1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
|
//===------- HexagonCopyToCombine.cpp - Hexagon Copy-To-Combine Pass ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass replaces transfer instructions by combine instructions.
// We walk along a basic block and look for two combinable instructions and try
// to move them together. If we can move them next to each other we do so and
// replace them with a combine instruction.
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-copy-combine"
static
cl::opt<bool> IsCombinesDisabled("disable-merge-into-combines",
cl::Hidden, cl::ZeroOrMore,
cl::init(false),
cl::desc("Disable merging into combines"));
static
cl::opt<bool> IsConst64Disabled("disable-const64",
cl::Hidden, cl::ZeroOrMore,
cl::init(false),
cl::desc("Disable generation of const64"));
static
cl::opt<unsigned>
MaxNumOfInstsBetweenNewValueStoreAndTFR("max-num-inst-between-tfr-and-nv-store",
cl::Hidden, cl::init(4),
cl::desc("Maximum distance between a tfr feeding a store we "
"consider the store still to be newifiable"));
namespace llvm {
FunctionPass *createHexagonCopyToCombine();
void initializeHexagonCopyToCombinePass(PassRegistry&);
}
namespace {
class HexagonCopyToCombine : public MachineFunctionPass {
const HexagonInstrInfo *TII;
const TargetRegisterInfo *TRI;
const HexagonSubtarget *ST;
bool ShouldCombineAggressively;
DenseSet<MachineInstr *> PotentiallyNewifiableTFR;
SmallVector<MachineInstr *, 8> DbgMItoMove;
public:
static char ID;
HexagonCopyToCombine() : MachineFunctionPass(ID) {
initializeHexagonCopyToCombinePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return "Hexagon Copy-To-Combine Pass";
}
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
MachineInstr *findPairable(MachineInstr &I1, bool &DoInsertAtI1,
bool AllowC64);
void findPotentialNewifiableTFRs(MachineBasicBlock &);
void combine(MachineInstr &I1, MachineInstr &I2,
MachineBasicBlock::iterator &MI, bool DoInsertAtI1,
bool OptForSize);
bool isSafeToMoveTogether(MachineInstr &I1, MachineInstr &I2,
unsigned I1DestReg, unsigned I2DestReg,
bool &DoInsertAtI1);
void emitCombineRR(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitCombineRI(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitCombineIR(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitCombineII(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitConst64(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
};
} // End anonymous namespace.
char HexagonCopyToCombine::ID = 0;
INITIALIZE_PASS(HexagonCopyToCombine, "hexagon-copy-combine",
"Hexagon Copy-To-Combine Pass", false, false)
static bool isCombinableInstType(MachineInstr &MI, const HexagonInstrInfo *TII,
bool ShouldCombineAggressively) {
switch (MI.getOpcode()) {
case Hexagon::A2_tfr: {
// A COPY instruction can be combined if its arguments are IntRegs (32bit).
const MachineOperand &Op0 = MI.getOperand(0);
const MachineOperand &Op1 = MI.getOperand(1);
assert(Op0.isReg() && Op1.isReg());
unsigned DestReg = Op0.getReg();
unsigned SrcReg = Op1.getReg();
return Hexagon::IntRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg);
}
case Hexagon::A2_tfrsi: {
// A transfer-immediate can be combined if its argument is a signed 8bit
// value.
const MachineOperand &Op0 = MI.getOperand(0);
const MachineOperand &Op1 = MI.getOperand(1);
assert(Op0.isReg());
unsigned DestReg = Op0.getReg();
// Ensure that TargetFlags are MO_NO_FLAG for a global. This is a
// workaround for an ABI bug that prevents GOT relocations on combine
// instructions
if (!Op1.isImm() && Op1.getTargetFlags() != HexagonII::MO_NO_FLAG)
return false;
// Only combine constant extended A2_tfrsi if we are in aggressive mode.
bool NotExt = Op1.isImm() && isInt<8>(Op1.getImm());
return Hexagon::IntRegsRegClass.contains(DestReg) &&
(ShouldCombineAggressively || NotExt);
}
case Hexagon::V6_vassign:
return true;
default:
break;
}
return false;
}
template <unsigned N> static bool isGreaterThanNBitTFRI(const MachineInstr &I) {
if (I.getOpcode() == Hexagon::TFRI64_V4 ||
I.getOpcode() == Hexagon::A2_tfrsi) {
const MachineOperand &Op = I.getOperand(1);
return !Op.isImm() || !isInt<N>(Op.getImm());
}
return false;
}
/// areCombinableOperations - Returns true if the two instruction can be merge
/// into a combine (ignoring register constraints).
