aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
blob: cd474921d4bc8d4b60a75401ce2626e07169a647 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a simple VLIW packetizer using DFA. The packetizer works on
// machine basic blocks. For each instruction I in BB, the packetizer consults
// the DFA to see if machine resources are available to execute I. If so, the
// packetizer checks if I depends on any instruction J in the current packet.
// If no dependency is found, I is added to current packet and machine resource
// is marked as taken. If any dependency is found, a target API call is made to
// prune the dependence.
//
//===----------------------------------------------------------------------===//
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonVLIWPacketizer.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "packets"

static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
  cl::ZeroOrMore, cl::init(false),
  cl::desc("Disable Hexagon packetizer pass"));

static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
  cl::ZeroOrMore, cl::Hidden, cl::init(true),
  cl::desc("Allow non-solo packetization of volatile memory references"));

static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));

static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
  cl::init(false), cl::Hidden, cl::ZeroOrMore,
  cl::desc("Disable vector double new-value-stores"));

extern cl::opt<bool> ScheduleInlineAsm;

namespace llvm {
  FunctionPass *createHexagonPacketizer();
  void initializeHexagonPacketizerPass(PassRegistry&);
}


namespace {
  class HexagonPacketizer : public MachineFunctionPass {
  public:
    static char ID;
    HexagonPacketizer() : MachineFunctionPass(ID) {
      initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    StringRef getPassName() const override { return "Hexagon Packetizer"; }
    bool runOnMachineFunction(MachineFunction &Fn) override;
    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    const HexagonInstrInfo *HII;
    const HexagonRegisterInfo *HRI;
  };

  char HexagonPacketizer::ID = 0;
}

INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
                    false, false)

HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
      MachineLoopInfo &MLI, AliasAnalysis *AA,
      const MachineBranchProbabilityInfo *MBPI)
    : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI) {
  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();

  addMutation(make_unique<HexagonSubtarget::HexagonDAGMutation>());
}

// Check if FirstI modifies a register that SecondI reads.
static bool hasWriteToReadDep(const MachineInstr &FirstI,
                              const MachineInstr &SecondI,
                              const TargetRegisterInfo *TRI) {
  for (auto &MO : FirstI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    unsigned R = MO.getReg();
    if (SecondI.readsRegister(R, TRI))
      return true;
  }
  return false;
}


static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
      MachineBasicBlock::iterator BundleIt, bool Before) {
  MachineBasicBlock::instr_iterator InsertPt;
  if (Before)
    InsertPt = BundleIt.getInstrIterator();
  else
    InsertPt = std::next(BundleIt).getInstrIterator();

  MachineBasicBlock &B = *MI.getParent();
  // The instruction should at least be bundled with the preceding instruction
  // (there will always be one, i.e. BUNDLE, if nothing else).
  assert(MI.isBundledWithPred());
  if (MI.isBundledWithSucc()) {
    MI.clearFlag(MachineInstr::BundledSucc);
    MI.clearFlag(MachineInstr::BundledPred);
  } else {
    // If it's not bundled with the successor (i.e. it is the last one
    // in the bundle), then we can simply unbundle it from the predecessor,
    // which will take care of updating the predecessor's flag.
    MI.unbundleFromPred();
  }
  B.splice(InsertPt, &B, MI.getIterator());

  // Get the size of the bundle without asserting.
  MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
  MachineBasicBlock::const_instr_iterator E = B.instr_end();
  unsigned Size = 0;
  for (++I; I != E && I->isBundledWithPred(); ++I)
    ++Size;

  // If there are still two or more instructions, then there is nothing
  // else to be done.
  if (Size > 1)
    return BundleIt;

  // Otherwise, extract the single instruction out and delete the bundle.
  MachineBasicBlock::iterator NextIt = std::next(BundleIt);
  MachineInstr &SingleI = *BundleIt->getNextNode();
  SingleI.unbundleFromPred();
  assert(!SingleI.isBundledWithSucc());
  BundleIt->eraseFromParent();
  return NextIt;
}


bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
  if (DisablePacketizer || skipFunction(*MF.getFunction()))
    return false;

  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  auto &MLI = getAnalysis<MachineLoopInfo>();
  auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();

  if (EnableGenAllInsnClass)
    HII->genAllInsnTimingClasses(MF);

  // Instantiate the packetizer.
  HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI);

  // DFA state table should not be empty.
  assert(Packetizer.getResourceTracker() && "Empty DFA table!");

  //
  // Loop over all basic blocks and remove KILL pseudo-instructions
  // These instructions confuse the dependence analysis. Consider:
  // D0 = ...   (Insn 0)
  // R0 = KILL R0, D0 (Insn 1)
  // R0 = ... (Insn 2)
  // Here, Insn 1 will result in the dependence graph not emitting an output
  // dependence between Insn 0 and Insn 2. This can lead to incorrect
  // packetization
  //
  for (auto &MB : MF) {
    auto End = MB.end();
    auto MI = MB.begin();
    while (MI != End) {
      auto NextI = std::next(MI);
      if (MI->isKill()) {
        MB.erase(MI);
        End = MB.end();
      }
      MI = NextI;
    }
  }

  // Loop over all of the basic blocks.
  for (auto &MB : MF) {
    auto Begin = MB.begin(), End = MB.end();
    while (Begin != End) {
      // Find the first non-boundary starting from the end of the last
      // scheduling region.
      MachineBasicBlock::iterator RB = Begin;
      while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
        ++RB;
      // Find the first boundary starting from the beginning of the new
      // region.
      MachineBasicBlock::iterator RE = RB;
      while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
        ++RE;
      // Add the scheduling boundary if it's not block end.
      if (RE != End)
        ++RE;
      // If RB == End, then RE == End.
      if (RB != End)
        Packetizer.PacketizeMIs(&MB, RB, RE);

      Begin = RE;
    }
  }

  Packetizer.unpacketizeSoloInstrs(MF);
  return true;
}


// Reserve resources for a constant extender. Trigger an assertion if the
// reservation fails.
void HexagonPacketizerList::reserveResourcesForConstExt() {
  if (!tryAllocateResourcesForConstExt(true))
    llvm_unreachable("Resources not available");
}

bool HexagonPacketizerList::canReserveResourcesForConstExt() {
  return tryAllocateResourcesForConstExt(false);
}

// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
// return true, otherwise, return false.
bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
  auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
  bool Avail = ResourceTracker->canReserveResources(*ExtMI);
  if (Reserve && Avail)
    ResourceTracker->reserveResources(*ExtMI);
  MF.DeleteMachineInstr(ExtMI);
  return Avail;
}


bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
      SDep::Kind DepType, unsigned DepReg) {
  // Check for LR dependence.
  if (DepReg == HRI->getRARegister())
    return true;

  if (HII->isDeallocRet(MI))
    if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
      return true;

  // Check if this is a predicate dependence.
  const TargetRegisterClass* RC = HRI->getMinimalPhysRegClass(DepReg);
  if (RC == &Hexagon::PredRegsRegClass)
    return true;

  // Assumes that the first operand of the CALLr is the function address.
  if (HII->isIndirectCall(MI) && (DepType == SDep::Data)) {
    const MachineOperand MO = MI.getOperand(0);
    if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg))
      return true;
  }

  if (HII->isJumpR(MI)) {
    const MachineOperand &MO = HII->isPredicated(MI) ? MI.getOperand(1)
                                                     : MI.getOperand(0);
    assert(MO.isReg() && MO.isUse());
    if (MO.getReg() == DepReg)
      return true;
  }
  return false;
}

static bool isRegDependence(const SDep::Kind DepType) {
  return DepType == SDep::Data || DepType == SDep::Anti ||
         DepType == SDep::Output;
}

static bool isDirectJump(const MachineInstr &MI) {
  return MI.getOpcode() == Hexagon::J2_jump;
}

static bool isSchedBarrier(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case Hexagon::Y2_barrier:
    return true;
  }
  return false;
}

static bool isControlFlow(const MachineInstr &MI) {
  return MI.getDesc().isTerminator() || MI.getDesc().isCall();
}


/// Returns true if the instruction modifies a callee-saved register.
static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
                                     const TargetRegisterInfo *TRI) {
  const MachineFunction &MF = *MI.getParent()->getParent();
  for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
    if (MI.modifiesRegister(*CSR, TRI))
      return true;
  return false;
}

// Returns true if an instruction can be promoted to .new predicate or
// new-value store.
bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
      const TargetRegisterClass *NewRC) {
  // Vector stores can be predicated, and can be new-value stores, but
  // they cannot be predicated on a .new predicate value.
  if (NewRC == &Hexagon::PredRegsRegClass)
    if (HII->isHVXVec(MI) && MI.mayStore())
      return false;
  return HII->isCondInst(MI) || HII->isJumpR(MI) || MI.isReturn() ||
         HII->mayBeNewStore(MI);
}

// Promote an instructiont to its .cur form.
// At this time, we have already made a call to canPromoteToDotCur and made
// sure that it can *indeed* be promoted.
bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  assert(DepType == SDep::Data);
  int CurOpcode = HII->getDotCurOp(MI);
  MI.setDesc(HII->get(CurOpcode));
  return true;
}

void HexagonPacketizerList::cleanUpDotCur() {
  MachineInstr *MI = nullptr;
  for (auto BI : CurrentPacketMIs) {
    DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
    if (HII->isDotCurInst(*BI)) {
      MI = BI;
      continue;
    }
    if (MI) {
      for (auto &MO : BI->operands())
        if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
          return;
    }
  }
  if (!MI)
    return;
  // We did not find a use of the CUR, so de-cur it.
  MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
  DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
}

// Check to see if an instruction can be dot cur.
bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass *RC) {
  if (!HII->isHVXVec(MI))
    return false;
  if (!HII->isHVXVec(*MII))
    return false;

  // Already a dot new instruction.
  if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
    return false;

  if (!HII->mayBeCurLoad(MI))
    return false;

  // The "cur value" cannot come from inline asm.
  if (PacketSU->getInstr()->isInlineAsm())
    return false;

  // Make sure candidate instruction uses cur.
  DEBUG(dbgs() << "Can we DOT Cur Vector MI\n";
        MI.dump();
        dbgs() << "in packet\n";);
  MachineInstr &MJ = *MII;
  DEBUG({
    dbgs() << "Checking CUR against ";
    MJ.dump();
  });
  unsigned DestReg = MI.getOperand(0).getReg();
  bool FoundMatch = false;
  for (auto &MO : MJ.operands())
    if (MO.isReg() && MO.getReg() == DestReg)
      FoundMatch = true;
  if (!FoundMatch)
    return false;

  // Check for existing uses of a vector register within the packet which
  // would be affected by converting a vector load into .cur formt.
  for (auto BI : CurrentPacketMIs) {
    DEBUG(dbgs() << "packet has "; BI->dump(););
    if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
      return false;
  }

  DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
  // We can convert the opcode into a .cur.
  return true;
}

// Promote an instruction to its .new form. At this time, we have already
// made a call to canPromoteToDotNew and made sure that it can *indeed* be
// promoted.
bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  assert (DepType == SDep::Data);
  int NewOpcode;
  if (RC == &Hexagon::PredRegsRegClass)
    NewOpcode = HII->getDotNewPredOp(MI, MBPI);
  else
    NewOpcode = HII->getDotNewOp(MI);
  MI.setDesc(HII->get(NewOpcode));
  return true;
}

bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
  int NewOpcode = HII->getDotOldOp(MI);
  MI.setDesc(HII->get(NewOpcode));
  return true;
}

bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerb_io:
      break;
    default:
      llvm_unreachable("Unexpected instruction");
  }
  unsigned FrameSize = MF.getFrameInfo().getStackSize();
  MachineOperand &Off = MI.getOperand(1);
  int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
  if (HII->isValidOffset(Opc, NewOff)) {
    Off.setImm(NewOff);
    return true;
  }
  return false;
}

void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerb_io:
      break;
    default:
      llvm_unreachable("Unexpected instruction");
  }
  unsigned FrameSize = MF.getFrameInfo().getStackSize();
  MachineOperand &Off = MI.getOperand(1);
  Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
}

enum PredicateKind {
  PK_False,
  PK_True,
  PK_Unknown
};

