aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
blob: fd602257934a6388720723d32ec2ff9875884b57 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
//===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hexagon-lir"

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <deque>
#include <functional>
#include <iterator>
#include <map>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;

static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
  cl::Hidden, cl::init(false),
  cl::desc("Disable generation of memcpy in loop idiom recognition"));

static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
  cl::Hidden, cl::init(false),
  cl::desc("Disable generation of memmove in loop idiom recognition"));

static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
  cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
  "check guarding the memmove."));

static cl::opt<unsigned> CompileTimeMemSizeThreshold(
  "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
  cl::desc("Threshold (in bytes) to perform the transformation, if the "
    "runtime loop count (mem transfer size) is known at compile-time."));

static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
  cl::Hidden, cl::init(true),
  cl::desc("Only enable generating memmove in non-nested loops"));

cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
  cl::Hidden, cl::init(false),
  cl::desc("Enable Hexagon-specific memcpy for volatile destination."));

static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
  cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));

static const char *HexagonVolatileMemcpyName
  = "hexagon_memcpy_forward_vp4cp4n2";


namespace llvm {

  void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
  Pass *createHexagonLoopIdiomPass();

} // end namespace llvm

namespace {

  class HexagonLoopIdiomRecognize : public LoopPass {
  public:
    static char ID;

    explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
      initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override {
      return "Recognize Hexagon-specific loop idioms";
    }

   void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LoopInfoWrapperPass>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreserved<AAResultsWrapperPass>();
      AU.addRequired<ScalarEvolutionWrapperPass>();
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addPreserved<TargetLibraryInfoWrapperPass>();
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;

  private:
    int getSCEVStride(const SCEVAddRecExpr *StoreEv);
    bool isLegalStore(Loop *CurLoop, StoreInst *SI);
    void collectStores(Loop *CurLoop, BasicBlock *BB,
        SmallVectorImpl<StoreInst*> &Stores);
    bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
    bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
    bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
        SmallVectorImpl<BasicBlock*> &ExitBlocks);
    bool runOnCountableLoop(Loop *L);

    AliasAnalysis *AA;
    const DataLayout *DL;
    DominatorTree *DT;
    LoopInfo *LF;
    const TargetLibraryInfo *TLI;
    ScalarEvolution *SE;
    bool HasMemcpy, HasMemmove;
  };

  struct Simplifier {
    struct Rule {
      using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
      Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
      StringRef Name;   // For debugging.
      FuncType Fn;
    };

    void addRule(StringRef N, const Rule::FuncType &F) {
      Rules.push_back(Rule(N, F));
    }

  private:
    struct WorkListType {
      WorkListType() = default;

      void push_back(Value* V) {
        // Do not push back duplicates.
        if (!S.count(V)) { Q.push_back(V); S.insert(V); }
      }

      Value *pop_front_val() {
        Value *V = Q.front(); Q.pop_front(); S.erase(V);
        return V;
      }

      bool empty() const { return Q.empty(); }

    private:
      std::deque<Value*> Q;
      std::set<Value*> S;
    };

    using ValueSetType = std::set<Value *>;

    std::vector<Rule> Rules;

  public:
    struct Context {
      using ValueMapType = DenseMap<Value *, Value *>;

      Value *Root;
      ValueSetType Used;    // The set of all cloned values used by Root.
      ValueSetType Clones;  // The set of all cloned values.
      LLVMContext &Ctx;

      Context(Instruction *Exp)
        : Ctx(Exp->getParent()->getParent()->getContext()) {
        initialize(Exp);
      }

      ~Context() { cleanup(); }

      void print(raw_ostream &OS, const Value *V) const;
      Value *materialize(BasicBlock *B, BasicBlock::iterator At);

    private:
      friend struct Simplifier;

      void initialize(Instruction *Exp);
      void cleanup();

      template <typename FuncT> void traverse(Value *V, FuncT F);
      void record(Value *V);
      void use(Value *V);
      void unuse(Value *V);

      bool equal(const Instruction *I, const Instruction *J) const;
      Value *find(Value *Tree, Value *Sub) const;
      Value *subst(Value *Tree, Value *OldV, Value *NewV);
      void replace(Value *OldV, Value *NewV);
      void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
    };

    Value *simplify(Context &C);
  };

  struct PE {
    PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}

    const Simplifier::Context &C;
    const Value *V;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED;
  raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
    P.C.print(OS, P.V ? P.V : P.C.Root);
    return OS;
  }

} // end anonymous namespace

char HexagonLoopIdiomRecognize::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
    "Recognize Hexagon-specific loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
    "Recognize Hexagon-specific loop idioms", false, false)

template <typename FuncT>
void Simplifier::Context::traverse(Value *V, FuncT F) {
  WorkListType Q;
  Q.push_back(V);

  while (!Q.empty()) {
    Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
    if (!U || U->getParent())
      continue;
    if (!F(U))
      continue;
    for (Value *Op : U->operands())
      Q.push_back(Op);
  }
}

void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
  const auto *U = dyn_cast<const Instruction>(V);
  if (!U) {
    OS << V << '(' << *V << ')';
    return;
  }

  if (U->getParent()) {
    OS << U << '(';
    U->printAsOperand(OS, true);
    OS << ')';
    return;
  }

  unsigned N = U->getNumOperands();
  if (N != 0)
    OS << U << '(';
  OS << U->getOpcodeName();
  for (const Value *Op : U->operands()) {
    OS << ' ';
    print(OS, Op);
  }
  if (N != 0)
    OS << ')';
}

void Simplifier::Context::initialize(Instruction *Exp) {
  // Perform a deep clone of the expression, set Root to the root
  // of the clone, and build a map from the cloned values to the
  // original ones.
  ValueMapType M;
  BasicBlock *Block = Exp->getParent();
  WorkListType Q;
  Q.push_back(Exp);

  while (!Q.empty()) {
    Value *V = Q.pop_front_val();
    if (M.find(V) != M.end())
      continue;
    if (Instruction *U = dyn_cast<Instruction>(V)) {
      if (isa<PHINode>(U) || U->getParent() != Block)
        continue;
      for (Value *Op : U->operands())
        Q.push_back(Op);
      M.insert({U, U->clone()});
    }
  }

  for (std::pair<Value*,Value*> P : M) {
    Instruction *U = cast<Instruction>(P.second);
    for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
      auto F = M.find(U->getOperand(i));
      if (F != M.end())
        U->setOperand(i, F->second);
    }
  }

  auto R = M.find(Exp);
  assert(R != M.end());
  Root = R->second;

  record(Root);
  use(Root);
}

void Simplifier::Context::record(Value *V) {
  auto Record = [this](Instruction *U) -> bool {
    Clones.insert(U);
    return true;
  };
  traverse(V, Record);
}

void Simplifier::Context::use(Value *V) {
  auto Use = [this](Instruction *U) -> bool {
    Used.insert(U);
    return true;
  };
  traverse(V, Use);
}

void Simplifier::Context::unuse(Value *V) {
  if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
    return;

  auto Unuse = [this](Instruction *U) -> bool {
    if (!U->use_empty())
      return false;
    Used.erase(U);
    return true;
  };
  traverse(V, Unuse);
}

Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
  if (Tree == OldV)
    return NewV;
  if (OldV == NewV)
    return Tree;

  WorkListType Q;
  Q.push_back(Tree);
  while (!Q.empty()) {
    Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
    // If U is not an instruction, or it's not a clone, skip it.
    if (!U || U->getParent())
      continue;
    for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
      Value *Op = U->getOperand(i);
      if (Op == OldV) {
        U->setOperand(i, NewV);
        unuse(OldV);
      } else {
        Q.push_back(Op);
      }
    }
  }
  return Tree;
}

void Simplifier::Context::replace(Value *OldV, Value *NewV) {
  if (Root == OldV) {
    Root = NewV;
    use(Root);
    return;
  }