static bool areCombinableOperations(const TargetRegisterInfo *TRI,
MachineInstr &HighRegInst,
MachineInstr &LowRegInst, bool AllowC64) {
unsigned HiOpc = HighRegInst.getOpcode();
unsigned LoOpc = LowRegInst.getOpcode();
auto verifyOpc = [](unsigned Opc) -> void {
switch (Opc) {
case Hexagon::A2_tfr:
case Hexagon::A2_tfrsi:
case Hexagon::V6_vassign:
break;
default:
llvm_unreachable("Unexpected opcode");
}
};
verifyOpc(HiOpc);
verifyOpc(LoOpc);
if (HiOpc == Hexagon::V6_vassign || LoOpc == Hexagon::V6_vassign)
return HiOpc == LoOpc;
if (!AllowC64) {
// There is no combine of two constant extended values.
if (isGreaterThanNBitTFRI<8>(HighRegInst) &&
isGreaterThanNBitTFRI<6>(LowRegInst))
return false;
}
// There is a combine of two constant extended values into CONST64,
// provided both constants are true immediates.
if (isGreaterThanNBitTFRI<16>(HighRegInst) &&
isGreaterThanNBitTFRI<16>(LowRegInst))
return (HighRegInst.getOperand(1).isImm() &&
LowRegInst.getOperand(1).isImm());
// There is no combine of two constant extended values, unless handled above
// Make both 8-bit size checks to allow both combine (#,##) and combine(##,#)
if (isGreaterThanNBitTFRI<8>(HighRegInst) &&
isGreaterThanNBitTFRI<8>(LowRegInst))
return false;
return true;
}
static bool isEvenReg(unsigned Reg) {
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (Hexagon::IntRegsRegClass.contains(Reg))
return (Reg - Hexagon::R0) % 2 == 0;
if (Hexagon::HvxVRRegClass.contains(Reg))
return (Reg - Hexagon::V0) % 2 == 0;
llvm_unreachable("Invalid register");
}
static void removeKillInfo(MachineInstr &MI, unsigned RegNotKilled) {
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg() || Op.getReg() != RegNotKilled || !Op.isKill())
continue;
Op.setIsKill(false);
}
}
/// Returns true if it is unsafe to move a copy instruction from \p UseReg to
/// \p DestReg over the instruction \p MI.
static bool isUnsafeToMoveAcross(MachineInstr &MI, unsigned UseReg,
unsigned DestReg,
const TargetRegisterInfo *TRI) {
return (UseReg && (MI.modifiesRegister(UseReg, TRI))) ||
MI.modifiesRegister(DestReg, TRI) || MI.readsRegister(DestReg, TRI) ||
MI.hasUnmodeledSideEffects() || MI.isInlineAsm() ||
MI.isMetaInstruction();
}
static unsigned UseReg(const MachineOperand& MO) {
return MO.isReg() ? MO.getReg() : 0;
}
/// isSafeToMoveTogether - Returns true if it is safe to move I1 next to I2 such
/// that the two instructions can be paired in a combine.
bool HexagonCopyToCombine::isSafeToMoveTogether(MachineInstr &I1,
MachineInstr &I2,
unsigned I1DestReg,
unsigned I2DestReg,
bool &DoInsertAtI1) {
unsigned I2UseReg = UseReg(I2.getOperand(1));
// It is not safe to move I1 and I2 into one combine if I2 has a true
// dependence on I1.
if (I2UseReg && I1.modifiesRegister(I2UseReg, TRI))
return false;
bool isSafe = true;
// First try to move I2 towards I1.
{
// A reverse_iterator instantiated like below starts before I2, and I1
// respectively.
// Look at instructions I in between I2 and (excluding) I1.