/// Returns true if an instruction is predicated on p0 and false if it's
/// predicated on !p0.
static PredicateKind getPredicateSense(const MachineInstr &MI,
                                       const HexagonInstrInfo *HII) {
  if (!HII->isPredicated(MI))
    return PK_Unknown;
  if (HII->isPredicatedTrue(MI))
    return PK_True;
  return PK_False;
}

static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
      const HexagonInstrInfo *HII) {
  assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
#ifndef NDEBUG
  // Post Increment means duplicates. Use dense map to find duplicates in the
  // list. Caution: Densemap initializes with the minimum of 64 buckets,
  // whereas there are at most 5 operands in the post increment.
  DenseSet<unsigned> DefRegsSet;
  for (auto &MO : MI.operands())
    if (MO.isReg() && MO.isDef())
      DefRegsSet.insert(MO.getReg());

  for (auto &MO : MI.operands())
    if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
      return MO;
#else
  if (MI.mayLoad()) {
    const MachineOperand &Op1 = MI.getOperand(1);
    // The 2nd operand is always the post increment operand in load.
    assert(Op1.isReg() && "Post increment operand has be to a register.");
    return Op1;
  }
  if (MI.getDesc().mayStore()) {
    const MachineOperand &Op0 = MI.getOperand(0);
    // The 1st operand is always the post increment operand in store.
    assert(Op0.isReg() && "Post increment operand has be to a register.");
    return Op0;
  }
#endif
  // we should never come here.
  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
}

// Get the value being stored.
static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
  // value being stored is always the last operand.
  return MI.getOperand(MI.getNumOperands()-1);
}

static bool isLoadAbsSet(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::L4_loadrd_ap:
    case Hexagon::L4_loadrb_ap:
    case Hexagon::L4_loadrh_ap:
    case Hexagon::L4_loadrub_ap:
    case Hexagon::L4_loadruh_ap:
    case Hexagon::L4_loadri_ap:
      return true;
  }
  return false;
}

static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
  assert(isLoadAbsSet(MI));
  return MI.getOperand(1);
}


// Can be new value store?
// Following restrictions are to be respected in convert a store into
// a new value store.
// 1. If an instruction uses auto-increment, its address register cannot
//    be a new-value register. Arch Spec 5.4.2.1
// 2. If an instruction uses absolute-set addressing mode, its address
//    register cannot be a new-value register. Arch Spec 5.4.2.1.
// 3. If an instruction produces a 64-bit result, its registers cannot be used
//    as new-value registers. Arch Spec 5.4.2.2.
// 4. If the instruction that sets the new-value register is conditional, then
//    the instruction that uses the new-value register must also be conditional,
//    and both must always have their predicates evaluate identically.
//    Arch Spec 5.4.2.3.
// 5. There is an implied restriction that a packet cannot have another store,
//    if there is a new value store in the packet. Corollary: if there is
//    already a store in a packet, there can not be a new value store.
//    Arch Spec: 3.4.4.2
bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
      const MachineInstr &PacketMI, unsigned DepReg) {
  // Make sure we are looking at the store, that can be promoted.
  if (!HII->mayBeNewStore(MI))
    return false;

  // Make sure there is dependency and can be new value'd.
  const MachineOperand &Val = getStoreValueOperand(MI);
  if (Val.isReg() && Val.getReg() != DepReg)
    return false;

  const MCInstrDesc& MCID = PacketMI.getDesc();

  // First operand is always the result.
  const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
  // Double regs can not feed into new value store: PRM section: 5.4.2.2.
  if (PacketRC == &Hexagon::DoubleRegsRegClass)
    return false;

  // New-value stores are of class NV (slot 0), dual stores require class ST
  // in slot 0 (PRM 5.5).
  for (auto I : CurrentPacketMIs) {
    SUnit *PacketSU = MIToSUnit.find(I)->second;
    if (PacketSU->getInstr()->mayStore())
      return false;
  }

  // Make sure it's NOT the post increment register that we are going to
  // new value.
  if (HII->isPostIncrement(MI) &&
      getPostIncrementOperand(MI, HII).getReg() == DepReg) {
    return false;
  }

  if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
      getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
    // If source is post_inc, or absolute-set addressing, it can not feed
    // into new value store
    //   r3 = memw(r2++#4)
    //   memw(r30 + #-1404) = r2.new -> can not be new value store
    // arch spec section: 5.4.2.1.
    return false;
  }

  if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
    return false;

  // If the source that feeds the store is predicated, new value store must
  // also be predicated.
  if (HII->isPredicated(PacketMI)) {
    if (!HII->isPredicated(MI))
      return false;

    // Check to make sure that they both will have their predicates
    // evaluate identically.
    unsigned predRegNumSrc = 0;
    unsigned predRegNumDst = 0;
    const TargetRegisterClass* predRegClass = nullptr;

    // Get predicate register used in the source instruction.
    for (auto &MO : PacketMI.operands()) {
      if (!MO.isReg())
        continue;
      predRegNumSrc = MO.getReg();
      predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
      if (predRegClass == &Hexagon::PredRegsRegClass)
        break;
    }
    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
        "predicate register not found in a predicated PacketMI instruction");

    // Get predicate register used in new-value store instruction.
    for (auto &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      predRegNumDst = MO.getReg();
      predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
      if (predRegClass == &Hexagon::PredRegsRegClass)
        break;
    }
    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
           "predicate register not found in a predicated MI instruction");

    // New-value register producer and user (store) need to satisfy these
    // constraints:
    // 1) Both instructions should be predicated on the same register.
    // 2) If producer of the new-value register is .new predicated then store
    // should also be .new predicated and if producer is not .new predicated
    // then store should not be .new predicated.
    // 3) Both new-value register producer and user should have same predicate
    // sense, i.e, either both should be negated or both should be non-negated.
    if (predRegNumDst != predRegNumSrc ||
        HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
        getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
      return false;
  }

  // Make sure that other than the new-value register no other store instruction
  // register has been modified in the same packet. Predicate registers can be
  // modified by they should not be modified between the producer and the store
  // instruction as it will make them both conditional on different values.
  // We already know this to be true for all the instructions before and
  // including PacketMI. Howerver, we need to perform the check for the
  // remaining instructions in the packet.

  unsigned StartCheck = 0;

  for (auto I : CurrentPacketMIs) {
    SUnit *TempSU = MIToSUnit.find(I)->second;
    MachineInstr &TempMI = *TempSU->getInstr();

    // Following condition is true for all the instructions until PacketMI is
    // reached (StartCheck is set to 0 before the for loop).
    // StartCheck flag is 1 for all the instructions after PacketMI.
    if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
      continue;                              // encountering PacketMI.