  // NewV may be a complex tree that has just been created by one of the
  // transformation rules. We need to make sure that it is commoned with
  // the existing Root to the maximum extent possible.
  // Identify all subtrees of NewV (including NewV itself) that have
  // equivalent counterparts in Root, and replace those subtrees with
  // these counterparts.
  WorkListType Q;
  Q.push_back(NewV);
  while (!Q.empty()) {
    Value *V = Q.pop_front_val();
    Instruction *U = dyn_cast<Instruction>(V);
    if (!U || U->getParent())
      continue;
    if (Value *DupV = find(Root, V)) {
      if (DupV != V)
        NewV = subst(NewV, V, DupV);
    } else {
      for (Value *Op : U->operands())
        Q.push_back(Op);
    }
  }

  // Now, simply replace OldV with NewV in Root.
  Root = subst(Root, OldV, NewV);
  use(Root);
}

void Simplifier::Context::cleanup() {
  for (Value *V : Clones) {
    Instruction *U = cast<Instruction>(V);
    if (!U->getParent())
      U->dropAllReferences();
  }

  for (Value *V : Clones) {
    Instruction *U = cast<Instruction>(V);
    if (!U->getParent())
      U->deleteValue();
  }
}

bool Simplifier::Context::equal(const Instruction *I,
                                const Instruction *J) const {
  if (I == J)
    return true;
  if (!I->isSameOperationAs(J))
    return false;
  if (isa<PHINode>(I))
    return I->isIdenticalTo(J);

  for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
    Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
    if (OpI == OpJ)
      continue;
    auto *InI = dyn_cast<const Instruction>(OpI);
    auto *InJ = dyn_cast<const Instruction>(OpJ);
    if (InI && InJ) {
      if (!equal(InI, InJ))
        return false;
    } else if (InI != InJ || !InI)
      return false;
  }
  return true;
}

Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
  Instruction *SubI = dyn_cast<Instruction>(Sub);
  WorkListType Q;
  Q.push_back(Tree);

  while (!Q.empty()) {
    Value *V = Q.pop_front_val();
    if (V == Sub)
      return V;
    Instruction *U = dyn_cast<Instruction>(V);
    if (!U || U->getParent())
      continue;
    if (SubI && equal(SubI, U))
      return U;
    assert(!isa<PHINode>(U));
    for (Value *Op : U->operands())
      Q.push_back(Op);
  }
  return nullptr;
}

void Simplifier::Context::link(Instruction *I, BasicBlock *B,
      BasicBlock::iterator At) {
  if (I->getParent())
    return;

  for (Value *Op : I->operands()) {
    if (Instruction *OpI = dyn_cast<Instruction>(Op))
      link(OpI, B, At);
  }

  B->getInstList().insert(At, I);
}

Value *Simplifier::Context::materialize(BasicBlock *B,
      BasicBlock::iterator At) {
  if (Instruction *RootI = dyn_cast<Instruction>(Root))
    link(RootI, B, At);
  return Root;
}

Value *Simplifier::simplify(Context &C) {
  WorkListType Q;
  Q.push_back(C.Root);
  unsigned Count = 0;
  const unsigned Limit = SimplifyLimit;

  while (!Q.empty()) {
    if (Count++ >= Limit)
      break;
    Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
    if (!U || U->getParent() || !C.Used.count(U))
      continue;
    bool Changed = false;
    for (Rule &R : Rules) {
      Value *W = R.Fn(U, C.Ctx);
      if (!W)
        continue;
      Changed = true;
      C.record(W);
      C.replace(U, W);
      Q.push_back(C.Root);
      break;
    }
    if (!Changed) {
      for (Value *Op : U->operands())
        Q.push_back(Op);
    }
  }
  return Count < Limit ? C.Root : nullptr;
}

//===----------------------------------------------------------------------===//
//
//          Implementation of PolynomialMultiplyRecognize
//
//===----------------------------------------------------------------------===//

namespace {

  class PolynomialMultiplyRecognize {
  public:
    explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
        const DominatorTree &dt, const TargetLibraryInfo &tli,
        ScalarEvolution &se)
      : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}

    bool recognize();

  private:
    using ValueSeq = SetVector<Value *>;

    IntegerType *getPmpyType() const {
      LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
      return IntegerType::get(Ctx, 32);
    }

    bool isPromotableTo(Value *V, IntegerType *Ty);
    void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
    bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);

    Value *getCountIV(BasicBlock *BB);
    bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
    void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
          ValueSeq &Late);
    bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
    bool commutesWithShift(Instruction *I);
    bool highBitsAreZero(Value *V, unsigned IterCount);
    bool keepsHighBitsZero(Value *V, unsigned IterCount);
    bool isOperandShifted(Instruction *I, Value *Op);
    bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
          unsigned IterCount);
    void cleanupLoopBody(BasicBlock *LoopB);

    struct ParsedValues {
      ParsedValues() = default;

      Value *M = nullptr;
      Value *P = nullptr;
      Value *Q = nullptr;
      Value *R = nullptr;
      Value *X = nullptr;
      Instruction *Res = nullptr;
      unsigned IterCount = 0;
      bool Left = false;
      bool Inv = false;
    };

    bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
    bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
    bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
          Value *CIV, ParsedValues &PV, bool PreScan);
    unsigned getInverseMxN(unsigned QP);
    Value *generate(BasicBlock::iterator At, ParsedValues &PV);

    void setupSimplifier();

    Simplifier Simp;
    Loop *CurLoop;
    const DataLayout &DL;
    const DominatorTree &DT;
    const TargetLibraryInfo &TLI;
    ScalarEvolution &SE;
  };

} // end anonymous namespace

Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
  if (std::distance(PI, PE) != 2)
    return nullptr;
  BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;

  for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
    auto *PN = cast<PHINode>(I);
    Value *InitV = PN->getIncomingValueForBlock(PB);
    if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
      continue;
    Value *IterV = PN->getIncomingValueForBlock(BB);
    if (!isa<BinaryOperator>(IterV))
      continue;
    auto *BO = dyn_cast<BinaryOperator>(IterV);
    if (BO->getOpcode() != Instruction::Add)
      continue;
    Value *IncV = nullptr;
    if (BO->getOperand(0) == PN)
      IncV = BO->getOperand(1);
    else if (BO->getOperand(1) == PN)
      IncV = BO->getOperand(0);
    if (IncV == nullptr)
      continue;

    if (auto *T = dyn_cast<ConstantInt>(IncV))
      if (T->getZExtValue() == 1)
        return PN;
  }
  return nullptr;
}

static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
  for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
    Use &TheUse = UI.getUse();
    ++UI;
    if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
      if (BB == II->getParent())
        II->replaceUsesOfWith(I, J);
  }
}

bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
      Value *CIV, ParsedValues &PV) {
  // Match the following:
  //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
  //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
  // The condition may also check for equality with the masked value, i.e
  //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
  //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);

  Value *CondV = SelI->getCondition();
  Value *TrueV = SelI->getTrueValue();
  Value *FalseV = SelI->getFalseValue();

  using namespace PatternMatch;

  CmpInst::Predicate P;
  Value *A = nullptr, *B = nullptr, *C = nullptr;

  if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
      !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
    return false;
  if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
    return false;
  // Matched: select (A & B) == C ? ... : ...
  //          select (A & B) != C ? ... : ...

  Value *X = nullptr, *Sh1 = nullptr;
  // Check (A & B) for (X & (1 << i)):
  if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
    Sh1 = A;
    X = B;
  } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
    Sh1 = B;
    X = A;
  } else {
    // TODO: Could also check for an induction variable containing single
    // bit shifted left by 1 in each iteration.
    return false;
  }

  bool TrueIfZero;

  // Check C against the possible values for comparison: 0 and (1 << i):
  if (match(C, m_Zero()))
    TrueIfZero = (P == CmpInst::ICMP_EQ);
  else if (C == Sh1)
    TrueIfZero = (P == CmpInst::ICMP_NE);
  else
    return false;

  // So far, matched:
  //   select (X & (1 << i)) ? ... : ...
  // including variations of the check against zero/non-zero value.

  Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
  if (TrueIfZero) {
    ShouldSameV = TrueV;
    ShouldXoredV = FalseV;
  } else {
    ShouldSameV = FalseV;
    ShouldXoredV = TrueV;
  }

  Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
  Value *T = nullptr;
  if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
    // Matched: select +++ ? ... : Y ^ Z
    //          select +++ ? Y ^ Z : ...
    // where +++ denotes previously checked matches.
    if (ShouldSameV == Y)
      T = Z;
    else if (ShouldSameV == Z)
      T = Y;
    else
      return false;
    R = ShouldSameV;
    // Matched: select +++ ? R : R ^ T
    //          select +++ ? R ^ T : R
    // depending on TrueIfZero.

  } else if (match(ShouldSameV, m_Zero())) {
    // Matched: select +++ ? 0 : ...
    //          select +++ ? ... : 0
    if (!SelI->hasOneUse())
      return false;
    T = ShouldXoredV;
    // Matched: select +++ ? 0 : T
    //          select +++ ? T : 0

    Value *U = *SelI->user_begin();
    if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
        !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
      return false;
    // Matched: xor (select +++ ? 0 : T), R
    //          xor (select +++ ? T : 0), R
  } else
    return false;

  // The xor input value T is isolated into its own match so that it could
  // be checked against an induction variable containing a shifted bit
  // (todo).
  // For now, check against (Q << i).
  if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
      !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
    return false;
  // Matched: select +++ ? R : R ^ (Q << i)
  //          select +++ ? R ^ (Q << i) : R

  PV.X = X;
  PV.Q = Q;
  PV.R = R;
  PV.Left = true;
  return true;
}

bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
      ParsedValues &PV) {
  // Match the following:
  //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
  //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
  // The condition may also check for equality with the masked value, i.e
  //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
  //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q

  Value *CondV = SelI->getCondition();
  Value *TrueV = SelI->getTrueValue();
  Value *FalseV = SelI->getFalseValue();

  using namespace PatternMatch;

  Value *C = nullptr;
  CmpInst::Predicate P;
  bool TrueIfZero;

  if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
      match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
    if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
      return false;
    // Matched: select C == 0 ? ... : ...
    //          select C != 0 ? ... : ...
    TrueIfZero = (P == CmpInst::ICMP_EQ);
  } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
             match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
    if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
      return false;
    // Matched: select C == 1 ? ... : ...
    //          select C != 1 ? ... : ...
    TrueIfZero = (P == CmpInst::ICMP_NE);
  } else
    return false;

  Value *X = nullptr;
  if (!match(C, m_And(m_Value(X), m_One())) &&
      !match(C, m_And(m_One(), m_Value(X))))
    return false;
  // Matched: select (X & 1) == +++ ? ... : ...
  //          select (X & 1) != +++ ? ... : ...

  Value *R = nullptr, *Q = nullptr;
  if (TrueIfZero) {
    // The select's condition is true if the tested bit is 0.
    // TrueV must be the shift, FalseV must be the xor.
    if (!match(TrueV, m_LShr(m_Value(R), m_One())))
      return false;
    // Matched: select +++ ? (R >> 1) : ...
    if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
        !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
      return false;
    // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
    // with commuting ^.
  } else {
    // The select's condition is true if the tested bit is 1.
    // TrueV must be the xor, FalseV must be the shift.
    if (!match(FalseV, m_LShr(m_Value(R), m_One())))
      return false;
    // Matched: select +++ ? ... : (R >> 1)
    if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
        !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
      return false;
    // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
    // with commuting ^.
  }

  PV.X = X;
  PV.Q = Q;
  PV.R = R;
  PV.Left = false;
  return true;
}

bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
      BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
      bool PreScan) {
  using namespace PatternMatch;

  // The basic pattern for R = P.Q is:
  // for i = 0..31
  //   R = phi (0, R')
  //   if (P & (1 << i))        ; test-bit(P, i)
  //     R' = R ^ (Q << i)
  //
  // Similarly, the basic pattern for R = (P/Q).Q - P
  // for i = 0..31
  //   R = phi(P, R')
  //   if (R & (1 << i))
  //     R' = R ^ (Q << i)

  // There exist idioms, where instead of Q being shifted left, P is shifted
  // right. This produces a result that is shifted right by 32 bits (the
  // non-shifted result is 64-bit).
  //
  // For R = P.Q, this would be:
  // for i = 0..31
  //   R = phi (0, R')
  //   if ((P >> i) & 1)
  //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must
  //   else                     ; be shifted by 1, not i.
  //     R' = R >> 1
  //
  // And for the inverse:
  // for i = 0..31
  //   R = phi (P, R')
  //   if (R & 1)
  //     R' = (R >> 1) ^ Q
  //   else
  //     R' = R >> 1

  // The left-shifting idioms share the same pattern:
  //   select (X & (1 << i)) ? R ^ (Q << i) : R
  // Similarly for right-shifting idioms:
  //   select (X & 1) ? (R >> 1) ^ Q

  if (matchLeftShift(SelI, CIV, PV)) {
    // If this is a pre-scan, getting this far is sufficient.
    if (PreScan)
      return true;

    // Need to make sure that the SelI goes back into R.
    auto *RPhi = dyn_cast<PHINode>(PV.R);
    if (!RPhi)
      return false;
    if (SelI != RPhi->getIncomingValueForBlock(LoopB))
      return false;
    PV.Res = SelI;

    // If X is loop invariant, it must be the input polynomial, and the
    // idiom is the basic polynomial multiply.
    if (CurLoop->isLoopInvariant(PV.X)) {
      PV.P = PV.X;
      PV.Inv = false;
    } else {
      // X is not loop invariant. If X == R, this is the inverse pmpy.
      // Otherwise, check for an xor with an invariant value. If the
      // variable argument to the xor is R, then this is still a valid
      // inverse pmpy.
      PV.Inv = true;
      if (PV.X != PV.R) {
        Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
        if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
          return false;
        auto *I1 = dyn_cast<Instruction>(X1);
        auto *I2 = dyn_cast<Instruction>(X2);
        if (!I1 || I1->getParent() != LoopB) {
          Var = X2;
          Inv = X1;
        } else if (!I2 || I2->getParent() != LoopB) {
          Var = X1;
          Inv = X2;
        } else
          return false;
        if (Var != PV.R)
          return false;
        PV.M = Inv;
      }
      // The input polynomial P still needs to be determined. It will be
      // the entry value of R.
      Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
      PV.P = EntryP;
    }

    return true;
  }

  if (matchRightShift(SelI, PV)) {
    // If this is an inverse pattern, the Q polynomial must be known at
    // compile time.
    if (PV.Inv && !isa<ConstantInt>(PV.Q))
      return false;
    if (PreScan)
      return true;
    // There is no exact matching of right-shift pmpy.
    return false;
  }

  return false;
}

bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
      IntegerType *DestTy) {
  IntegerType *T = dyn_cast<IntegerType>(Val->getType());
  if (!T || T->getBitWidth() > DestTy->getBitWidth())
    return false;
  if (T->getBitWidth() == DestTy->getBitWidth())
    return true;
  // Non-instructions are promotable. The reason why an instruction may not
  // be promotable is that it may produce a different result if its operands
  // and the result are promoted, for example, it may produce more non-zero
  // bits. While it would still be possible to represent the proper result
  // in a wider type, it may require adding additional instructions (which
  // we don't want to do).
  Instruction *In = dyn_cast<Instruction>(Val);
  if (!In)
    return true;
  // The bitwidth of the source type is smaller than the destination.
  // Check if the individual operation can be promoted.
  switch (In->getOpcode()) {
    case Instruction::PHI:
    case Instruction::ZExt:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::LShr: // Shift right is ok.
    case Instruction::Select:
      return true;
    case Instruction::ICmp:
      if (CmpInst *CI = cast<CmpInst>(In))
        return CI->isEquality() || CI->isUnsigned();
      llvm_unreachable("Cast failed unexpectedly");
    case Instruction::Add:
      return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
  }
  return false;
}

void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
      IntegerType *DestTy, BasicBlock *LoopB) {
  // Leave boolean values alone.
  if (!In->getType()->isIntegerTy(1))
    In->mutateType(DestTy);
  unsigned DestBW = DestTy->getBitWidth();