MachineBasicBlock::reverse_iterator I(I2),
End = --(MachineBasicBlock::reverse_iterator(I1));
// At 03 we got better results (dhrystone!) by being more conservative.
if (!ShouldCombineAggressively)
End = MachineBasicBlock::reverse_iterator(I1);
// If I2 kills its operand and we move I2 over an instruction that also
// uses I2's use reg we need to modify that (first) instruction to now kill
// this reg.
unsigned KilledOperand = 0;
if (I2.killsRegister(I2UseReg))
KilledOperand = I2UseReg;
MachineInstr *KillingInstr = nullptr;
for (; I != End; ++I) {
// If the intervening instruction I:
// * modifies I2's use reg
// * modifies I2's def reg
// * reads I2's def reg
// * or has unmodelled side effects
// we can't move I2 across it.
if (I->isDebugValue())
continue;
if (isUnsafeToMoveAcross(*I, I2UseReg, I2DestReg, TRI)) {
isSafe = false;
break;
}
// Update first use of the killed operand.
if (!KillingInstr && KilledOperand &&
I->readsRegister(KilledOperand, TRI))
KillingInstr = &*I;
}
if (isSafe) {
// Update the intermediate instruction to with the kill flag.
if (KillingInstr) {
bool Added = KillingInstr->addRegisterKilled(KilledOperand, TRI, true);
(void)Added; // suppress compiler warning
assert(Added && "Must successfully update kill flag");
removeKillInfo(I2, KilledOperand);
}
DoInsertAtI1 = true;
return true;
}
}
// Try to move I1 towards I2.
{
// Look at instructions I in between I1 and (excluding) I2.
MachineBasicBlock::iterator I(I1), End(I2);
// At O3 we got better results (dhrystone) by being more conservative here.
if (!ShouldCombineAggressively)
End = std::next(MachineBasicBlock::iterator(I2));
unsigned I1UseReg = UseReg(I1.getOperand(1));
// Track killed operands. If we move across an instruction that kills our
// operand, we need to update the kill information on the moved I1. It kills
// the operand now.
MachineInstr *KillingInstr = nullptr;
unsigned KilledOperand = 0;
while(++I != End) {
MachineInstr &MI = *I;
// If the intervening instruction MI:
// * modifies I1's use reg
// * modifies I1's def reg
// * reads I1's def reg
// * or has unmodelled side effects
// We introduce this special case because llvm has no api to remove a
// kill flag for a register (a removeRegisterKilled() analogous to
// addRegisterKilled) that handles aliased register correctly.
// * or has a killed aliased register use of I1's use reg
// %d4 = A2_tfrpi 16
// %r6 = A2_tfr %r9
// %r8 = KILL %r8, implicit killed %d4
// If we want to move R6 = across the KILL instruction we would have
// to remove the implicit killed %d4 operand. For now, we are
// conservative and disallow the move.
// we can't move I1 across it.
if (MI.isDebugValue()) {
if (MI.readsRegister(I1DestReg, TRI)) // Move this instruction after I2.
DbgMItoMove.push_back(&MI);
continue;
}
if (isUnsafeToMoveAcross(MI, I1UseReg, I1DestReg, TRI) ||
// Check for an aliased register kill. Bail out if we see one.
(!MI.killsRegister(I1UseReg) && MI.killsRegister(I1UseReg, TRI)))
return false;
// Check for an exact kill (registers match).
if (I1UseReg && MI.killsRegister(I1UseReg)) {
assert(!KillingInstr && "Should only see one killing instruction");
KilledOperand = I1UseReg;
KillingInstr = &MI;
}
}
if (KillingInstr) {
removeKillInfo(*KillingInstr, KilledOperand);
// Update I1 to set the kill flag. This flag will later be picked up by
// the new COMBINE instruction.
bool Added = I1.addRegisterKilled(KilledOperand, TRI);
(void)Added; // suppress compiler warning
assert(Added && "Must successfully update kill flag");
}
DoInsertAtI1 = false;
}
return true;
}
/// findPotentialNewifiableTFRs - Finds tranfers that feed stores that could be
/// newified. (A use of a 64 bit register define can not be newified)
void
HexagonCopyToCombine::findPotentialNewifiableTFRs(MachineBasicBlock &BB) {
DenseMap<unsigned, MachineInstr *> LastDef;
for (MachineInstr &MI : BB) {
if (MI.isDebugValue())
continue;
// Mark TFRs that feed a potential new value store as such.
if (TII->mayBeNewStore(MI)) {
// Look for uses of TFR instructions.
for (unsigned OpdIdx = 0, OpdE = MI.getNumOperands(); OpdIdx != OpdE;
++OpdIdx) {
MachineOperand &Op = MI.getOperand(OpdIdx);
// Skip over anything except register uses.
if (!Op.isReg() || !Op.isUse() || !Op.getReg())
continue;
// Look for the defining instruction.
unsigned Reg = Op.getReg();
MachineInstr *DefInst = LastDef[Reg];
if (!DefInst)
continue;
if (!isCombinableInstType(*DefInst, TII, ShouldCombineAggressively))
continue;
// Only close newifiable stores should influence the decision.
