aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonInstrInfo.h
blob: 2d184d1484e9ec2d5d1689962ee317d5a1551f58 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H

#include "HexagonRegisterInfo.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"

#define GET_INSTRINFO_HEADER
#include "HexagonGenInstrInfo.inc"

namespace llvm {

struct EVT;
class HexagonSubtarget;

class HexagonInstrInfo : public HexagonGenInstrInfo {
  virtual void anchor();
  const HexagonRegisterInfo RI;

public:
  explicit HexagonInstrInfo(HexagonSubtarget &ST);

  /// TargetInstrInfo overrides.
  ///

  /// If the specified machine instruction is a direct
  /// load from a stack slot, return the virtual or physical register number of
  /// the destination along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than loading from the stack slot.
  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;

  /// If the specified machine instruction is a direct
  /// store to a stack slot, return the virtual or physical register number of
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than storing to the stack slot.
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;

  /// Analyze the branching code at the end of MBB, returning
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  /// implemented for a target).  Upon success, this returns false and returns
  /// with the following information in various cases:
  ///
  /// 1. If this block ends with no branches (it just falls through to its succ)
  ///    just return false, leaving TBB/FBB null.
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  ///    the destination block.
  /// 3. If this block ends with a conditional branch and it falls through to a
  ///    successor block, it sets TBB to be the branch destination block and a
  ///    list of operands that evaluate the condition. These operands can be
  ///    passed to other TargetInstrInfo methods to create new branches.
  /// 4. If this block ends with a conditional branch followed by an
  ///    unconditional branch, it returns the 'true' destination in TBB, the
  ///    'false' destination in FBB, and a list of operands that evaluate the
  ///    condition.  These operands can be passed to other TargetInstrInfo
  ///    methods to create new branches.
  ///
  /// Note that removeBranch and insertBranch must be implemented to support
  /// cases where this method returns success.
  ///
  /// If AllowModify is true, then this routine is allowed to modify the basic
  /// block (e.g. delete instructions after the unconditional branch).
  ///
  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify) const override;

  /// Remove the branching code at the end of the specific MBB.
  /// This is only invoked in cases where AnalyzeBranch returns success. It
  /// returns the number of instructions that were removed.
  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;

  /// Insert branch code into the end of the specified MachineBasicBlock.
  /// The operands to this method are the same as those
  /// returned by AnalyzeBranch.  This is only invoked in cases where
  /// AnalyzeBranch returns success. It returns the number of instructions
  /// inserted.
  ///
  /// It is also invoked by tail merging to add unconditional branches in
  /// cases where AnalyzeBranch doesn't apply because there was no original
  /// branch to analyze.  At least this much must be implemented, else tail
  /// merging needs to be disabled.
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;

  /// Analyze the loop code, return true if it cannot be understood. Upon
  /// success, this function returns false and returns information about the
  /// induction variable and compare instruction used at the end.
  bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
                   MachineInstr *&CmpInst) const override;

  /// Generate code to reduce the loop iteration by one and check if the loop is
  /// finished.  Return the value/register of the the new loop count.  We need
  /// this function when peeling off one or more iterations of a loop. This
  /// function assumes the nth iteration is peeled first.
  unsigned reduceLoopCount(MachineBasicBlock &MBB,
                           MachineInstr *IndVar, MachineInstr &Cmp,
                           SmallVectorImpl<MachineOperand> &Cond,
                           SmallVectorImpl<MachineInstr *> &PrevInsts,
                           unsigned Iter, unsigned MaxIter) const override;

  /// Return true if it's profitable to predicate
  /// instructions with accumulated instruction latency of "NumCycles"
  /// of the specified basic block, where the probability of the instructions
  /// being executed is given by Probability, and Confidence is a measure
  /// of our confidence that it will be properly predicted.
  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                           unsigned ExtraPredCycles,
                           BranchProbability Probability) const override;

  /// Second variant of isProfitableToIfCvt. This one
  /// checks for the case where two basic blocks from true and false path
  /// of a if-then-else (diamond) are predicated on mutally exclusive
  /// predicates, where the probability of the true path being taken is given
  /// by Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
                           unsigned NumTCycles, unsigned ExtraTCycles,
                           MachineBasicBlock &FMBB,
                           unsigned NumFCycles, unsigned ExtraFCycles,
                           BranchProbability Probability) const override;