    StartCheck = 1;
    if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
      continue;

    for (auto &MO : MI.operands())
      if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
        return false;
  }

  // Make sure that for non-POST_INC stores:
  // 1. The only use of reg is DepReg and no other registers.
  //    This handles V4 base+index registers.
  //    The following store can not be dot new.
  //    Eg.   r0 = add(r0, #3)
  //          memw(r1+r0<<#2) = r0
  if (!HII->isPostIncrement(MI)) {
    for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
      const MachineOperand &MO = MI.getOperand(opNum);
      if (MO.isReg() && MO.getReg() == DepReg)
        return false;
    }
  }

  // If data definition is because of implicit definition of the register,
  // do not newify the store. Eg.
  // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
  // S2_storerh_io %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
  for (auto &MO : PacketMI.operands()) {
    if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
      return false;
    if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
      continue;
    unsigned R = MO.getReg();
    if (R == DepReg || HRI->isSuperRegister(DepReg, R))
      return false;
  }

  // Handle imp-use of super reg case. There is a target independent side
  // change that should prevent this situation but I am handling it for
  // just-in-case. For example, we cannot newify R2 in the following case:
  // %R3<def> = A2_tfrsi 0;
  // S2_storeri_io %R0<kill>, 0, %R2<kill>, %D1<imp-use,kill>;
  for (auto &MO : MI.operands()) {
    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
      return false;
  }

  // Can be dot new store.
  return true;
}

// Can this MI to promoted to either new value store or new value jump.
bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg,
      MachineBasicBlock::iterator &MII) {
  if (!HII->mayBeNewStore(MI))
    return false;

  // Check to see the store can be new value'ed.
  MachineInstr &PacketMI = *PacketSU->getInstr();
  if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
    return true;

  // Check to see the compare/jump can be new value'ed.
  // This is done as a pass on its own. Don't need to check it here.
  return false;
}

static bool isImplicitDependency(const MachineInstr &I, unsigned DepReg) {
  for (auto &MO : I.operands()) {
    if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
      return true;
    if (MO.isReg() && MO.isDef() && (MO.getReg() == DepReg) && MO.isImplicit())
      return true;
  }
  return false;
}

// Check to see if an instruction can be dot new
// There are three kinds.
// 1. dot new on predicate - V2/V3/V4
// 2. dot new on stores NV/ST - V4
// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  // Already a dot new instruction.
  if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
    return false;

  if (!isNewifiable(MI, RC))
    return false;

  const MachineInstr &PI = *PacketSU->getInstr();

  // The "new value" cannot come from inline asm.
  if (PI.isInlineAsm())
    return false;

  // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
  // sense.
  if (PI.isImplicitDef())
    return false;

  // If dependency is trough an implicitly defined register, we should not
  // newify the use.
  if (isImplicitDependency(PI, DepReg))
    return false;

  const MCInstrDesc& MCID = PI.getDesc();
  const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
  if (DisableVecDblNVStores && VecRC == &Hexagon::VecDblRegsRegClass)
    return false;

  // predicate .new
  if (RC == &Hexagon::PredRegsRegClass)
    if (HII->isCondInst(MI) || HII->isJumpR(MI) || MI.isReturn())
      return HII->predCanBeUsedAsDotNew(PI, DepReg);

  if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
    return false;

  // Create a dot new machine instruction to see if resources can be
  // allocated. If not, bail out now.
  int NewOpcode = HII->getDotNewOp(MI);
  const MCInstrDesc &D = HII->get(NewOpcode);
  MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
  bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
  MF.DeleteMachineInstr(NewMI);
  if (!ResourcesAvailable)
    return false;

  // New Value Store only. New Value Jump generated as a separate pass.
  if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
    return false;

  return true;
}

// Go through the packet instructions and search for an anti dependency between
// them and DepReg from MI. Consider this case:
// Trying to add
// a) %R1<def> = TFRI_cdNotPt %P3, 2
// to this packet:
// {
//   b) %P0<def> = C2_or %P3<kill>, %P0<kill>
//   c) %P3<def> = C2_tfrrp %R23
//   d) %R1<def> = C2_cmovenewit %P3, 4
//  }
// The P3 from a) and d) will be complements after
// a)'s P3 is converted to .new form
// Anti-dep between c) and b) is irrelevant for this case
bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
                                                        unsigned DepReg) {
  SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;

  for (auto I : CurrentPacketMIs) {
    // We only care for dependencies to predicated instructions
    if (!HII->isPredicated(*I))
      continue;

    // Scheduling Unit for current insn in the packet
    SUnit *PacketSU = MIToSUnit.find(I)->second;

    // Look at dependencies between current members of the packet and
    // predicate defining instruction MI. Make sure that dependency is
    // on the exact register we care about.
    if (PacketSU->isSucc(PacketSUDep)) {
      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
        auto &Dep = PacketSU->Succs[i];
        if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
            Dep.getReg() == DepReg)
          return true;
      }
    }
  }

  return false;
}


/// Gets the predicate register of a predicated instruction.
static unsigned getPredicatedRegister(MachineInstr &MI,
                                      const HexagonInstrInfo *QII) {
  /// We use the following rule: The first predicate register that is a use is
  /// the predicate register of a predicated instruction.
  assert(QII->isPredicated(MI) && "Must be predicated instruction");

  for (auto &Op : MI.operands()) {
    if (Op.isReg() && Op.getReg() && Op.isUse() &&
        Hexagon::PredRegsRegClass.contains(Op.getReg()))
      return Op.getReg();
  }

  llvm_unreachable("Unknown instruction operand layout");
  return 0;
}

// Given two predicated instructions, this function detects whether
// the predicates are complements.
bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
                                                     MachineInstr &MI2) {
  // If we don't know the predicate sense of the instructions bail out early, we
  // need it later.
  if (getPredicateSense(MI1, HII) == PK_Unknown ||
      getPredicateSense(MI2, HII) == PK_Unknown)
    return false;

  // Scheduling unit for candidate.
  SUnit *SU = MIToSUnit[&MI1];

  // One corner case deals with the following scenario:
  // Trying to add
  // a) %R24<def> = A2_tfrt %P0, %R25
  // to this packet:
  // {
  //   b) %R25<def> = A2_tfrf %P0, %R24
  //   c) %P0<def> = C2_cmpeqi %R26, 1
  // }
  //
  // On general check a) and b) are complements, but presence of c) will
  // convert a) to .new form, and then it is not a complement.
  // We attempt to detect it by analyzing existing dependencies in the packet.

