() << "Rewrite: for " << MI << "  created " << *NewInstrs[0];
      for (unsigned i = 1; i < NewInstrs.size(); ++i)
        dbgs() << "          " << *NewInstrs[i];
    }
  });

  AllDefs = (ChangedNum == DefRegs.size());
  return ChangedNum > 0;
}

bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
      const CellMap &Inputs) {
  bool Changed = false;
  unsigned Opc = MI.getOpcode();
  MachineBasicBlock &B = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator At = MI.getIterator();
  MachineInstr *NewMI = nullptr;

  switch (Opc) {
    case Hexagon::M2_maci:
    // Convert DefR += mpyi(R2, R3)
    //   to   DefR += mpyi(R, #imm),
    //   or   DefR -= mpyi(R, #imm).
    {
      RegisterSubReg DefR(MI.getOperand(0));
      assert(!DefR.SubReg);
      RegisterSubReg R2(MI.getOperand(2));
      RegisterSubReg R3(MI.getOperand(3));
      assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
      LatticeCell LS2, LS3;
      // It is enough to get one of the input cells, since we will only try
      // to replace one argument---whichever happens to be a single constant.
      bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
      if (!HasC2 && !HasC3)
        return false;
      bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
                   (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
      // If one of the operands is zero, eliminate the multiplication.
      if (Zero) {
        // DefR == R1 (tied operands).
        MachineOperand &Acc = MI.getOperand(1);
        RegisterSubReg R1(Acc);
        unsigned NewR = R1.Reg;
        if (R1.SubReg) {
          // Generate COPY. FIXME: Replace with the register:subregister.
          const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
          NewR = MRI->createVirtualRegister(RC);
          NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
                    .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
        }
        replaceAllRegUsesWith(DefR.Reg, NewR);
        MRI->clearKillFlags(NewR);
        Changed = true;
        break;
      }

      bool Swap = false;
      if (!LS3.isSingle()) {
        if (!LS2.isSingle())
          return false;
        Swap = true;
      }
      const LatticeCell &LI = Swap ? LS2 : LS3;
      const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
                                        : MI.getOperand(2);
      // LI is single here.
      APInt A;
      if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
        return false;
      int64_t V = A.getSExtValue();
      const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
                                      : HII.get(Hexagon::M2_macsin);
      if (V < 0)
        V = -V;
      const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
      Register NewR = MRI->createVirtualRegister(RC);
      const MachineOperand &Src1 = MI.getOperand(1);
      NewMI = BuildMI(B, At, DL, D, NewR)
                .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
                .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
                .addImm(V);
      replaceAllRegUsesWith(DefR.Reg, NewR);
      Changed = true;
      break;
    }

    case Hexagon::A2_and:
    {
      RegisterSubReg R1(MI.getOperand(1));
      RegisterSubReg R2(MI.getOperand(2));
      assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
      LatticeCell LS1, LS2;
      unsigned CopyOf = 0;
      // Check if any of the operands is -1 (i.e. all bits set).
      if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
        APInt M1;
        if (constToInt(LS1.Value, M1) && !~M1)
          CopyOf = 2;
      }
      else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
        APInt M1;
        if (constToInt(LS2.Value, M1) && !~M1)
          CopyOf = 1;
      }
      if (!CopyOf)
        return false;
      MachineOperand &SO = MI.getOperand(CopyOf);
      RegisterSubReg SR(SO);
      RegisterSubReg DefR(MI.getOperand(0));
      unsigned NewR = SR.Reg;
      if (SR.SubReg) {
        const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
        NewR = MRI->createVirtualRegister(RC);
        NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
                  .addReg(SR.Reg, getRegState(SO), SR.SubReg);
      }
      replaceAllRegUsesWith(DefR.Reg, NewR);
      MRI->clearKillFlags(NewR);
      Changed = true;
    }
    break;

    case Hexagon::A2_or:
    {
      RegisterSubReg R1(MI.getOperand(1));
      RegisterSubReg R2(MI.getOperand(2));
      assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
      LatticeCell LS1, LS2;
      unsigned CopyOf = 0;

      using P = ConstantProperties;

      if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
        CopyOf = 2;
      else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
        CopyOf = 1;
      if (!CopyOf)
        return false;
      MachineOperand &SO = MI.getOperand(CopyOf);
      RegisterSubReg SR(SO);
      RegisterSubReg DefR(MI.getOperand(0));
      unsigned NewR = SR.Reg;
      if (SR.SubReg) {
        const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
        NewR = MRI->createVirtualRegister(RC);
        NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
                  .addReg(SR.Reg, getRegState(SO), SR.SubReg);
      }
      replaceAllRegUsesWith(DefR.Reg, NewR);
      MRI->clearKillFlags(NewR);
      Changed = true;
    }
    break;
  }

  if (NewMI) {
    // clear all the kill flags of this new instruction.
    for (MachineOperand &MO : NewMI->operands())
      if (MO.isReg() && MO.isUse())
        MO.setIsKill(false);
  }

  LLVM_DEBUG({
    if (NewMI) {
      dbgs() << "Rewrite: for " << MI;
      if (NewMI != &MI)
        dbgs() << "  created " << *NewMI;
      else
        dbgs() << "  modified the instruction itself and created:" << *NewMI;
    }
  });

  return Changed;
}

void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg,
      unsigned ToReg) {
  assert(Register::isVirtualRegister(FromReg));
  assert(Register::isVirtualRegister(ToReg));
  for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
    MachineOperand &O = *I;
    ++I;
    O.setReg(ToReg);
  }
}

bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
      const CellMap &Inputs) {
  MachineBasicBlock &B = *BrI.getParent();
  unsigned NumOp = BrI.getNumOperands();
  if (!NumOp)
    return false;

  bool FallsThru;
  SetVector<const MachineBasicBlock*> Targets;
  bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
  unsigned NumTargets = Targets.size();
  if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
    return false;
  if (BrI.getOpcode() == Hexagon::J2_jump)
    return false;

  LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
  bool Rewritten = false;
  if (NumTargets > 0) {
    assert(!FallsThru && "This should have been checked before");
    // MIB.addMBB needs non-const pointer.
    MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
    bool Moot = B.isLayoutSuccessor(TargetB);
    if (!Moot) {
      // If we build a branch here, we must make sure that it won't be
      // erased as "non-executable". We can't mark any new instructions
      // as executable here, so we need to overwrite the BrI, which we
      // know is executable.
      const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
      auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
                  .addMBB(TargetB);
      BrI.setDesc(JD);
      while (BrI.getNumOperands() > 0)
        BrI.RemoveOperand(0);
      // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
      // are present in the rewritten branch.
      for (auto &Op : NI->operands())
        BrI.addOperand(Op);
      NI->eraseFromParent();
      Rewritten = true;
    }
  }

  // Do not erase instructions. A newly created instruction could get
  // the same address as an instruction marked as executable during the
  // propagation.
  if (!Rewritten)
    replaceWithNop(BrI);
  return true;
}

FunctionPass *llvm::createHexagonConstPropagationPass() {
  return new HexagonConstPropagation();
}