  // Handle PHIs.
  if (PHINode *P = dyn_cast<PHINode>(In)) {
    unsigned N = P->getNumIncomingValues();
    for (unsigned i = 0; i != N; ++i) {
      BasicBlock *InB = P->getIncomingBlock(i);
      if (InB == LoopB)
        continue;
      Value *InV = P->getIncomingValue(i);
      IntegerType *Ty = cast<IntegerType>(InV->getType());
      // Do not promote values in PHI nodes of type i1.
      if (Ty != P->getType()) {
        // If the value type does not match the PHI type, the PHI type
        // must have been promoted.
        assert(Ty->getBitWidth() < DestBW);
        InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
        P->setIncomingValue(i, InV);
      }
    }
  } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
    Value *Op = Z->getOperand(0);
    if (Op->getType() == Z->getType())
      Z->replaceAllUsesWith(Op);
    Z->eraseFromParent();
    return;
  }

  // Promote immediates.
  for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
      if (CI->getType()->getBitWidth() < DestBW)
        In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
  }
}

bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
      BasicBlock *ExitB) {
  assert(LoopB);
  // Skip loops where the exit block has more than one predecessor. The values
  // coming from the loop block will be promoted to another type, and so the
  // values coming into the exit block from other predecessors would also have
  // to be promoted.
  if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
    return false;
  IntegerType *DestTy = getPmpyType();
  // Check if the exit values have types that are no wider than the type
  // that we want to promote to.
  unsigned DestBW = DestTy->getBitWidth();
  for (Instruction &In : *ExitB) {
    PHINode *P = dyn_cast<PHINode>(&In);
    if (!P)
      break;
    if (P->getNumIncomingValues() != 1)
      return false;
    assert(P->getIncomingBlock(0) == LoopB);
    IntegerType *T = dyn_cast<IntegerType>(P->getType());
    if (!T || T->getBitWidth() > DestBW)
      return false;
  }

  // Check all instructions in the loop.
  for (Instruction &In : *LoopB)
    if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
      return false;

  // Perform the promotion.
  std::vector<Instruction*> LoopIns;
  std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
                 [](Instruction &In) { return &In; });
  for (Instruction *In : LoopIns)
    promoteTo(In, DestTy, LoopB);

  // Fix up the PHI nodes in the exit block.
  Instruction *EndI = ExitB->getFirstNonPHI();
  BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
  for (auto I = ExitB->begin(); I != End; ++I) {
    PHINode *P = dyn_cast<PHINode>(I);
    if (!P)
      break;
    Type *Ty0 = P->getIncomingValue(0)->getType();
    Type *PTy = P->getType();
    if (PTy != Ty0) {
      assert(Ty0 == DestTy);
      // In order to create the trunc, P must have the promoted type.
      P->mutateType(Ty0);
      Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
      // In order for the RAUW to work, the types of P and T must match.
      P->mutateType(PTy);
      P->replaceAllUsesWith(T);
      // Final update of the P's type.
      P->mutateType(Ty0);
      cast<Instruction>(T)->setOperand(0, P);
    }
  }

  return true;
}

bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
      ValueSeq &Cycle) {
  // Out = ..., In, ...
  if (Out == In)
    return true;

  auto *BB = cast<Instruction>(Out)->getParent();
  bool HadPhi = false;

  for (auto U : Out->users()) {
    auto *I = dyn_cast<Instruction>(&*U);
    if (I == nullptr || I->getParent() != BB)
      continue;
    // Make sure that there are no multi-iteration cycles, e.g.
    //   p1 = phi(p2)
    //   p2 = phi(p1)
    // The cycle p1->p2->p1 would span two loop iterations.
    // Check that there is only one phi in the cycle.
    bool IsPhi = isa<PHINode>(I);
    if (IsPhi && HadPhi)
      return false;
    HadPhi |= IsPhi;
    if (Cycle.count(I))
      return false;
    Cycle.insert(I);
    if (findCycle(I, In, Cycle))
      break;
    Cycle.remove(I);
  }
  return !Cycle.empty();
}

void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
      ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
  // All the values in the cycle that are between the phi node and the
  // divider instruction will be classified as "early", all other values
  // will be "late".

  bool IsE = true;
  unsigned I, N = Cycle.size();
  for (I = 0; I < N; ++I) {
    Value *V = Cycle[I];
    if (DivI == V)
      IsE = false;
    else if (!isa<PHINode>(V))
      continue;
    // Stop if found either.
    break;
  }
  // "I" is the index of either DivI or the phi node, whichever was first.
  // "E" is "false" or "true" respectively.
  ValueSeq &First = !IsE ? Early : Late;
  for (unsigned J = 0; J < I; ++J)
    First.insert(Cycle[J]);

  ValueSeq &Second = IsE ? Early : Late;
  Second.insert(Cycle[I]);
  for (++I; I < N; ++I) {
    Value *V = Cycle[I];
    if (DivI == V || isa<PHINode>(V))
      break;
    Second.insert(V);
  }

  for (; I < N; ++I)
    First.insert(Cycle[I]);
}

bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
      ValueSeq &Early, ValueSeq &Late) {
  // Select is an exception, since the condition value does not have to be
  // classified in the same way as the true/false values. The true/false
  // values do have to be both early or both late.
  if (UseI->getOpcode() == Instruction::Select) {
    Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
    if (Early.count(TV) || Early.count(FV)) {
      if (Late.count(TV) || Late.count(FV))
        return false;
      Early.insert(UseI);
    } else if (Late.count(TV) || Late.count(FV)) {
      if (Early.count(TV) || Early.count(FV))
        return false;
      Late.insert(UseI);
    }
    return true;
  }

  // Not sure what would be the example of this, but the code below relies
  // on having at least one operand.
  if (UseI->getNumOperands() == 0)
    return true;

  bool AE = true, AL = true;
  for (auto &I : UseI->operands()) {
    if (Early.count(&*I))
      AL = false;
    else if (Late.count(&*I))
      AE = false;
  }
  // If the operands appear "all early" and "all late" at the same time,
  // then it means that none of them are actually classified as either.
  // This is harmless.
  if (AE && AL)
    return true;
  // Conversely, if they are neither "all early" nor "all late", then
  // we have a mixture of early and late operands that is not a known
  // exception.
  if (!AE && !AL)
    return false;

  // Check that we have covered the two special cases.
  assert(AE != AL);

  if (AE)
    Early.insert(UseI);
  else
    Late.insert(UseI);
  return true;
}

bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
  switch (I->getOpcode()) {
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::LShr:
    case Instruction::Shl:
    case Instruction::Select:
    case Instruction::ICmp:
    case Instruction::PHI:
      break;
    default:
      return false;
  }
  return true;
}

bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
      unsigned IterCount) {
  auto *T = dyn_cast<IntegerType>(V->getType());
  if (!T)
    return false;

  KnownBits Known(T->getBitWidth());
  computeKnownBits(V, Known, DL);
  return Known.countMinLeadingZeros() >= IterCount;
}

bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
      unsigned IterCount) {
  // Assume that all inputs to the value have the high bits zero.
  // Check if the value itself preserves the zeros in the high bits.
  if (auto *C = dyn_cast<ConstantInt>(V))
    return C->getValue().countLeadingZeros() >= IterCount;

  if (auto *I = dyn_cast<Instruction>(V)) {
    switch (I->getOpcode()) {
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
      case Instruction::LShr:
      case Instruction::Select:
      case Instruction::ICmp:
      case Instruction::PHI:
      case Instruction::ZExt:
        return true;
    }
  }

  return false;
}

bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
  unsigned Opc = I->getOpcode();
  if (Opc == Instruction::Shl || Opc == Instruction::LShr)
    return Op != I->getOperand(1);
  return true;
}

bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
      BasicBlock *ExitB, unsigned IterCount) {
  Value *CIV = getCountIV(LoopB);
  if (CIV == nullptr)
    return false;
  auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
  if (CIVTy == nullptr)
    return false;

