aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonStoreWidening.cpp
blob: 54bc3cf6f6ff0603bc3a4487ae9a1d247c1854e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
//===--- HexagonStoreWidening.cpp------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Replace sequences of "narrow" stores to adjacent memory locations with
// a fewer "wide" stores that have the same effect.
// For example, replace:
//   S4_storeirb_io  %vreg100, 0, 0   ; store-immediate-byte
//   S4_storeirb_io  %vreg100, 1, 0   ; store-immediate-byte
// with
//   S4_storeirh_io  %vreg100, 0, 0   ; store-immediate-halfword
// The above is the general idea.  The actual cases handled by the code
// may be a bit more complex.
// The purpose of this pass is to reduce the number of outstanding stores,
// or as one could say, "reduce store queue pressure".  Also, wide stores
// mean fewer stores, and since there are only two memory instructions allowed
// per packet, it also means fewer packets, and ultimately fewer cycles.
//===---------------------------------------------------------------------===//

#define DEBUG_TYPE "hexagon-widen-stores"

#include "HexagonTargetMachine.h"

#include "llvm/PassSupport.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"

#include <algorithm>


using namespace llvm;

namespace llvm {
  FunctionPass *createHexagonStoreWidening();
  void initializeHexagonStoreWideningPass(PassRegistry&);
}

namespace {
  struct HexagonStoreWidening : public MachineFunctionPass {
    const HexagonInstrInfo      *TII;
    const HexagonRegisterInfo   *TRI;
    const MachineRegisterInfo   *MRI;
    AliasAnalysis               *AA;
    MachineFunction             *MF;

  public:
    static char ID;
    HexagonStoreWidening() : MachineFunctionPass(ID) {
      initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    const char *getPassName() const override {
      return "Hexagon Store Widening";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreserved<AAResultsWrapperPass>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    static bool handledStoreType(const MachineInstr *MI);

  private:
    static const int MaxWideSize = 4;

    typedef std::vector<MachineInstr*> InstrGroup;
    typedef std::vector<InstrGroup> InstrGroupList;

    bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
    bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
    void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
        InstrGroup::iterator End, InstrGroup &Group);
    void createStoreGroups(MachineBasicBlock &MBB,
        InstrGroupList &StoreGroups);
    bool processBasicBlock(MachineBasicBlock &MBB);
    bool processStoreGroup(InstrGroup &Group);
    bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
        InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
    bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
    bool replaceStores(InstrGroup &OG, InstrGroup &NG);
    bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
  };

} // namespace


namespace {

// Some local helper functions...
unsigned getBaseAddressRegister(const MachineInstr *MI) {
  const MachineOperand &MO = MI->getOperand(0);
  assert(MO.isReg() && "Expecting register operand");
  return MO.getReg();
}

int64_t getStoreOffset(const MachineInstr *MI) {
  unsigned OpC = MI->getOpcode();
  assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");

  switch (OpC) {
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io: {
      const MachineOperand &MO = MI->getOperand(1);
      assert(MO.isImm() && "Expecting immediate offset");
      return MO.getImm();
    }
  }
  dbgs() << *MI;
  llvm_unreachable("Store offset calculation missing for a handled opcode");
  return 0;
}

const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
  assert(!MI->memoperands_empty() && "Expecting memory operands");
  return **MI->memoperands_begin();
}

} // namespace


char HexagonStoreWidening::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
                "Hexason Store Widening", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
                "Hexagon Store Widening", false, false)


// Filtering function: any stores whose opcodes are not "approved" of by
// this function will not be subjected to widening.
inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
  // For now, only handle stores of immediate values.
  // Also, reject stores to stack slots.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io:
      // Base address must be a register. (Implement FI later.)
      return MI->getOperand(0).isReg();
    default:
      return false;
  }
}


// Check if the machine memory operand MMO is aliased with any of the
// stores in the store group Stores.
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
      const MachineMemOperand &MMO) {
  if (!MMO.getValue())
    return true;

  MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());

  for (auto SI : Stores) {
    const MachineMemOperand &SMO = getStoreTarget(SI);
    if (!SMO.getValue())
      return true;

    MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
    if (AA->alias(L, SL))
      return true;
  }

  return false;
}


// Check if the machine instruction MI accesses any storage aliased with
// any store in the group Stores.
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
      const MachineInstr *MI) {
  for (auto &I : MI->memoperands())
    if (instrAliased(Stores, *I))
      return true;
  return false;
}


// Inspect a machine basic block, and generate store groups out of stores
// encountered in the block.
//
// A store group is a group of stores that use the same base register,
// and which can be reordered within that group without altering the
// semantics of the program.  A single store group could be widened as
// a whole, if there existed a single store instruction with the same
// semantics as the entire group.  In many cases, a single store group
// may need more than one wide store.
void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
      InstrGroupList &StoreGroups) {
  InstrGroup AllInsns;

  // Copy all instruction pointers from the basic block to a temporary
  // list.  This will allow operating on the list, and modifying its
  // elements without affecting the basic block.
  for (auto &I : MBB)
    AllInsns.push_back(&I);

  // Traverse all instructions in the AllInsns list, and if we encounter
  // a store, then try to create a store group starting at that instruction
  // i.e. a sequence of independent stores that can be widened.
  for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
    MachineInstr *MI = *I;
    // Skip null pointers (processed instructions).
    if (!MI || !handledStoreType(MI))
      continue;

    // Found a store.  Try to create a store group.
    InstrGroup G;
    createStoreGroup(MI, I+1, E, G);
    if (G.size() > 1)
      StoreGroups.push_back(G);
  }
}


// Create a single store group.  The stores need to be independent between
// themselves, and also there cannot be other instructions between them
// that could read or modify storage being stored into.
void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
      InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
  assert(handledStoreType(BaseStore) && "Unexpected instruction");
  unsigned BaseReg = getBaseAddressRegister(BaseStore);
  InstrGroup Other;

  Group.push_back(BaseStore);

  for (auto I = Begin; I != End; ++I) {
    MachineInstr *MI = *I;
    if (!MI)
      continue;

    if (handledStoreType(MI)) {
      // If this store instruction is aliased with anything already in the
      // group, terminate the group now.
      if (instrAliased(Group, getStoreTarget(MI)))
        return;
      // If this store is aliased to any of the memory instructions we have
      // seen so far (that are not a part of this group), terminate the group.
      if (instrAliased(Other, getStoreTarget(MI)))
        return;

      unsigned BR = getBaseAddressRegister(MI);
      if (BR == BaseReg) {
        Group.push_back(MI);
        *I = 0;
        continue;
      }
    }

    // Assume calls are aliased to everything.
    if (MI->isCall() || MI->hasUnmodeledSideEffects())
      return;

    if (MI->mayLoad() || MI->mayStore()) {
      if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
        return;
      Other.push_back(MI);
    }
  } // for
}


// Check if store instructions S1 and S2 are adjacent.  More precisely,
// S2 has to access memory immediately following that accessed by S1.
bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
      const MachineInstr *S2) {
  if (!handledStoreType(S1) || !handledStoreType(S2))
    return false;

  const MachineMemOperand &S1MO = getStoreTarget(S1);

  // Currently only handling immediate stores.
  int Off1 = S1->getOperand(1).getImm();
  int Off2 = S2->getOperand(1).getImm();

  return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
                     : int(Off1+S1MO.getSize()) == Off2;
}


/// Given a sequence of adjacent stores, and a maximum size of a single wide
/// store, pick a group of stores that  can be replaced by a single store
/// of size not exceeding MaxSize.  The selected sequence will be recorded
/// in OG ("old group" of instructions).
/// OG should be empty on entry, and should be left empty if the function
/// fails.
bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
      InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
      unsigned MaxSize) {
  assert(Begin != End && "No instructions to analyze");
  assert(OG.empty() && "Old group not empty on entry");

  if (std::distance(Begin, End) <= 1)
    return false;

  MachineInstr *FirstMI = *Begin;
  assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
  const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
  unsigned Alignment = FirstMMO.getAlignment();
  unsigned SizeAccum = FirstMMO.getSize();
  unsigned FirstOffset = getStoreOffset(FirstMI);

  // The initial value of SizeAccum should always be a power of 2.
  assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");