  /// Return true if it's profitable for if-converter to duplicate instructions
  /// of specified accumulated instruction latencies in the specified MBB to
  /// enable if-conversion.
  /// The probability of the instructions being executed is given by
  /// Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                                 BranchProbability Probability) const override;

  /// Emit instructions to copy a pair of physical registers.
  ///
  /// This function should support copies within any legal register class as
  /// well as any cross-class copies created during instruction selection.
  ///
  /// The source and destination registers may overlap, which may require a
  /// careful implementation when multiple copy instructions are required for
  /// large registers. See for example the ARM target.
  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                   const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
                   bool KillSrc) const override;

  /// Store the specified register of the given register class to the specified
  /// stack frame index. The store instruction is to be added to the given
  /// machine basic block before the specified machine instruction. If isKill
  /// is true, the register operand is the last use and must be marked kill.
  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI,
                           unsigned SrcReg, bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  /// Load the specified register of the given register class from the specified
  /// stack frame index. The load instruction is to be added to the given
  /// machine basic block before the specified machine instruction.
  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            unsigned DestReg, int FrameIndex,
                            const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  /// This function is called for all pseudo instructions
  /// that remain after register allocation. Many pseudo instructions are
  /// created to help register allocation. This is the place to convert them
  /// into real instructions. The target can edit MI in place, or it can insert
  /// new instructions and erase MI. The function should return true if
  /// anything was changed.
  bool expandPostRAPseudo(MachineInstr &MI) const override;

  /// \brief Get the base register and byte offset of a load/store instr.
  bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
                             int64_t &Offset,
                             const TargetRegisterInfo *TRI) const override;

  /// Reverses the branch condition of the specified condition list,
  /// returning false on success and true if it cannot be reversed.
  bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
        const override;

  /// Insert a noop into the instruction stream at the specified point.
  void insertNoop(MachineBasicBlock &MBB,
                  MachineBasicBlock::iterator MI) const override;

  /// Returns true if the instruction is already predicated.
  bool isPredicated(const MachineInstr &MI) const override;

  /// Return true for post-incremented instructions.
  bool isPostIncrement(const MachineInstr &MI) const override;

  /// Convert the instruction into a predicated instruction.
  /// It returns true if the operation was successful.
  bool PredicateInstruction(MachineInstr &MI,
                            ArrayRef<MachineOperand> Cond) const override;

  /// Returns true if the first specified predicate
  /// subsumes the second, e.g. GE subsumes GT.
  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                         ArrayRef<MachineOperand> Pred2) const override;

  /// If the specified instruction defines any predicate
  /// or condition code register(s) used for predication, returns true as well
  /// as the definition predicate(s) by reference.
  bool DefinesPredicate(MachineInstr &MI,
                        std::vector<MachineOperand> &Pred) const override;

  /// Return true if the specified instruction can be predicated.
  /// By default, this returns true for every instruction with a
  /// PredicateOperand.
  bool isPredicable(MachineInstr &MI) const override;

  /// Test if the given instruction should be considered a scheduling boundary.
  /// This primarily includes labels and terminators.
  bool isSchedulingBoundary(const MachineInstr &MI,
                            const MachineBasicBlock *MBB,
                            const MachineFunction &MF) const override;

  /// Measure the specified inline asm to determine an approximation of its
  /// length.
  unsigned getInlineAsmLength(const char *Str,
                              const MCAsmInfo &MAI) const override;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions after register allocation.
  ScheduleHazardRecognizer*
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
                                     const ScheduleDAG *DAG) const override;

  /// For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                      unsigned &SrcReg2, int &Mask, int &Value) const override;

  /// Compute the instruction latency of a given instruction.
  /// If the instruction has higher cost when predicated, it's returned via
  /// PredCost.
  unsigned getInstrLatency(const InstrItineraryData *ItinData,
                           const MachineInstr &MI,
                           unsigned *PredCost = 0) const override;

  /// Create machine specific model for scheduling.
  DFAPacketizer *
  CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;