  ValueSeq RShifts;
  ValueSeq Early, Late, Cycled;

  // Find all value cycles that contain logical right shifts by 1.
  for (Instruction &I : *LoopB) {
    using namespace PatternMatch;

    Value *V = nullptr;
    if (!match(&I, m_LShr(m_Value(V), m_One())))
      continue;
    ValueSeq C;
    if (!findCycle(&I, V, C))
      continue;

    // Found a cycle.
    C.insert(&I);
    classifyCycle(&I, C, Early, Late);
    Cycled.insert(C.begin(), C.end());
    RShifts.insert(&I);
  }

  // Find the set of all values affected by the shift cycles, i.e. all
  // cycled values, and (recursively) all their users.
  ValueSeq Users(Cycled.begin(), Cycled.end());
  for (unsigned i = 0; i < Users.size(); ++i) {
    Value *V = Users[i];
    if (!isa<IntegerType>(V->getType()))
      return false;
    auto *R = cast<Instruction>(V);
    // If the instruction does not commute with shifts, the loop cannot
    // be unshifted.
    if (!commutesWithShift(R))
      return false;
    for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
      auto *T = cast<Instruction>(*I);
      // Skip users from outside of the loop. They will be handled later.
      // Also, skip the right-shifts and phi nodes, since they mix early
      // and late values.
      if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
        continue;

      Users.insert(T);
      if (!classifyInst(T, Early, Late))
        return false;
    }
  }

  if (Users.empty())
    return false;

  // Verify that high bits remain zero.
  ValueSeq Internal(Users.begin(), Users.end());
  ValueSeq Inputs;
  for (unsigned i = 0; i < Internal.size(); ++i) {
    auto *R = dyn_cast<Instruction>(Internal[i]);
    if (!R)
      continue;
    for (Value *Op : R->operands()) {
      auto *T = dyn_cast<Instruction>(Op);
      if (T && T->getParent() != LoopB)
        Inputs.insert(Op);
      else
        Internal.insert(Op);
    }
  }
  for (Value *V : Inputs)
    if (!highBitsAreZero(V, IterCount))
      return false;
  for (Value *V : Internal)
    if (!keepsHighBitsZero(V, IterCount))
      return false;

  // Finally, the work can be done. Unshift each user.
  IRBuilder<> IRB(LoopB);
  std::map<Value*,Value*> ShiftMap;

  using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;

  CastMapType CastMap;

  auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
        IntegerType *Ty) -> Value* {
    auto H = CM.find(std::make_pair(V, Ty));
    if (H != CM.end())
      return H->second;
    Value *CV = IRB.CreateIntCast(V, Ty, false);
    CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
    return CV;
  };

  for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
    using namespace PatternMatch;

    if (isa<PHINode>(I) || !Users.count(&*I))
      continue;

    // Match lshr x, 1.
    Value *V = nullptr;
    if (match(&*I, m_LShr(m_Value(V), m_One()))) {
      replaceAllUsesOfWithIn(&*I, V, LoopB);
      continue;
    }
    // For each non-cycled operand, replace it with the corresponding
    // value shifted left.
    for (auto &J : I->operands()) {
      Value *Op = J.get();
      if (!isOperandShifted(&*I, Op))
        continue;
      if (Users.count(Op))
        continue;
      // Skip shifting zeros.
      if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
        continue;
      // Check if we have already generated a shift for this value.
      auto F = ShiftMap.find(Op);
      Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
      if (W == nullptr) {
        IRB.SetInsertPoint(&*I);
        // First, the shift amount will be CIV or CIV+1, depending on
        // whether the value is early or late. Instead of creating CIV+1,
        // do a single shift of the value.
        Value *ShAmt = CIV, *ShVal = Op;
        auto *VTy = cast<IntegerType>(ShVal->getType());
        auto *ATy = cast<IntegerType>(ShAmt->getType());
        if (Late.count(&*I))
          ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
        // Second, the types of the shifted value and the shift amount
        // must match.
        if (VTy != ATy) {
          if (VTy->getBitWidth() < ATy->getBitWidth())
            ShVal = upcast(CastMap, IRB, ShVal, ATy);
          else
            ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
        }
        // Ready to generate the shift and memoize it.
        W = IRB.CreateShl(ShVal, ShAmt);
        ShiftMap.insert(std::make_pair(Op, W));
      }
      I->replaceUsesOfWith(Op, W);
    }
  }

  // Update the users outside of the loop to account for having left
  // shifts. They would normally be shifted right in the loop, so shift
  // them right after the loop exit.
  // Take advantage of the loop-closed SSA form, which has all the post-
  // loop values in phi nodes.
  IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
  for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
    if (!isa<PHINode>(P))
      break;
    auto *PN = cast<PHINode>(P);
    Value *U = PN->getIncomingValueForBlock(LoopB);
    if (!Users.count(U))
      continue;
    Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
    PN->replaceAllUsesWith(S);
    // The above RAUW will create
    //   S = lshr S, IterCount
    // so we need to fix it back into
    //   S = lshr PN, IterCount
    cast<User>(S)->replaceUsesOfWith(S, PN);
  }

  return true;
}

void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
  for (auto &I : *LoopB)
    if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
      I.replaceAllUsesWith(SV);

  for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
    N = std::next(I);
    RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
  }
}

unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
  // Arrays of coefficients of Q and the inverse, C.
  // Q[i] = coefficient at x^i.
  std::array<char,32> Q, C;

  for (unsigned i = 0; i < 32; ++i) {
    Q[i] = QP & 1;
    QP >>= 1;
  }
  assert(Q[0] == 1);

  // Find C, such that
  // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
  //
  // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
  // operations * and + are & and ^ respectively.
  //
  // Find C[i] recursively, by comparing i-th coefficient in the product
  // with 0 (or 1 for i=0).
  //
  // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
  C[0] = 1;
  for (unsigned i = 1; i < 32; ++i) {
    // Solve for C[i] in:
    //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
    // This is equivalent to
    //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
    // which is
    //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
    unsigned T = 0;
    for (unsigned j = 0; j < i; ++j)
      T = T ^ (C[j] & Q[i-j]);
    C[i] = T;
  }

  unsigned QV = 0;
  for (unsigned i = 0; i < 32; ++i)
    if (C[i])
      QV |= (1 << i);

  return QV;
}

Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
      ParsedValues &PV) {
  IRBuilder<> B(&*At);
  Module *M = At->getParent()->getParent()->getParent();
  Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);

  Value *P = PV.P, *Q = PV.Q, *P0 = P;
  unsigned IC = PV.IterCount;

  if (PV.M != nullptr)
    P0 = P = B.CreateXor(P, PV.M);

  // Create a bit mask to clear the high bits beyond IterCount.
  auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));

  if (PV.IterCount != 32)
    P = B.CreateAnd(P, BMI);

  if (PV.Inv) {
    auto *QI = dyn_cast<ConstantInt>(PV.Q);
    assert(QI && QI->getBitWidth() <= 32);

    // Again, clearing bits beyond IterCount.
    unsigned M = (1 << PV.IterCount) - 1;
    unsigned Tmp = (QI->getZExtValue() | 1) & M;
    unsigned QV = getInverseMxN(Tmp) & M;
    auto *QVI = ConstantInt::get(QI->getType(), QV);
    P = B.CreateCall(PMF, {P, QVI});
    P = B.CreateTrunc(P, QI->getType());
    if (IC != 32)
      P = B.CreateAnd(P, BMI);
  }