  // If the size of the first store equals to or exceeds the limit, do nothing.
  if (SizeAccum >= MaxSize)
    return false;

  // If the size of the first store is greater than or equal to the address
  // stored to, then the store cannot be made any wider.
  if (SizeAccum >= Alignment)
    return false;

  // The offset of a store will put restrictions on how wide the store can be.
  // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
  // If the first store already exhausts the offset limits, quit.  Test this
  // by checking if the next wider size would exceed the limit.
  if ((2*SizeAccum-1) & FirstOffset)
    return false;

  OG.push_back(FirstMI);
  MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
  InstrGroup::iterator I = Begin+1;

  // Pow2Num will be the largest number of elements in OG such that the sum
  // of sizes of stores 0...Pow2Num-1 will be a power of 2.
  unsigned Pow2Num = 1;
  unsigned Pow2Size = SizeAccum;

  // Be greedy: keep accumulating stores as long as they are to adjacent
  // memory locations, and as long as the total number of bytes stored
  // does not exceed the limit (MaxSize).
  // Keep track of when the total size covered is a power of 2, since
  // this is a size a single store can cover.
  while (I != End) {
    S2 = *I;
    // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
    // any other store to fill the "hole".
    if (!storesAreAdjacent(S1, S2))
      break;

    unsigned S2Size = getStoreTarget(S2).getSize();
    if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
      break;

    OG.push_back(S2);
    SizeAccum += S2Size;
    if (isPowerOf2_32(SizeAccum)) {
      Pow2Num = OG.size();
      Pow2Size = SizeAccum;
    }
    if ((2*Pow2Size-1) & FirstOffset)
      break;

    S1 = S2;
    ++I;
  }

  // The stores don't add up to anything that can be widened.  Clean up.
  if (Pow2Num <= 1) {
    OG.clear();
    return false;
  }

  // Only leave the stored being widened.
  OG.resize(Pow2Num);
  TotalSize = Pow2Size;
  return true;
}


/// Given an "old group" OG of stores, create a "new group" NG of instructions
/// to replace them.  Ideally, NG would only have a single instruction in it,
/// but that may only be possible for store-immediate.
bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
      unsigned TotalSize) {
  // XXX Current limitations:
  // - only expect stores of immediate values in OG,
  // - only handle a TotalSize of up to 4.

  if (TotalSize > 4)
    return false;

  unsigned Acc = 0;  // Value accumulator.
  unsigned Shift = 0;

  for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
    MachineInstr *MI = *I;
    const MachineMemOperand &MMO = getStoreTarget(MI);
    MachineOperand &SO = MI->getOperand(2);  // Source.
    assert(SO.isImm() && "Expecting an immediate operand");

    unsigned NBits = MMO.getSize()*8;
    unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
    unsigned Val = (SO.getImm() & Mask) << Shift;
    Acc |= Val;
    Shift += NBits;
  }


  MachineInstr *FirstSt = OG.front();
  DebugLoc DL = OG.back()->getDebugLoc();
  const MachineMemOperand &OldM = getStoreTarget(FirstSt);
  MachineMemOperand *NewM =
    MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
                             TotalSize, OldM.getAlignment(),
                             OldM.getAAInfo());

  if (Acc < 0x10000) {
    // Create mem[hw] = #Acc
    unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
                    (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
    assert(WOpc && "Unexpected size");

    int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
    const MCInstrDesc &StD = TII->get(WOpc);
    MachineOperand &MR = FirstSt->getOperand(0);
    int64_t Off = FirstSt->getOperand(1).getImm();
    MachineInstr *StI = BuildMI(*MF, DL, StD)
                          .addReg(MR.getReg(), getKillRegState(MR.isKill()))
                          .addImm(Off)
                          .addImm(Val);
    StI->addMemOperand(*MF, NewM);
    NG.push_back(StI);
  } else {
    // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
    const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
    const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
    unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
    MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
                           .addImm(int(Acc));
    NG.push_back(TfrI);

    unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
                    (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
    assert(WOpc && "Unexpected size");