  // Analyze relationships between all existing members of the packet.
  // Look for Anti dependecy on the same predicate reg as used in the
  // candidate.
  for (auto I : CurrentPacketMIs) {
    // Scheduling Unit for current insn in the packet.
    SUnit *PacketSU = MIToSUnit.find(I)->second;

    // If this instruction in the packet is succeeded by the candidate...
    if (PacketSU->isSucc(SU)) {
      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
        auto Dep = PacketSU->Succs[i];
        // The corner case exist when there is true data dependency between
        // candidate and one of current packet members, this dep is on
        // predicate reg, and there already exist anti dep on the same pred in
        // the packet.
        if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
            Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
          // Here I know that I is predicate setting instruction with true
          // data dep to candidate on the register we care about - c) in the
          // above example. Now I need to see if there is an anti dependency
          // from c) to any other instruction in the same packet on the pred
          // reg of interest.
          if (restrictingDepExistInPacket(*I, Dep.getReg()))
            return false;
        }
      }
    }
  }

  // If the above case does not apply, check regular complement condition.
  // Check that the predicate register is the same and that the predicate
  // sense is different We also need to differentiate .old vs. .new: !p0
  // is not complementary to p0.new.
  unsigned PReg1 = getPredicatedRegister(MI1, HII);
  unsigned PReg2 = getPredicatedRegister(MI2, HII);
  return PReg1 == PReg2 &&
         Hexagon::PredRegsRegClass.contains(PReg1) &&
         Hexagon::PredRegsRegClass.contains(PReg2) &&
         getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
         HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
}

// Initialize packetizer flags.
void HexagonPacketizerList::initPacketizerState() {
  Dependence = false;
  PromotedToDotNew = false;
  GlueToNewValueJump = false;
  GlueAllocframeStore = false;
  FoundSequentialDependence = false;
}

// Ignore bundling of pseudo instructions.
bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
                                                    const MachineBasicBlock *) {
  if (MI.isDebugValue())
    return true;

  if (MI.isCFIInstruction())
    return false;

  // We must print out inline assembly.
  if (MI.isInlineAsm())
    return false;

  if (MI.isImplicitDef())
    return false;

  // We check if MI has any functional units mapped to it. If it doesn't,
  // we ignore the instruction.
  const MCInstrDesc& TID = MI.getDesc();
  auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
  unsigned FuncUnits = IS->getUnits();
  return !FuncUnits;
}

bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
  if (MI.isEHLabel() || MI.isCFIInstruction())
    return true;

  // Consider inline asm to not be a solo instruction by default.
  // Inline asm will be put in a packet temporarily, but then it will be
  // removed, and placed outside of the packet (before or after, depending
  // on dependencies).  This is to reduce the impact of inline asm as a
  // "packet splitting" instruction.
  if (MI.isInlineAsm() && !ScheduleInlineAsm)
    return true;

  // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
  // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
  // They must not be grouped with other instructions in a packet.
  if (isSchedBarrier(MI))
    return true;

  if (HII->isSolo(MI))
    return true;

  if (MI.getOpcode() == Hexagon::A2_nop)
    return true;

  return false;
}


// Quick check if instructions MI and MJ cannot coexist in the same packet.
// Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
// For full test call this function twice:
//   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
// Doing the test only one way saves the amount of code in this function,
// since every test would need to be repeated with the MI and MJ reversed.
static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
      const HexagonInstrInfo &HII) {
  const MachineFunction *MF = MI.getParent()->getParent();
  if (MF->getSubtarget<HexagonSubtarget>().hasV60TOpsOnly() &&
      HII.isHVXMemWithAIndirect(MI, MJ))
    return true;

  // An inline asm cannot be together with a branch, because we may not be
  // able to remove the asm out after packetizing (i.e. if the asm must be
  // moved past the bundle).  Similarly, two asms cannot be together to avoid
  // complications when determining their relative order outside of a bundle.
  if (MI.isInlineAsm())
    return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
           MJ.isCall() || MJ.isTerminator();

  switch (MI.getOpcode()) {
  case (Hexagon::S2_storew_locked):
  case (Hexagon::S4_stored_locked):
  case (Hexagon::L2_loadw_locked):
  case (Hexagon::L4_loadd_locked):
  case (Hexagon::Y4_l2fetch): {
    // These instructions can only be grouped with ALU32 or non-floating-point
    // XTYPE instructions.  Since there is no convenient way of identifying fp
    // XTYPE instructions, only allow grouping with ALU32 for now.
    unsigned TJ = HII.getType(MJ);
    if (TJ != HexagonII::TypeALU32_2op &&
        TJ != HexagonII::TypeALU32_3op &&
        TJ != HexagonII::TypeALU32_ADDI)
      return true;
    break;
  }
  default:
    break;
  }

  // "False" really means that the quick check failed to determine if
  // I and J cannot coexist.
  return false;
}


// Full, symmetric check.
bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
      const MachineInstr &MJ) {
  return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
}

void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
  for (auto &B : MF) {
    MachineBasicBlock::iterator BundleIt;
    MachineBasicBlock::instr_iterator NextI;
    for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
      NextI = std::next(I);
      MachineInstr &MI = *I;
      if (MI.isBundle())
        BundleIt = I;
      if (!MI.isInsideBundle())
        continue;