// Ignore the debug instructions in between.
MachineBasicBlock::iterator It(DefInst);
unsigned NumInstsToDef = 0;
while (&*It != &MI) {
if (!It->isDebugValue())
++NumInstsToDef;
++It;
}
if (NumInstsToDef > MaxNumOfInstsBetweenNewValueStoreAndTFR)
continue;
PotentiallyNewifiableTFR.insert(DefInst);
}
// Skip to next instruction.
continue;
}
// Put instructions that last defined integer or double registers into the
// map.
for (MachineOperand &Op : MI.operands()) {
if (Op.isReg()) {
if (!Op.isDef() || !Op.getReg())
continue;
unsigned Reg = Op.getReg();
if (Hexagon::DoubleRegsRegClass.contains(Reg)) {
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
LastDef[*SubRegs] = &MI;
} else if (Hexagon::IntRegsRegClass.contains(Reg))
LastDef[Reg] = &MI;
} else if (Op.isRegMask()) {
for (unsigned Reg : Hexagon::IntRegsRegClass)
if (Op.clobbersPhysReg(Reg))
LastDef[Reg] = &MI;
}
}
}
}
bool HexagonCopyToCombine::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
if (IsCombinesDisabled) return false;
bool HasChanged = false;
// Get target info.
ST = &MF.getSubtarget<HexagonSubtarget>();
TRI = ST->getRegisterInfo();
TII = ST->getInstrInfo();
const Function &F = MF.getFunction();
bool OptForSize = F.hasFnAttribute(Attribute::OptimizeForSize);
// Combine aggressively (for code size)
ShouldCombineAggressively =
MF.getTarget().getOptLevel() <= CodeGenOpt::Default;
// Traverse basic blocks.
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
++BI) {
PotentiallyNewifiableTFR.clear();
findPotentialNewifiableTFRs(*BI);
// Traverse instructions in basic block.
for(MachineBasicBlock::iterator MI = BI->begin(), End = BI->end();
MI != End;) {
MachineInstr &I1 = *MI++;
if (I1.isDebugValue())
continue;
// Don't combine a TFR whose user could be newified (instructions that
// define double registers can not be newified - Programmer's Ref Manual
// 5.4.2 New-value stores).
if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(&I1))
continue;
// Ignore instructions that are not combinable.
if (!isCombinableInstType(I1, TII, ShouldCombineAggressively))
continue;
// Find a second instruction that can be merged into a combine
// instruction. In addition, also find all the debug instructions that
// need to be moved along with it.
bool DoInsertAtI1 = false;
DbgMItoMove.clear();
MachineInstr *I2 = findPairable(I1, DoInsertAtI1, OptForSize);
if (I2) {
HasChanged = true;
combine(I1, *I2, MI, DoInsertAtI1, OptForSize);
}
}
}
return HasChanged;
}
/// findPairable - Returns an instruction that can be merged with \p I1 into a
/// COMBINE instruction or 0 if no such instruction can be found. Returns true
/// in \p DoInsertAtI1 if the combine must be inserted at instruction \p I1
/// false if the combine must be inserted at the returned instruction.
MachineInstr *HexagonCopyToCombine::findPairable(MachineInstr &I1,
bool &DoInsertAtI1,
bool AllowC64) {
MachineBasicBlock::iterator I2 = std::next(MachineBasicBlock::iterator(I1));
while (I2 != I1.getParent()->end() && I2->isDebugValue())
++I2;
unsigned I1DestReg = I1.getOperand(0).getReg();
for (MachineBasicBlock::iterator End = I1.getParent()->end(); I2 != End;
++I2) {
// Bail out early if we see a second definition of I1DestReg.
if (I2->modifiesRegister(I1DestReg, TRI))
break;
// Ignore non-combinable instructions.
if (!isCombinableInstType(*I2, TII, ShouldCombineAggressively))
continue;
// Don't combine a TFR whose user could be newified.
if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(&*I2))
continue;
unsigned I2DestReg = I2->getOperand(0).getReg();
// Check that registers are adjacent and that the first destination register
// is even.
bool IsI1LowReg = (I2DestReg - I1DestReg) == 1;
bool IsI2LowReg = (I1DestReg - I2DestReg) == 1;
unsigned FirstRegIndex = IsI1LowReg ? I1DestReg : I2DestReg;
if ((!IsI1LowReg && !IsI2LowReg) || !isEvenReg(FirstRegIndex))
continue;
// Check that the two instructions are combinable. V4 allows more
// instructions to be merged into a combine.