  Value *R = B.CreateCall(PMF, {P, Q});

  if (PV.M != nullptr)
    R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));

  return R;
}

static bool hasZeroSignBit(const Value *V) {
  if (const auto *CI = dyn_cast<const ConstantInt>(V))
    return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
  const Instruction *I = dyn_cast<const Instruction>(V);
  if (!I)
    return false;
  switch (I->getOpcode()) {
    case Instruction::LShr:
      if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
        return SI->getZExtValue() > 0;
      return false;
    case Instruction::Or:
    case Instruction::Xor:
      return hasZeroSignBit(I->getOperand(0)) &&
             hasZeroSignBit(I->getOperand(1));
    case Instruction::And:
      return hasZeroSignBit(I->getOperand(0)) ||
             hasZeroSignBit(I->getOperand(1));
  }
  return false;
}

void PolynomialMultiplyRecognize::setupSimplifier() {
  Simp.addRule("sink-zext",
    // Sink zext past bitwise operations.
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      if (I->getOpcode() != Instruction::ZExt)
        return nullptr;
      Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
      if (!T)
        return nullptr;
      switch (T->getOpcode()) {
        case Instruction::And:
        case Instruction::Or:
        case Instruction::Xor:
          break;
        default:
          return nullptr;
      }
      IRBuilder<> B(Ctx);
      return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
                           B.CreateZExt(T->getOperand(0), I->getType()),
                           B.CreateZExt(T->getOperand(1), I->getType()));
    });
  Simp.addRule("xor/and -> and/xor",
    // (xor (and x a) (and y a)) -> (and (xor x y) a)
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      if (I->getOpcode() != Instruction::Xor)
        return nullptr;
      Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
      Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
      if (!And0 || !And1)
        return nullptr;
      if (And0->getOpcode() != Instruction::And ||
          And1->getOpcode() != Instruction::And)
        return nullptr;
      if (And0->getOperand(1) != And1->getOperand(1))
        return nullptr;
      IRBuilder<> B(Ctx);
      return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
                         And0->getOperand(1));
    });
  Simp.addRule("sink binop into select",
    // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
    // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
      if (!BO)
        return nullptr;
      Instruction::BinaryOps Op = BO->getOpcode();
      if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
        IRBuilder<> B(Ctx);
        Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
        Value *Z = BO->getOperand(1);
        return B.CreateSelect(Sel->getCondition(),
                              B.CreateBinOp(Op, X, Z),
                              B.CreateBinOp(Op, Y, Z));
      }
      if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
        IRBuilder<> B(Ctx);
        Value *X = BO->getOperand(0);
        Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
        return B.CreateSelect(Sel->getCondition(),
                              B.CreateBinOp(Op, X, Y),
                              B.CreateBinOp(Op, X, Z));
      }
      return nullptr;
    });
  Simp.addRule("fold select-select",
    // (select c (select c x y) z) -> (select c x z)
    // (select c x (select c y z)) -> (select c x z)
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      SelectInst *Sel = dyn_cast<SelectInst>(I);
      if (!Sel)
        return nullptr;
      IRBuilder<> B(Ctx);
      Value *C = Sel->getCondition();
      if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
        if (Sel0->getCondition() == C)
          return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
      }
      if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
        if (Sel1->getCondition() == C)
          return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
      }
      return nullptr;
    });
  Simp.addRule("or-signbit -> xor-signbit",
    // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      if (I->getOpcode() != Instruction::Or)
        return nullptr;
      ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
      if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
        return nullptr;
      if (!hasZeroSignBit(I->getOperand(0)))
        return nullptr;
      return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
    });
  Simp.addRule("sink lshr into binop",
    // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      if (I->getOpcode() != Instruction::LShr)
        return nullptr;
      BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
      if (!BitOp)
        return nullptr;
      switch (BitOp->getOpcode()) {
        case Instruction::And:
        case Instruction::Or:
        case Instruction::Xor:
          break;
        default:
          return nullptr;
      }
      IRBuilder<> B(Ctx);
      Value *S = I->getOperand(1);
      return B.CreateBinOp(BitOp->getOpcode(),
                B.CreateLShr(BitOp->getOperand(0), S),
                B.CreateLShr(BitOp->getOperand(1), S));
    });
  Simp.addRule("expose bitop-const",
    // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
    [](Instruction *I, LLVMContext &Ctx) -> Value* {
      auto IsBitOp = [](unsigned Op) -> bool {
        switch (Op) {
          case Instruction::And:
          case Instruction::Or:
          case Instruction::Xor:
            return true;
        }
        return false;
      };
      BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
      if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
        return nullptr;
      BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
      if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
        return nullptr;
      ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
      ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
      if (!CA || !CB)
        return nullptr;
      IRBuilder<> B(Ctx);
      Value *X = BitOp2->getOperand(0);
      return B.CreateBinOp(BitOp2->getOpcode(), X,
                B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
    });
}

bool PolynomialMultiplyRecognize::recognize() {
  DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
               << *CurLoop << '\n');
  // Restrictions:
  // - The loop must consist of a single block.
  // - The iteration count must be known at compile-time.
  // - The loop must have an induction variable starting from 0, and
  //   incremented in each iteration of the loop.
  BasicBlock *LoopB = CurLoop->getHeader();
  DEBUG(dbgs() << "Loop header:\n" << *LoopB);

  if (LoopB != CurLoop->getLoopLatch())
    return false;
  BasicBlock *ExitB = CurLoop->getExitBlock();
  if (ExitB == nullptr)
    return false;
  BasicBlock *EntryB = CurLoop->getLoopPreheader();
  if (EntryB == nullptr)
    return false;

  unsigned IterCount = 0;
  const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
  if (isa<SCEVCouldNotCompute>(CT))
    return false;
  if (auto *CV = dyn_cast<SCEVConstant>(CT))
    IterCount = CV->getValue()->getZExtValue() + 1;

  Value *CIV = getCountIV(LoopB);
  ParsedValues PV;
  PV.IterCount = IterCount;
  DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n');

  setupSimplifier();

  // Perform a preliminary scan of select instructions to see if any of them
  // looks like a generator of the polynomial multiply steps. Assume that a
  // loop can only contain a single transformable operation, so stop the
  // traversal after the first reasonable candidate was found.
  // XXX: Currently this approach can modify the loop before being 100% sure
  // that the transformation can be carried out.
  bool FoundPreScan = false;
  auto FeedsPHI = [LoopB](const Value *V) -> bool {
    for (const Value *U : V->users()) {
      if (const auto *P = dyn_cast<const PHINode>(U))
        if (P->getParent() == LoopB)
          return true;
    }
    return false;
  };
  for (Instruction &In : *LoopB) {
    SelectInst *SI = dyn_cast<SelectInst>(&In);
    if (!SI || !FeedsPHI(SI))
      continue;

    Simplifier::Context C(SI);
    Value *T = Simp.simplify(C);
    SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
    DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
    if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
      FoundPreScan = true;
      if (SelI != SI) {
        Value *NewSel = C.materialize(LoopB, SI->getIterator());
        SI->replaceAllUsesWith(NewSel);
        RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
      }
      break;
    }
  }

  if (!FoundPreScan) {
    DEBUG(dbgs() << "Have not found candidates for pmpy\n");
    return false;
  }

  if (!PV.Left) {
    // The right shift version actually only returns the higher bits of
    // the result (each iteration discards the LSB). If we want to convert it
    // to a left-shifting loop, the working data type must be at least as
    // wide as the target's pmpy instruction.
    if (!promoteTypes(LoopB, ExitB))
      return false;
    if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
      return false;
    cleanupLoopBody(LoopB);
  }

  // Scan the loop again, find the generating select instruction.
  bool FoundScan = false;
  for (Instruction &In : *LoopB) {
    SelectInst *SelI = dyn_cast<SelectInst>(&In);
    if (!SelI)
      continue;
    DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
    FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
    if (FoundScan)
      break;
  }
  assert(FoundScan);

  DEBUG({
    StringRef PP = (PV.M ? "(P+M)" : "P");
    if (!PV.Inv)
      dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
    else
      dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
             << PP << "\n";
    dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n";
    if (PV.M)
      dbgs() << "  M:" << *PV.M << "\n";
    dbgs() << "  Q:" << *PV.Q << "\n";
    dbgs() << "  Iteration count:" << PV.IterCount << "\n";
  });