      // Decide on where to insert the instruction that we are pulling out.
      // Debug instructions always go before the bundle, but the placement of
      // INLINE_ASM depends on potential dependencies.  By default, try to
      // put it before the bundle, but if the asm writes to a register that
      // other instructions in the bundle read, then we need to place it
      // after the bundle (to preserve the bundle semantics).
      bool InsertBeforeBundle;
      if (MI.isInlineAsm())
        InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
      else if (MI.isDebugValue())
        InsertBeforeBundle = true;
      else
        continue;

      BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
    }
  }
}

// Check if a given instruction is of class "system".
static bool isSystemInstr(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::Y2_barrier:
    case Hexagon::Y2_dcfetchbo:
      return true;
  }
  return false;
}

bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
                                              const MachineInstr &J) {
  // The dependence graph may not include edges between dead definitions,
  // so without extra checks, we could end up packetizing two instruction
  // defining the same (dead) register.
  if (I.isCall() || J.isCall())
    return false;
  if (HII->isPredicated(I) || HII->isPredicated(J))
    return false;

  BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
  for (auto &MO : I.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
      continue;
    DeadDefs[MO.getReg()] = true;
  }

  for (auto &MO : J.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
      continue;
    unsigned R = MO.getReg();
    if (R != Hexagon::USR_OVF && DeadDefs[R])
      return true;
  }
  return false;
}

bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
                                                 const MachineInstr &J) {
  // A save callee-save register function call can only be in a packet
  // with instructions that don't write to the callee-save registers.
  if ((HII->isSaveCalleeSavedRegsCall(I) &&
       doesModifyCalleeSavedReg(J, HRI)) ||
      (HII->isSaveCalleeSavedRegsCall(J) &&
       doesModifyCalleeSavedReg(I, HRI)))
    return true;

  // Two control flow instructions cannot go in the same packet.
  if (isControlFlow(I) && isControlFlow(J))
    return true;

  // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
  // contain a speculative indirect jump,
  // a new-value compare jump or a dealloc_return.
  auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
    if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
      return true;
    if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
      return true;
    return false;
  };

  if (HII->isLoopN(I) && isBadForLoopN(J))
    return true;
  if (HII->isLoopN(J) && isBadForLoopN(I))
    return true;

  // dealloc_return cannot appear in the same packet as a conditional or
  // unconditional jump.
  return HII->isDeallocRet(I) &&
         (J.isBranch() || J.isCall() || J.isBarrier());
}

bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
                                                 const MachineInstr &J) {
  // Adding I to a packet that has J.

  // Regmasks are not reflected in the scheduling dependency graph, so
  // we need to check them manually. This code assumes that regmasks only
  // occur on calls, and the problematic case is when we add an instruction
  // defining a register R to a packet that has a call that clobbers R via
  // a regmask. Those cannot be packetized together, because the call will
  // be executed last. That's also a reson why it is ok to add a call
  // clobbering R to a packet that defines R.

  // Look for regmasks in J.
  for (const MachineOperand &OpJ : J.operands()) {
    if (!OpJ.isRegMask())
      continue;
    assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
    for (const MachineOperand &OpI : I.operands()) {
      if (OpI.isReg()) {
        if (OpJ.clobbersPhysReg(OpI.getReg()))
          return true;
      } else if (OpI.isRegMask()) {
        // Both are regmasks. Assume that they intersect.
        return true;
      }
    }
  }
  return false;
}

bool HexagonPacketizerList::hasV4SpecificDependence(const MachineInstr &I,
                                                    const MachineInstr &J) {
  bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
  bool StoreI = I.mayStore(), StoreJ = J.mayStore();
  if ((SysI && StoreJ) || (SysJ && StoreI))
    return true;

  if (StoreI && StoreJ) {
    if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
      return true;
  } else {
    // A memop cannot be in the same packet with another memop or a store.
    // Two stores can be together, but here I and J cannot both be stores.
    bool MopStI = HII->isMemOp(I) || StoreI;
    bool MopStJ = HII->isMemOp(J) || StoreJ;
    if (MopStI && MopStJ)
      return true;
  }

  return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
}

// SUI is the current instruction that is out side of the current packet.
// SUJ is the current instruction inside the current packet against which that
// SUI will be packetized.
bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &I = *SUI->getInstr();
  MachineInstr &J = *SUJ->getInstr();

  // Clear IgnoreDepMIs when Packet starts.
  if (CurrentPacketMIs.size() == 1)
    IgnoreDepMIs.clear();

  MachineBasicBlock::iterator II = I.getIterator();

  // Solo instructions cannot go in the packet.
  assert(!isSoloInstruction(I) && "Unexpected solo instr!");

  if (cannotCoexist(I, J))
    return false;

  Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
  if (Dependence)
    return false;

  // Regmasks are not accounted for in the scheduling graph, so we need
  // to explicitly check for dependencies caused by them. They should only
  // appear on calls, so it's not too pessimistic to reject all regmask
  // dependencies.
  Dependence = hasRegMaskDependence(I, J);
  if (Dependence)
    return false;

  // V4 allows dual stores. It does not allow second store, if the first
  // store is not in SLOT0. New value store, new value jump, dealloc_return
  // and memop always take SLOT0. Arch spec 3.4.4.2.
  Dependence = hasV4SpecificDependence(I, J);
  if (Dependence)
    return false;

  // If an instruction feeds new value jump, glue it.
  MachineBasicBlock::iterator NextMII = I.getIterator();
  ++NextMII;
  if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
    MachineInstr &NextMI = *NextMII;

    bool secondRegMatch = false;
    const MachineOperand &NOp0 = NextMI.getOperand(0);
    const MachineOperand &NOp1 = NextMI.getOperand(1);

    if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
      secondRegMatch = true;

    for (auto T : CurrentPacketMIs) {
      SUnit *PacketSU = MIToSUnit.find(T)->second;
      MachineInstr &PI = *PacketSU->getInstr();
      // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
      if (PI.isCall()) {
        Dependence = true;
        break;
      }
      // Validate:
      // 1. Packet does not have a store in it.
      // 2. If the first operand of the nvj is newified, and the second
      //    operand is also a reg, it (second reg) is not defined in
      //    the same packet.
      // 3. If the second operand of the nvj is newified, (which means
      //    first operand is also a reg), first reg is not defined in
      //    the same packet.
      if (PI.getOpcode() == Hexagon::S2_allocframe || PI.mayStore() ||
          HII->isLoopN(PI)) {
        Dependence = true;
        break;
      }
      // Check #2/#3.
      const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
      if (OpR.isReg() && PI.modifiesRegister(OpR.getReg(), HRI)) {
        Dependence = true;
        break;
      }
    }

    if (Dependence)
      return false;
    GlueToNewValueJump = true;
  }

  // There no dependency between a prolog instruction and its successor.
  if (!SUJ->isSucc(SUI))
    return true;

  for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
    if (FoundSequentialDependence)
      break;

    if (SUJ->Succs[i].getSUnit() != SUI)
      continue;