// The order matters because in a A2_tfrsi we might can encode a int8 as
// the hi reg operand but only a uint6 as the low reg operand.
if ((IsI2LowReg && !areCombinableOperations(TRI, I1, *I2, AllowC64)) ||
(IsI1LowReg && !areCombinableOperations(TRI, *I2, I1, AllowC64)))
break;
if (isSafeToMoveTogether(I1, *I2, I1DestReg, I2DestReg, DoInsertAtI1))
return &*I2;
// Not safe. Stop searching.
break;
}
return nullptr;
}
void HexagonCopyToCombine::combine(MachineInstr &I1, MachineInstr &I2,
MachineBasicBlock::iterator &MI,
bool DoInsertAtI1, bool OptForSize) {
// We are going to delete I2. If MI points to I2 advance it to the next
// instruction.
if (MI == I2.getIterator())
++MI;
// Figure out whether I1 or I2 goes into the lowreg part.
unsigned I1DestReg = I1.getOperand(0).getReg();
unsigned I2DestReg = I2.getOperand(0).getReg();
bool IsI1Loreg = (I2DestReg - I1DestReg) == 1;
unsigned LoRegDef = IsI1Loreg ? I1DestReg : I2DestReg;
unsigned SubLo;
const TargetRegisterClass *SuperRC = nullptr;
if (Hexagon::IntRegsRegClass.contains(LoRegDef)) {
SuperRC = &Hexagon::DoubleRegsRegClass;
SubLo = Hexagon::isub_lo;
} else if (Hexagon::HvxVRRegClass.contains(LoRegDef)) {
assert(ST->useHVXOps());
SuperRC = &Hexagon::HvxWRRegClass;
SubLo = Hexagon::vsub_lo;
} else
llvm_unreachable("Unexpected register class");
// Get the double word register.
unsigned DoubleRegDest = TRI->getMatchingSuperReg(LoRegDef, SubLo, SuperRC);
assert(DoubleRegDest != 0 && "Expect a valid register");
// Setup source operands.
MachineOperand &LoOperand = IsI1Loreg ? I1.getOperand(1) : I2.getOperand(1);
MachineOperand &HiOperand = IsI1Loreg ? I2.getOperand(1) : I1.getOperand(1);
// Figure out which source is a register and which a constant.
bool IsHiReg = HiOperand.isReg();
bool IsLoReg = LoOperand.isReg();
// There is a combine of two constant extended values into CONST64.
bool IsC64 = OptForSize && LoOperand.isImm() && HiOperand.isImm() &&
isGreaterThanNBitTFRI<16>(I1) && isGreaterThanNBitTFRI<16>(I2);
MachineBasicBlock::iterator InsertPt(DoInsertAtI1 ? I1 : I2);
// Emit combine.
if (IsHiReg && IsLoReg)
emitCombineRR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else if (IsHiReg)
emitCombineRI(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else if (IsLoReg)
emitCombineIR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else if (IsC64 && !IsConst64Disabled)
emitConst64(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else
emitCombineII(InsertPt, DoubleRegDest, HiOperand, LoOperand);
// Move debug instructions along with I1 if it's being
// moved towards I2.
if (!DoInsertAtI1 && DbgMItoMove.size() != 0) {
// Insert debug instructions at the new location before I2.