    const MCInstrDesc &StD = TII->get(WOpc);
    MachineOperand &MR = FirstSt->getOperand(0);
    int64_t Off = FirstSt->getOperand(1).getImm();
    MachineInstr *StI = BuildMI(*MF, DL, StD)
                          .addReg(MR.getReg(), getKillRegState(MR.isKill()))
                          .addImm(Off)
                          .addReg(VReg, RegState::Kill);
    StI->addMemOperand(*MF, NewM);
    NG.push_back(StI);
  }

  return true;
}


// Replace instructions from the old group OG with instructions from the
// new group NG.  Conceptually, remove all instructions in OG, and then
// insert all instructions in NG, starting at where the first instruction
// from OG was (in the order in which they appeared in the basic block).
// (The ordering in OG does not have to match the order in the basic block.)
bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
  DEBUG({
    dbgs() << "Replacing:\n";
    for (auto I : OG)
      dbgs() << "  " << *I;
    dbgs() << "with\n";
    for (auto I : NG)
      dbgs() << "  " << *I;
  });

  MachineBasicBlock *MBB = OG.back()->getParent();
  MachineBasicBlock::iterator InsertAt = MBB->end();

  // Need to establish the insertion point.  The best one is right before
  // the first store in the OG, but in the order in which the stores occur
  // in the program list.  Since the ordering in OG does not correspond
  // to the order in the program list, we need to do some work to find
  // the insertion point.

  // Create a set of all instructions in OG (for quick lookup).
  SmallPtrSet<MachineInstr*, 4> InstrSet;
  for (auto I : OG)
    InstrSet.insert(I);

  // Traverse the block, until we hit an instruction from OG.
  for (auto &I : *MBB) {
    if (InstrSet.count(&I)) {
      InsertAt = I;
      break;
    }
  }

  assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");

  bool AtBBStart = false;

  // InsertAt points at the first instruction that will be removed.  We need
  // to move it out of the way, so it remains valid after removing all the
  // old stores, and so we are able to recover it back to the proper insertion
  // position.
  if (InsertAt != MBB->begin())
    --InsertAt;
  else
    AtBBStart = true;

  for (auto I : OG)
    I->eraseFromParent();

  if (!AtBBStart)
    ++InsertAt;
  else
    InsertAt = MBB->begin();

  for (auto I : NG)
    MBB->insert(InsertAt, I);

  return true;
}


// Break up the group into smaller groups, each of which can be replaced by
// a single wide store.  Widen each such smaller group and replace the old
// instructions with the widened ones.
bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
  bool Changed = false;
  InstrGroup::iterator I = Group.begin(), E = Group.end();
  InstrGroup OG, NG;   // Old and new groups.
  unsigned CollectedSize;

  while (I != E) {
    OG.clear();
    NG.clear();

    bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
                createWideStores(OG, NG, CollectedSize)              &&
                replaceStores(OG, NG);
    if (!Succ)
      continue;

    assert(OG.size() > 1 && "Created invalid group");
    assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
    I += OG.size()-1;

    Changed = true;
  }

  return Changed;
}


// Process a single basic block: create the store groups, and replace them
// with the widened stores, if possible.  Processing of each basic block
// is independent from processing of any other basic block.  This transfor-
// mation could be stopped after having processed any basic block without
// any ill effects (other than not having performed widening in the unpro-
// cessed blocks).  Also, the basic blocks can be processed in any order.
bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
  InstrGroupList SGs;
  bool Changed = false;

  createStoreGroups(MBB, SGs);

  auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
    return getStoreOffset(A) < getStoreOffset(B);
  };
  for (auto &G : SGs) {
    assert(G.size() > 1 && "Store group with fewer than 2 elements");
    std::sort(G.begin(), G.end(), Less);

    Changed |= processStoreGroup(G);
  }

  return Changed;
}


bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
  if (skipFunction(*MFn.getFunction()))
    return false;

  MF = &MFn;
  auto &ST = MFn.getSubtarget<HexagonSubtarget>();
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  MRI = &MFn.getRegInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  bool Changed = false;

  for (auto &B : MFn)
    Changed |= processBasicBlock(B);

  return Changed;
}


FunctionPass *llvm::createHexagonStoreWidening() {
  return new HexagonStoreWidening();
}