  BasicBlock::iterator At(EntryB->getTerminator());
  Value *PM = generate(At, PV);
  if (PM == nullptr)
    return false;

  if (PM->getType() != PV.Res->getType())
    PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);

  PV.Res->replaceAllUsesWith(PM);
  PV.Res->eraseFromParent();
  return true;
}

int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
    return SC->getAPInt().getSExtValue();
  return 0;
}

bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
  // Allow volatile stores if HexagonVolatileMemcpy is enabled.
  if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
    return false;

  Value *StoredVal = SI->getValueOperand();
  Value *StorePtr = SI->getPointerOperand();

  // Reject stores that are so large that they overflow an unsigned.
  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    return false;

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided store.  If we have something else, it's a
  // random store we can't handle.
  auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    return false;

  // Check to see if the stride matches the size of the store.  If so, then we
  // know that every byte is touched in the loop.
  int Stride = getSCEVStride(StoreEv);
  if (Stride == 0)
    return false;
  unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
  if (StoreSize != unsigned(std::abs(Stride)))
    return false;

  // The store must be feeding a non-volatile load.
  LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
  if (!LI || !LI->isSimple())
    return false;

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided load.  If we have something else, it's a
  // random load we can't handle.
  Value *LoadPtr = LI->getPointerOperand();
  auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
  if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
    return false;

  // The store and load must share the same stride.
  if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
    return false;

  // Success.  This store can be converted into a memcpy.
  return true;
}

/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access.  The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
                      const SCEV *BECount, unsigned StoreSize,
                      AliasAnalysis &AA,
                      SmallPtrSetImpl<Instruction *> &Ignored) {
  // Get the location that may be stored across the loop.  Since the access
  // is strided positively through memory, we say that the modified location
  // starts at the pointer and has infinite size.
  uint64_t AccessSize = MemoryLocation::UnknownSize;

  // If the loop iterates a fixed number of times, we can refine the access
  // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;

  // TODO: For this to be really effective, we have to dive into the pointer
  // operand in the store.  Store to &A[i] of 100 will always return may alias
  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
  // which will then no-alias a store to &A[100].
  MemoryLocation StoreLoc(Ptr, AccessSize);

  for (auto *B : L->blocks())
    for (auto &I : *B)
      if (Ignored.count(&I) == 0 &&
          isModOrRefSet(
              intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
        return true;

  return false;
}

void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
      SmallVectorImpl<StoreInst*> &Stores) {
  Stores.clear();
  for (Instruction &I : *BB)
    if (StoreInst *SI = dyn_cast<StoreInst>(&I))
      if (isLegalStore(CurLoop, SI))
        Stores.push_back(SI);
}

bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
      StoreInst *SI, const SCEV *BECount) {
  assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
         "Expected only non-volatile stores, or Hexagon-specific memcpy"
         "to volatile destination.");

  Value *StorePtr = SI->getPointerOperand();
  auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
  unsigned Stride = getSCEVStride(StoreEv);
  unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
  if (Stride != StoreSize)
    return false;

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided load.  If we have something else, it's a
  // random load we can't handle.
  LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
  auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));

  // The trip count of the loop and the base pointer of the addrec SCEV is
  // guaranteed to be loop invariant, which means that it should dominate the
  // header.  This allows us to insert code for it in the preheader.
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  Instruction *ExpPt = Preheader->getTerminator();
  IRBuilder<> Builder(ExpPt);
  SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");

  Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());

  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
  // this into a memcpy/memmove in the loop preheader now if we want.  However,
  // this would be unsafe to do if there is anything else in the loop that may
  // read or write the memory region we're storing to.  For memcpy, this
  // includes the load that feeds the stores.  Check for an alias by generating
  // the base address and checking everything.
  Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
      Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
  Value *LoadBasePtr = nullptr;

  bool Overlap = false;
  bool DestVolatile = SI->isVolatile();
  Type *BECountTy = BECount->getType();

  if (DestVolatile) {
    // The trip count must fit in i32, since it is the type of the "num_words"
    // argument to hexagon_memcpy_forward_vp4cp4n2.
    if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
CleanupAndExit:
      // If we generated new code for the base pointer, clean up.
      Expander.clear();
      if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
        RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
        StoreBasePtr = nullptr;
      }
      if (LoadBasePtr) {
        RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
        LoadBasePtr = nullptr;
      }
      return false;
    }
  }

  SmallPtrSet<Instruction*, 2> Ignore1;
  Ignore1.insert(SI);
  if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
                            StoreSize, *AA, Ignore1)) {
    // Check if the load is the offending instruction.
    Ignore1.insert(LI);
    if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
                              BECount, StoreSize, *AA, Ignore1)) {
      // Still bad. Nothing we can do.
      goto CleanupAndExit;
    }
    // It worked with the load ignored.
    Overlap = true;
  }

  if (!Overlap) {
    if (DisableMemcpyIdiom || !HasMemcpy)
      goto CleanupAndExit;
  } else {
    // Don't generate memmove if this function will be inlined. This is
    // because the caller will undergo this transformation after inlining.
    Function *Func = CurLoop->getHeader()->getParent();
    if (Func->hasFnAttribute(Attribute::AlwaysInline))
      goto CleanupAndExit;

    // In case of a memmove, the call to memmove will be executed instead
    // of the loop, so we need to make sure that there is nothing else in
    // the loop than the load, store and instructions that these two depend
    // on.
    SmallVector<Instruction*,2> Insts;
    Insts.push_back(SI);
    Insts.push_back(LI);
    if (!coverLoop(CurLoop, Insts))
      goto CleanupAndExit;

    if (DisableMemmoveIdiom || !HasMemmove)
      goto CleanupAndExit;
    bool IsNested = CurLoop->getParentLoop() != nullptr;
    if (IsNested && OnlyNonNestedMemmove)
      goto CleanupAndExit;
  }

  // For a memcpy, we have to make sure that the input array is not being
  // mutated by the loop.
  LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
      Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);

  SmallPtrSet<Instruction*, 2> Ignore2;
  Ignore2.insert(SI);
  if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
                            StoreSize, *AA, Ignore2))
    goto CleanupAndExit;

  // Check the stride.
  bool StridePos = getSCEVStride(LoadEv) >= 0;

  // Currently, the volatile memcpy only emulates traversing memory forward.
  if (!StridePos && DestVolatile)
    goto CleanupAndExit;

  bool RuntimeCheck = (Overlap || DestVolatile);

  BasicBlock *ExitB;
  if (RuntimeCheck) {
    // The runtime check needs a single exit block.
    SmallVector<BasicBlock*, 8> ExitBlocks;
    CurLoop->getUniqueExitBlocks(ExitBlocks);
    if (ExitBlocks.size() != 1)
      goto CleanupAndExit;
    ExitB = ExitBlocks[0];
  }

  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
  // pointer size if it isn't already.
  LLVMContext &Ctx = SI->getContext();
  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
  unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment());
  DebugLoc DLoc = SI->getDebugLoc();

  const SCEV *NumBytesS =
      SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
  if (StoreSize != 1)
    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
                               SCEV::FlagNUW);
  Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
  if (Instruction *In = dyn_cast<Instruction>(NumBytes))
    if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
      NumBytes = Simp;

  CallInst *NewCall;

  if (RuntimeCheck) {
    unsigned Threshold = RuntimeMemSizeThreshold;
    if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
      uint64_t C = CI->getZExtValue();
      if (Threshold != 0 && C < Threshold)
        goto CleanupAndExit;
      if (C < CompileTimeMemSizeThreshold)
        goto CleanupAndExit;
    }

    BasicBlock *Header = CurLoop->getHeader();
    Function *Func = Header->getParent();
    Loop *ParentL = LF->getLoopFor(Preheader);
    StringRef HeaderName = Header->getName();