MachineBasicBlock *BB = InsertPt->getParent();
for (auto NewMI : DbgMItoMove) {
// If iterator MI is pointing to DEBUG_VAL, make sure
// MI now points to next relevant instruction.
if (NewMI == MI)
++MI;
BB->splice(InsertPt, BB, NewMI);
}
}
I1.eraseFromParent();
I2.eraseFromParent();
}
void HexagonCopyToCombine::emitConst64(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
DEBUG(dbgs() << "Found a CONST64\n");
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
assert(LoOperand.isImm() && HiOperand.isImm() &&
"Both operands must be immediate");
int64_t V = HiOperand.getImm();
V = (V << 32) | (0x0ffffffffLL & LoOperand.getImm());
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::CONST64), DoubleDestReg)
.addImm(V);
}
void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Handle globals.
if (HiOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addImm(LoOperand.getImm());
return;
}
if (LoOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Handle block addresses.
if (HiOperand.isBlockAddress()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addBlockAddress(HiOperand.getBlockAddress(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addImm(LoOperand.getImm());
return;
}
if (LoOperand.isBlockAddress()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addBlockAddress(LoOperand.getBlockAddress(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Handle jump tables.
if (HiOperand.isJTI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addJumpTableIndex(HiOperand.getIndex(), HiOperand.getTargetFlags())
.addImm(LoOperand.getImm());
return;
}
if (LoOperand.isJTI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addJumpTableIndex(LoOperand.getIndex(), LoOperand.getTargetFlags());
return;
}
// Handle constant pools.
if (HiOperand.isCPI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addConstantPoolIndex(HiOperand.getIndex(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addImm(LoOperand.getImm());
return;
}
if (LoOperand.isCPI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addConstantPoolIndex(LoOperand.getIndex(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// First preference should be given to Hexagon::A2_combineii instruction
// as it can include U6 (in Hexagon::A4_combineii) as well.
// In this instruction, HiOperand is const extended, if required.
if (isInt<8>(LoOperand.getImm())) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
return;
}
// In this instruction, LoOperand is const extended, if required.
if (isInt<8>(HiOperand.getImm())) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
return;
}
// Insert new combine instruction.
// DoubleRegDest = combine #HiImm, #LoImm
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
}
void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
unsigned LoReg = LoOperand.getReg();
unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Handle globals.
if (HiOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addReg(LoReg, LoRegKillFlag);
return;
}
// Handle block addresses.
if (HiOperand.isBlockAddress()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addBlockAddress(HiOperand.getBlockAddress(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addReg(LoReg, LoRegKillFlag);
return;
}
// Handle jump tables.
if (HiOperand.isJTI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addJumpTableIndex(HiOperand.getIndex(), HiOperand.getTargetFlags())
.addReg(LoReg, LoRegKillFlag);
return;
}
// Handle constant pools.
if (HiOperand.isCPI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addConstantPoolIndex(HiOperand.getIndex(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addReg(LoReg, LoRegKillFlag);
return;
}
// Insert new combine instruction.
// DoubleRegDest = combine #HiImm, LoReg
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addImm(HiOperand.getImm())
.addReg(LoReg, LoRegKillFlag);
}
void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
unsigned HiReg = HiOperand.getReg();
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Handle global.
if (LoOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Handle block addresses.
if (LoOperand.isBlockAddress()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addBlockAddress(LoOperand.getBlockAddress(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Handle jump tables.
if (LoOperand.isJTI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiOperand.getReg(), HiRegKillFlag)
.addJumpTableIndex(LoOperand.getIndex(), LoOperand.getTargetFlags());
return;
}
// Handle constant pools.
if (LoOperand.isCPI()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiOperand.getReg(), HiRegKillFlag)
.addConstantPoolIndex(LoOperand.getIndex(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Insert new combine instruction.
// DoubleRegDest = combine HiReg, #LoImm
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addImm(LoOperand.getImm());
}
void HexagonCopyToCombine::emitCombineRR(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
unsigned LoReg = LoOperand.getReg();
unsigned HiReg = HiOperand.getReg();
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Insert new combine instruction.
// DoubleRegDest = combine HiReg, LoReg
unsigned NewOpc;
if (Hexagon::DoubleRegsRegClass.contains(DoubleDestReg)) {
NewOpc = Hexagon::A2_combinew;
} else if (Hexagon::HvxWRRegClass.contains(DoubleDestReg)) {
assert(ST->useHVXOps());
NewOpc = Hexagon::V6_vcombine;
} else
llvm_unreachable("Unexpected register");
BuildMI(*BB, InsertPt, DL, TII->get(NewOpc), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addReg(LoReg, LoRegKillFlag);
}
FunctionPass *llvm::createHexagonCopyToCombine() {
return new HexagonCopyToCombine();
}
|