    SDep::Kind DepType = SUJ->Succs[i].getKind();
    // For direct calls:
    // Ignore register dependences for call instructions for packetization
    // purposes except for those due to r31 and predicate registers.
    //
    // For indirect calls:
    // Same as direct calls + check for true dependences to the register
    // used in the indirect call.
    //
    // We completely ignore Order dependences for call instructions.
    //
    // For returns:
    // Ignore register dependences for return instructions like jumpr,
    // dealloc return unless we have dependencies on the explicit uses
    // of the registers used by jumpr (like r31) or dealloc return
    // (like r29 or r30).
    unsigned DepReg = 0;
    const TargetRegisterClass *RC = nullptr;
    if (DepType == SDep::Data) {
      DepReg = SUJ->Succs[i].getReg();
      RC = HRI->getMinimalPhysRegClass(DepReg);
    }

    if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
      if (!isRegDependence(DepType))
        continue;
      if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
        continue;
    }

    if (DepType == SDep::Data) {
      if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
        if (promoteToDotCur(J, DepType, II, RC))
          continue;
    }

    // Data dpendence ok if we have load.cur.
    if (DepType == SDep::Data && HII->isDotCurInst(J)) {
      if (HII->isHVXVec(I))
        continue;
    }

    // For instructions that can be promoted to dot-new, try to promote.
    if (DepType == SDep::Data) {
      if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
        if (promoteToDotNew(I, DepType, II, RC)) {
          PromotedToDotNew = true;
          if (cannotCoexist(I, J))
            FoundSequentialDependence = true;
          continue;
        }
      }
      if (HII->isNewValueJump(I))
        continue;
    }

    // For predicated instructions, if the predicates are complements then
    // there can be no dependence.
    if (HII->isPredicated(I) && HII->isPredicated(J) &&
        arePredicatesComplements(I, J)) {
      // Not always safe to do this translation.
      // DAG Builder attempts to reduce dependence edges using transitive
      // nature of dependencies. Here is an example:
      //
      // r0 = tfr_pt ... (1)
      // r0 = tfr_pf ... (2)
      // r0 = tfr_pt ... (3)
      //
      // There will be an output dependence between (1)->(2) and (2)->(3).
      // However, there is no dependence edge between (1)->(3). This results
      // in all 3 instructions going in the same packet. We ignore dependce
      // only once to avoid this situation.
      auto Itr = find(IgnoreDepMIs, &J);
      if (Itr != IgnoreDepMIs.end()) {
        Dependence = true;
        return false;
      }
      IgnoreDepMIs.push_back(&I);
      continue;
    }

    // Ignore Order dependences between unconditional direct branches
    // and non-control-flow instructions.
    if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
        DepType == SDep::Order)
      continue;

    // Ignore all dependences for jumps except for true and output
    // dependences.
    if (I.isConditionalBranch() && DepType != SDep::Data &&
        DepType != SDep::Output)
      continue;

    if (DepType == SDep::Output) {
      FoundSequentialDependence = true;
      break;
    }

    // For Order dependences:
    // 1. On V4 or later, volatile loads/stores can be packetized together,
    //    unless other rules prevent is.
    // 2. Store followed by a load is not allowed.
    // 3. Store followed by a store is only valid on V4 or later.
    // 4. Load followed by any memory operation is allowed.
    if (DepType == SDep::Order) {
      if (!PacketizeVolatiles) {
        bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
        if (OrdRefs) {
          FoundSequentialDependence = true;
          break;
        }
      }
      // J is first, I is second.
      bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
      bool LoadI = I.mayLoad(), StoreI = I.mayStore();
      if (StoreJ) {
        // Two stores are only allowed on V4+. Load following store is never
        // allowed.
        if (LoadI) {
          FoundSequentialDependence = true;
          break;
        }
      } else if (!LoadJ || (!LoadI && !StoreI)) {
        // If J is neither load nor store, assume a dependency.
        // If J is a load, but I is neither, also assume a dependency.
        FoundSequentialDependence = true;
        break;
      }
      // Store followed by store: not OK on V2.
      // Store followed by load: not OK on all.
      // Load followed by store: OK on all.
      // Load followed by load: OK on all.
      continue;
    }

    // For V4, special case ALLOCFRAME. Even though there is dependency
    // between ALLOCFRAME and subsequent store, allow it to be packetized
    // in a same packet. This implies that the store is using the caller's
    // SP. Hence, offset needs to be updated accordingly.
    if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
      unsigned Opc = I.getOpcode();
      switch (Opc) {
        case Hexagon::S2_storerd_io:
        case Hexagon::S2_storeri_io:
        case Hexagon::S2_storerh_io:
        case Hexagon::S2_storerb_io:
          if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
            // Since this store is to be glued with allocframe in the same
            // packet, it will use SP of the previous stack frame, i.e.
            // caller's SP. Therefore, we need to recalculate offset
            // according to this change.
            GlueAllocframeStore = useCallersSP(I);
            if (GlueAllocframeStore)
              continue;
          }
        default:
          break;
      }
    }