    // Create a new (empty) preheader, and update the PHI nodes in the
    // header to use the new preheader.
    BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
                                                  Func, Header);
    if (ParentL)
      ParentL->addBasicBlockToLoop(NewPreheader, *LF);
    IRBuilder<>(NewPreheader).CreateBr(Header);
    for (auto &In : *Header) {
      PHINode *PN = dyn_cast<PHINode>(&In);
      if (!PN)
        break;
      int bx = PN->getBasicBlockIndex(Preheader);
      if (bx >= 0)
        PN->setIncomingBlock(bx, NewPreheader);
    }
    DT->addNewBlock(NewPreheader, Preheader);
    DT->changeImmediateDominator(Header, NewPreheader);

    // Check for safe conditions to execute memmove.
    // If stride is positive, copying things from higher to lower addresses
    // is equivalent to memmove.  For negative stride, it's the other way
    // around.  Copying forward in memory with positive stride may not be
    // same as memmove since we may be copying values that we just stored
    // in some previous iteration.
    Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
    Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
    Value *LowA = StridePos ? SA : LA;
    Value *HighA = StridePos ? LA : SA;
    Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
    Value *Cond = CmpA;

    // Check for distance between pointers. Since the case LowA < HighA
    // is checked for above, assume LowA >= HighA.
    Value *Dist = Builder.CreateSub(LowA, HighA);
    Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
    Value *CmpEither = Builder.CreateOr(Cond, CmpD);
    Cond = CmpEither;

    if (Threshold != 0) {
      Type *Ty = NumBytes->getType();
      Value *Thr = ConstantInt::get(Ty, Threshold);
      Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
      Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
      Cond = CmpBoth;
    }
    BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
                                              Func, NewPreheader);
    if (ParentL)
      ParentL->addBasicBlockToLoop(MemmoveB, *LF);
    Instruction *OldT = Preheader->getTerminator();
    Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
    OldT->eraseFromParent();
    Preheader->setName(Preheader->getName()+".old");
    DT->addNewBlock(MemmoveB, Preheader);
    // Find the new immediate dominator of the exit block.
    BasicBlock *ExitD = Preheader;
    for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
      BasicBlock *PB = *PI;
      ExitD = DT->findNearestCommonDominator(ExitD, PB);
      if (!ExitD)
        break;
    }
    // If the prior immediate dominator of ExitB was dominated by the
    // old preheader, then the old preheader becomes the new immediate
    // dominator.  Otherwise don't change anything (because the newly
    // added blocks are dominated by the old preheader).
    if (ExitD && DT->dominates(Preheader, ExitD)) {
      DomTreeNode *BN = DT->getNode(ExitB);
      DomTreeNode *DN = DT->getNode(ExitD);
      BN->setIDom(DN);
    }

    // Add a call to memmove to the conditional block.
    IRBuilder<> CondBuilder(MemmoveB);
    CondBuilder.CreateBr(ExitB);
    CondBuilder.SetInsertPoint(MemmoveB->getTerminator());

    if (DestVolatile) {
      Type *Int32Ty = Type::getInt32Ty(Ctx);
      Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
      Type *VoidTy = Type::getVoidTy(Ctx);
      Module *M = Func->getParent();
      Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
                                            Int32PtrTy, Int32PtrTy, Int32Ty);
      Function *Fn = cast<Function>(CF);
      Fn->setLinkage(Function::ExternalLinkage);

      const SCEV *OneS = SE->getConstant(Int32Ty, 1);
      const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
      const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
      Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
                                               MemmoveB->getTerminator());
      if (Instruction *In = dyn_cast<Instruction>(NumWords))
        if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
          NumWords = Simp;

      Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
                      ? StoreBasePtr
                      : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
      Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
                      ? LoadBasePtr
                      : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
      NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
    } else {
      NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr,
                                          NumBytes, Alignment);
    }
  } else {
    NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr,
                                   NumBytes, Alignment);
    // Okay, the memcpy has been formed.  Zap the original store and
    // anything that feeds into it.
    RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
  }

  NewCall->setDebugLoc(DLoc);

  DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ")
               << *NewCall << "\n"
               << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
               << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");

  return true;
}

// \brief Check if the instructions in Insts, together with their dependencies
// cover the loop in the sense that the loop could be safely eliminated once
// the instructions in Insts are removed.
bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
      SmallVectorImpl<Instruction*> &Insts) const {
  SmallSet<BasicBlock*,8> LoopBlocks;
  for (auto *B : L->blocks())
    LoopBlocks.insert(B);

  SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());

  // Collect all instructions from the loop that the instructions in Insts
  // depend on (plus their dependencies, etc.).  These instructions will
  // constitute the expression trees that feed those in Insts, but the trees
  // will be limited only to instructions contained in the loop.
  for (unsigned i = 0; i < Worklist.size(); ++i) {
    Instruction *In = Worklist[i];
    for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
      Instruction *OpI = dyn_cast<Instruction>(I);
      if (!OpI)
        continue;
      BasicBlock *PB = OpI->getParent();
      if (!LoopBlocks.count(PB))
        continue;
      Worklist.insert(OpI);
    }
  }

  // Scan all instructions in the loop, if any of them have a user outside
  // of the loop, or outside of the expressions collected above, then either
  // the loop has a side-effect visible outside of it, or there are
  // instructions in it that are not involved in the original set Insts.
  for (auto *B : L->blocks()) {
    for (auto &In : *B) {
      if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
        continue;
      if (!Worklist.count(&In) && In.mayHaveSideEffects())
        return false;
      for (const auto &K : In.users()) {
        Instruction *UseI = dyn_cast<Instruction>(K);
        if (!UseI)
          continue;
        BasicBlock *UseB = UseI->getParent();
        if (LF->getLoopFor(UseB) != L)
          return false;
      }
    }
  }

  return true;
}

/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count.  This block is known to be in the current
/// loop and not in any subloops.
bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
      const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
  // We can only promote stores in this block if they are unconditionally
  // executed in the loop.  For a block to be unconditionally executed, it has
  // to dominate all the exit blocks of the loop.  Verify this now.
  auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
    return DT->dominates(BB, EB);
  };
  if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB))
    return false;

  bool MadeChange = false;
  // Look for store instructions, which may be optimized to memset/memcpy.
  SmallVector<StoreInst*,8> Stores;
  collectStores(CurLoop, BB, Stores);

  // Optimize the store into a memcpy, if it feeds an similarly strided load.
  for (auto &SI : Stores)
    MadeChange |= processCopyingStore(CurLoop, SI, BECount);

  return MadeChange;
}

bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
  PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
  if (PMR.recognize())
    return true;

  if (!HasMemcpy && !HasMemmove)
    return false;

  const SCEV *BECount = SE->getBackedgeTakenCount(L);
  assert(!isa<SCEVCouldNotCompute>(BECount) &&
         "runOnCountableLoop() called on a loop without a predictable"
         "backedge-taken count");

  SmallVector<BasicBlock *, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  bool Changed = false;

  // Scan all the blocks in the loop that are not in subloops.
  for (auto *BB : L->getBlocks()) {
    // Ignore blocks in subloops.
    if (LF->getLoopFor(BB) != L)
      continue;
    Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
  }

  return Changed;
}

bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
  const Module &M = *L->getHeader()->getParent()->getParent();
  if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
    return false;

  if (skipLoop(L))
    return false;

  // If the loop could not be converted to canonical form, it must have an
  // indirectbr in it, just give up.
  if (!L->getLoopPreheader())
    return false;

  // Disable loop idiom recognition if the function's name is a common idiom.
  StringRef Name = L->getHeader()->getParent()->getName();
  if (Name == "memset" || Name == "memcpy" || Name == "memmove")
    return false;

  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DL = &L->getHeader()->getModule()->getDataLayout();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();

  HasMemcpy = TLI->has(LibFunc_memcpy);
  HasMemmove = TLI->has(LibFunc_memmove);

  if (SE->hasLoopInvariantBackedgeTakenCount(L))
    return runOnCountableLoop(L);
  return false;
}

Pass *llvm::createHexagonLoopIdiomPass() {
  return new HexagonLoopIdiomRecognize();
}