  // Sometimes, it is possible for the target
  // to tell, even without aliasing information, that two MIs access different
  // memory addresses. This function returns true if two MIs access different
  // memory addresses and false otherwise.
  bool
  areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
                                  AliasAnalysis *AA = nullptr) const override;

  /// For instructions with a base and offset, return the position of the
  /// base register and offset operands.
  bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
                                unsigned &OffsetPos) const override;

  /// If the instruction is an increment of a constant value, return the amount.
  bool getIncrementValue(const MachineInstr &MI, int &Value) const override;

  bool isTailCall(const MachineInstr &MI) const override;

  /// HexagonInstrInfo specifics.
  ///

  const HexagonRegisterInfo &getRegisterInfo() const { return RI; }

  unsigned createVR(MachineFunction* MF, MVT VT) const;

  bool isAbsoluteSet(const MachineInstr &MI) const;
  bool isAccumulator(const MachineInstr &MI) const;
  bool isComplex(const MachineInstr &MI) const;
  bool isCompoundBranchInstr(const MachineInstr &MI) const;
  bool isCondInst(const MachineInstr &MI) const;
  bool isConditionalALU32 (const MachineInstr &MI) const;
  bool isConditionalLoad(const MachineInstr &MI) const;
  bool isConditionalStore(const MachineInstr &MI) const;
  bool isConditionalTransfer(const MachineInstr &MI) const;
  bool isConstExtended(const MachineInstr &MI) const;
  bool isDeallocRet(const MachineInstr &MI) const;
  bool isDependent(const MachineInstr &ProdMI,
                   const MachineInstr &ConsMI) const;
  bool isDotCurInst(const MachineInstr &MI) const;
  bool isDotNewInst(const MachineInstr &MI) const;
  bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
  bool isEarlySourceInstr(const MachineInstr &MI) const;
  bool isEndLoopN(unsigned Opcode) const;
  bool isExpr(unsigned OpType) const;
  bool isExtendable(const MachineInstr &MI) const;
  bool isExtended(const MachineInstr &MI) const;
  bool isFloat(const MachineInstr &MI) const;
  bool isHVXMemWithAIndirect(const MachineInstr &I,
                             const MachineInstr &J) const;
  bool isIndirectCall(const MachineInstr &MI) const;
  bool isIndirectL4Return(const MachineInstr &MI) const;
  bool isJumpR(const MachineInstr &MI) const;
  bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
  bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
                                  const MachineInstr &ESMI) const;
  bool isLateResultInstr(const MachineInstr &MI) const;
  bool isLateSourceInstr(const MachineInstr &MI) const;
  bool isLoopN(const MachineInstr &MI) const;
  bool isMemOp(const MachineInstr &MI) const;
  bool isNewValue(const MachineInstr &MI) const;
  bool isNewValue(unsigned Opcode) const;
  bool isNewValueInst(const MachineInstr &MI) const;
  bool isNewValueJump(const MachineInstr &MI) const;
  bool isNewValueJump(unsigned Opcode) const;
  bool isNewValueStore(const MachineInstr &MI) const;
  bool isNewValueStore(unsigned Opcode) const;
  bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
  bool isPredicatedNew(const MachineInstr &MI) const;
  bool isPredicatedNew(unsigned Opcode) const;
  bool isPredicatedTrue(const MachineInstr &MI) const;
  bool isPredicatedTrue(unsigned Opcode) const;
  bool isPredicated(unsigned Opcode) const;
  bool isPredicateLate(unsigned Opcode) const;
  bool isPredictedTaken(unsigned Opcode) const;
  bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
  bool isSignExtendingLoad(const MachineInstr &MI) const;
  bool isSolo(const MachineInstr &MI) const;
  bool isSpillPredRegOp(const MachineInstr &MI) const;
  bool isTC1(const MachineInstr &MI) const;
  bool isTC2(const MachineInstr &MI) const;
  bool isTC2Early(const MachineInstr &MI) const;
  bool isTC4x(const MachineInstr &MI) const;
  bool isToBeScheduledASAP(const MachineInstr &MI1,
                           const MachineInstr &MI2) const;
  bool isV60VectorInstruction(const MachineInstr &MI) const;
  bool isValidAutoIncImm(const EVT VT, const int Offset) const;
  bool isValidOffset(unsigned Opcode, int Offset, bool Extend = true) const;
  bool isVecAcc(const MachineInstr &MI) const;
  bool isVecALU(const MachineInstr &MI) const;
  bool isVecUsableNextPacket(const MachineInstr &ProdMI,
                             const MachineInstr &ConsMI) const;
  bool isZeroExtendingLoad(const MachineInstr &MI) const;