    // There are certain anti-dependencies that cannot be ignored.
    // Specifically:
    //   J2_call ... %R0<imp-def>   ; SUJ
    //   R0 = ...                   ; SUI
    // Those cannot be packetized together, since the call will observe
    // the effect of the assignment to R0.
    if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
      // Check if I defines any volatile register. We should also check
      // registers that the call may read, but these happen to be a
      // subset of the volatile register set.
      for (const MachineOperand &Op : I.operands()) {
        if (Op.isReg() && Op.isDef()) {
          unsigned R = Op.getReg();
          if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
            continue;
        } else if (!Op.isRegMask()) {
          // If I has a regmask assume dependency.
          continue;
        }
        FoundSequentialDependence = true;
        break;
      }
    }

    // Skip over remaining anti-dependences. Two instructions that are
    // anti-dependent can share a packet, since in most such cases all
    // operands are read before any modifications take place.
    // The exceptions are branch and call instructions, since they are
    // executed after all other instructions have completed (at least
    // conceptually).
    if (DepType != SDep::Anti) {
      FoundSequentialDependence = true;
      break;
    }
  }

  if (FoundSequentialDependence) {
    Dependence = true;
    return false;
  }

  return true;
}

bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &I = *SUI->getInstr();
  MachineInstr &J = *SUJ->getInstr();

  bool Coexist = !cannotCoexist(I, J);

  if (Coexist && !Dependence)
    return true;

  // Check if the instruction was promoted to a dot-new. If so, demote it
  // back into a dot-old.
  if (PromotedToDotNew)
    demoteToDotOld(I);

  cleanUpDotCur();
  // Check if the instruction (must be a store) was glued with an allocframe
  // instruction. If so, restore its offset to its original value, i.e. use
  // current SP instead of caller's SP.
  if (GlueAllocframeStore) {
    useCalleesSP(I);
    GlueAllocframeStore = false;
  }
  return false;
}

MachineBasicBlock::iterator
HexagonPacketizerList::addToPacket(MachineInstr &MI) {
  MachineBasicBlock::iterator MII = MI.getIterator();
  MachineBasicBlock *MBB = MI.getParent();

  if (CurrentPacketMIs.size() == 0)
    PacketStalls = false;
  PacketStalls |= producesStall(MI);

  if (MI.isImplicitDef())
    return MII;
  assert(ResourceTracker->canReserveResources(MI));

  bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
  bool Good = true;

  if (GlueToNewValueJump) {
    MachineInstr &NvjMI = *++MII;
    // We need to put both instructions in the same packet: MI and NvjMI.
    // Either of them can require a constant extender. Try to add both to
    // the current packet, and if that fails, end the packet and start a
    // new one.
    ResourceTracker->reserveResources(MI);
    if (ExtMI)
      Good = tryAllocateResourcesForConstExt(true);

    bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
    if (Good) {
      if (ResourceTracker->canReserveResources(NvjMI))
        ResourceTracker->reserveResources(NvjMI);
      else
        Good = false;
    }
    if (Good && ExtNvjMI)
      Good = tryAllocateResourcesForConstExt(true);

    if (!Good) {
      endPacket(MBB, MI);
      assert(ResourceTracker->canReserveResources(MI));
      ResourceTracker->reserveResources(MI);
      if (ExtMI) {
        assert(canReserveResourcesForConstExt());
        tryAllocateResourcesForConstExt(true);
      }
      assert(ResourceTracker->canReserveResources(NvjMI));
      ResourceTracker->reserveResources(NvjMI);
      if (ExtNvjMI) {
        assert(canReserveResourcesForConstExt());
        reserveResourcesForConstExt();
      }
    }
    CurrentPacketMIs.push_back(&MI);
    CurrentPacketMIs.push_back(&NvjMI);
    return MII;
  }

  ResourceTracker->reserveResources(MI);
  if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
    endPacket(MBB, MI);
    if (PromotedToDotNew)
      demoteToDotOld(MI);
    if (GlueAllocframeStore) {
      useCalleesSP(MI);
      GlueAllocframeStore = false;
    }
    ResourceTracker->reserveResources(MI);
    reserveResourcesForConstExt();
  }

  CurrentPacketMIs.push_back(&MI);
  return MII;
}

void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI) {
  OldPacketMIs = CurrentPacketMIs;
  VLIWPacketizerList::endPacket(MBB, MI);
}

bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
  return !producesStall(MI);
}


// V60 forward scheduling.
bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
  // If the packet already stalls, then ignore the stall from a subsequent
  // instruction in the same packet.
  if (PacketStalls)
    return false;

  // Check whether the previous packet is in a different loop. If this is the
  // case, there is little point in trying to avoid a stall because that would
  // favor the rare case (loop entry) over the common case (loop iteration).
  //
  // TODO: We should really be able to check all the incoming edges if this is
  // the first packet in a basic block, so we can avoid stalls from the loop
  // backedge.
  if (!OldPacketMIs.empty()) {
    auto *OldBB = OldPacketMIs.front()->getParent();
    auto *ThisBB = I.getParent();
    if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
      return false;
  }

  SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];

  // Check if the latency is 0 between this instruction and any instruction
  // in the current packet. If so, we disregard any potential stalls due to
  // the instructions in the previous packet. Most of the instruction pairs
  // that can go together in the same packet have 0 latency between them.
  // Only exceptions are newValueJumps as they're generated much later and
  // the latencies can't be changed at that point. Another is .cur
  // instructions if its consumer has a 0 latency successor (such as .new).
  // In this case, the latency between .cur and the consumer stays non-zero
  // even though we can have  both .cur and .new in the same packet. Changing
  // the latency to 0 is not an option as it causes software pipeliner to
  // not pipeline in some cases.

  // For Example:
  // {
  //   I1:  v6.cur = vmem(r0++#1)
  //   I2:  v7 = valign(v6,v4,r2)
  //   I3:  vmem(r5++#1) = v7.new
  // }
  // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.

  for (auto J : CurrentPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ &&
          (Pred.getLatency() == 0 || HII->isNewValueJump(I) ||
           HII->isToBeScheduledASAP(*J, I)))
        return false;
  }

  // Check if the latency is greater than one between this instruction and any
  // instruction in the previous packet.
  for (auto J : OldPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
        return true;
  }

  // Check if the latency is greater than one between this instruction and any
  // instruction in the previous packet.
  for (auto J : OldPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
        return true;
  }

  return false;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createHexagonPacketizer() {
  return new HexagonPacketizer();
}