aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonISelLowering.h
blob: 732834b464b43bd280de29aa4f6e2ce47a8092fd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
//===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Hexagon uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H

#include "Hexagon.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include <cstdint>
#include <utility>

namespace llvm {

namespace HexagonISD {

    enum NodeType : unsigned {
      OP_BEGIN = ISD::BUILTIN_OP_END,

      CONST32 = OP_BEGIN,
      CONST32_GP,  // For marking data present in GP.
      ALLOCA,

      AT_GOT,      // Index in GOT.
      AT_PCREL,    // Offset relative to PC.

      CALL,        // Function call.
      CALLnr,      // Function call that does not return.
      CALLR,

      RET_FLAG,    // Return with a flag operand.
      BARRIER,     // Memory barrier.
      JT,          // Jump table.
      CP,          // Constant pool.

      COMBINE,
      VSPLAT,
      VASL,
      VASR,
      VLSR,

      INSERT,
      INSERTRP,
      EXTRACTU,
      EXTRACTURP,
      VCOMBINE,
      VPACKE,
      VPACKO,
      VEXTRACTW,
      VINSERTW0,
      VROR,
      TC_RETURN,
      EH_RETURN,
      DCFETCH,
      READCYCLE,
      VZERO,

      OP_END
    };

} // end namespace HexagonISD

  class HexagonSubtarget;

  class HexagonTargetLowering : public TargetLowering {
    int VarArgsFrameOffset;   // Frame offset to start of varargs area.
    const HexagonTargetMachine &HTM;
    const HexagonSubtarget &Subtarget;

    bool CanReturnSmallStruct(const Function* CalleeFn, unsigned& RetSize)
        const;
    void promoteLdStType(MVT VT, MVT PromotedLdStVT);

  public:
    explicit HexagonTargetLowering(const TargetMachine &TM,
                                   const HexagonSubtarget &ST);

    bool isHVXVectorType(MVT Ty) const;

    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    /// for tail call optimization. Targets which want to do tail call
    /// optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
        CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet,
        bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs,
        const SmallVectorImpl<SDValue> &OutVals,
        const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const;

    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if an FMA operation is faster than a pair of mul and add
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true (and FMAs are legal), otherwise fmuladd is
    /// expanded to mul + add.
    bool isFMAFasterThanFMulAndFAdd(EVT) const override;

    // Should we expand the build vector with shuffles?
    bool shouldExpandBuildVectorWithShuffles(EVT VT,
        unsigned DefinedValues) const override;

    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
    TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
        const override;

    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    const char *getTargetNodeName(unsigned Opcode) const override;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
        SelectionDAG &DAG) const;
    SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
        SelectionDAG &DAG) const;
    SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
        SelectionDAG &DAG) const;
    SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
        GlobalAddressSDNode *GA, SDValue InFlag, EVT PtrVT,
        unsigned ReturnReg, unsigned char OperandFlags) const;
    SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
        SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            const SmallVectorImpl<SDValue> &OutVals,
                            SDValue Callee) const;

    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;

    bool CanLowerReturn(CallingConv::ID CallConv,
                        MachineFunction &MF, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    unsigned
    getExceptionPointerRegister(const Constant *PersonalityFn) const override {
      return Hexagon::R0;
    }

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    unsigned
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
      return Hexagon::R1;
    }

    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;

    EVT getSetCCResultType(const DataLayout &, LLVMContext &C,
                           EVT VT) const override {
      if (!VT.isVector())
        return MVT::i1;
      else
        return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
    }

    bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                    SDValue &Base, SDValue &Offset,
                                    ISD::MemIndexedMode &AM,
                                    SelectionDAG &DAG) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    // Intrinsics
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    /// The type may be VoidTy, in which case only return true if the addressing
    /// mode is legal for a load/store of any legal type.
    /// TODO: Handle pre/postinc as well.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;
    /// Return true if folding a constant offset with the given GlobalAddress
    /// is legal.  It is frequently not legal in PIC relocation models.
    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;

    bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;

    /// isLegalICmpImmediate - Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
        unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
        MachineFunction &MF) const override;

    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
        unsigned Align, bool *Fast) const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG)
                                     const override;

    // Handling of atomic RMW instructions.
    Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
        AtomicOrdering Ord) const override;
    Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
        Value *Addr, AtomicOrdering Ord) const override;
    AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;

    AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override {
      return AtomicExpansionKind::LLSC;
    }

  private:
    bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy,
                                 SelectionDAG &DAG,
                                 MutableArrayRef<ConstantInt*> Consts) const;
    SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
                          SelectionDAG &DAG) const;
    SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
                          SelectionDAG &DAG) const;
    SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl,
                          MVT ValTy, MVT ResTy, SelectionDAG &DAG) const;
    SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
                         const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const;
    bool isUndef(SDValue Op) const {
      if (Op.isMachineOpcode())
        return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF;
      return Op.getOpcode() == ISD::UNDEF;
    }
    SDValue getNode(unsigned MachineOpc, const SDLoc &dl, MVT Ty,
                    ArrayRef<SDValue> Ops, SelectionDAG &DAG) const {
      SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops);
      return SDValue(N, 0);
    }
    SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const;

    using VectorPair = std::pair<SDValue, SDValue>;
    using TypePair = std::pair<MVT, MVT>;

    SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
                   const SDLoc &dl, SelectionDAG &DAG) const;

    MVT ty(SDValue Op) const {
      return Op.getValueType().getSimpleVT();
    }
    TypePair ty(const VectorPair &Ops) const {
      return { Ops.first.getValueType().getSimpleVT(),
               Ops.second.getValueType().getSimpleVT() };
    }
    MVT tyScalar(MVT Ty) const {
      if (!Ty.isVector())
        return Ty;
      return MVT::getIntegerVT(Ty.getSizeInBits());
    }
    MVT tyVector(MVT Ty, MVT ElemTy) const {
      if (Ty.isVector() && Ty.getVectorElementType() == ElemTy)
        return Ty;
      unsigned TyWidth = Ty.getSizeInBits(), ElemWidth = ElemTy.getSizeInBits();
      assert((TyWidth % ElemWidth) == 0);
      return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth);
    }

    MVT typeJoin(const TypePair &Tys) const;
    TypePair typeSplit(MVT Ty) const;
    MVT typeExtElem(MVT VecTy, unsigned Factor) const;
    MVT typeTruncElem(MVT VecTy, unsigned Factor) const;

    SDValue opJoin(const VectorPair &Ops, const SDLoc &dl,
                   SelectionDAG &DAG) const;
    VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
    SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;

    SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
                               SelectionDAG &DAG) const;
    SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const;
    SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1,
                           ArrayRef<int> Mask, SelectionDAG &DAG) const;

    MVT getVecBoolVT() const;

    SDValue buildHvxVectorSingle(ArrayRef<SDValue> Values, const SDLoc &dl,
                                 MVT VecTy, SelectionDAG &DAG) const;
    SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl,
                               MVT VecTy, SelectionDAG &DAG) const;

    SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxMul(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const;

    std::pair<const TargetRegisterClass*, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT)
        const override;
  };

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H