  bool addLatencyToSchedule(const MachineInstr &MI1,
                            const MachineInstr &MI2) const;
  bool canExecuteInBundle(const MachineInstr &First,
                          const MachineInstr &Second) const;
  bool doesNotReturn(const MachineInstr &CallMI) const;
  bool hasEHLabel(const MachineBasicBlock *B) const;
  bool hasNonExtEquivalent(const MachineInstr &MI) const;
  bool hasPseudoInstrPair(const MachineInstr &MI) const;
  bool hasUncondBranch(const MachineBasicBlock *B) const;
  bool mayBeCurLoad(const MachineInstr &MI) const;
  bool mayBeNewStore(const MachineInstr &MI) const;
  bool producesStall(const MachineInstr &ProdMI,
                     const MachineInstr &ConsMI) const;
  bool producesStall(const MachineInstr &MI,
                     MachineBasicBlock::const_instr_iterator MII) const;
  bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
  bool PredOpcodeHasJMP_c(unsigned Opcode) const;
  bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;


  short getAbsoluteForm(const MachineInstr &MI) const;
  unsigned getAddrMode(const MachineInstr &MI) const;
  unsigned getBaseAndOffset(const MachineInstr &MI, int &Offset,
                            unsigned &AccessSize) const;
  short getBaseWithLongOffset(short Opcode) const;
  short getBaseWithLongOffset(const MachineInstr &MI) const;
  short getBaseWithRegOffset(const MachineInstr &MI) const;
  SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
  unsigned getCExtOpNum(const MachineInstr &MI) const;
  HexagonII::CompoundGroup
  getCompoundCandidateGroup(const MachineInstr &MI) const;
  unsigned getCompoundOpcode(const MachineInstr &GA,
                             const MachineInstr &GB) const;
  int getCondOpcode(int Opc, bool sense) const;
  int getDotCurOp(const MachineInstr &MI) const;
  int getDotNewOp(const MachineInstr &MI) const;
  int getDotNewPredJumpOp(const MachineInstr &MI,
                          const MachineBranchProbabilityInfo *MBPI) const;
  int getDotNewPredOp(const MachineInstr &MI,
                      const MachineBranchProbabilityInfo *MBPI) const;
  int getDotOldOp(const int opc) const;
  HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
                                                         const;
  short getEquivalentHWInstr(const MachineInstr &MI) const;
  MachineInstr *getFirstNonDbgInst(MachineBasicBlock *BB) const;
  unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
                                      const MachineInstr &MI) const;
  bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
  unsigned getInvertedPredicatedOpcode(const int Opc) const;
  int getMaxValue(const MachineInstr &MI) const;
  unsigned getMemAccessSize(const MachineInstr &MI) const;
  int getMinValue(const MachineInstr &MI) const;
  short getNonExtOpcode(const MachineInstr &MI) const;
  bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
                  unsigned &PredRegPos, unsigned &PredRegFlags) const;
  short getPseudoInstrPair(const MachineInstr &MI) const;
  short getRegForm(const MachineInstr &MI) const;
  unsigned getSize(const MachineInstr &MI) const;
  uint64_t getType(const MachineInstr &MI) const;
  unsigned getUnits(const MachineInstr &MI) const;
  unsigned getValidSubTargets(const unsigned Opcode) const;


  /// getInstrTimingClassLatency - Compute the instruction latency of a given
  /// instruction using Timing Class information, if available.
  unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
  unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;


  void immediateExtend(MachineInstr &MI) const;
  bool invertAndChangeJumpTarget(MachineInstr &MI,
                                 MachineBasicBlock* NewTarget) const;
  void genAllInsnTimingClasses(MachineFunction &MF) const;
  bool reversePredSense(MachineInstr &MI) const;
  unsigned reversePrediction(unsigned Opcode) const;
  bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
  short xformRegToImmOffset(const MachineInstr &MI) const;
};

}

#endif