aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp
blob: e6842076db2ac38326fe92725173c6d6c9c2a24c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
//
//===----------------------------------------------------------------------===//

#include "HexagonMCInstrInfo.h"

#include "Hexagon.h"
#include "HexagonBaseInfo.h"
#include "HexagonMCChecker.h"

#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"

namespace llvm {
void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
                                     MCContext &Context) {
  MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
}

void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
                                          MCInstrInfo const &MCII, MCInst &MCB,
                                          MCInst const &MCI) {
  assert(HexagonMCInstrInfo::isBundle(MCB));
  MCOperand const &exOp =
      MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));

  // Create the extender.
  MCInst *XMCI =
      new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));

  MCB.addOperand(MCOperand::createInst(XMCI));
}

iterator_range<MCInst::const_iterator>
HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
  assert(isBundle(MCI));
  return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
}

size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
  if (HexagonMCInstrInfo::isBundle(MCI))
    return (MCI.size() - bundleInstructionsOffset);
  else
    return (1);
}

bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
                                            MCSubtargetInfo const &STI,
                                            MCContext &Context, MCInst &MCB,
                                            HexagonMCChecker *Check) {
  // Examine the packet and convert pairs of instructions to compound
  // instructions when possible.
  if (!HexagonDisableCompound)
    HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
  // Check the bundle for errors.
  bool CheckOk = Check ? Check->check() : true;
  if (!CheckOk)
    return false;
  HexagonMCShuffle(MCII, STI, MCB);
  // Examine the packet and convert pairs of instructions to duplex
  // instructions when possible.
  MCInst InstBundlePreDuplex = MCInst(MCB);
  if (!HexagonDisableDuplex) {
    SmallVector<DuplexCandidate, 8> possibleDuplexes;
    possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
    HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
  }
  // Examines packet and pad the packet, if needed, when an
  // end-loop is in the bundle.
  HexagonMCInstrInfo::padEndloop(Context, MCB);
  // If compounding and duplexing didn't reduce the size below
  // 4 or less we have a packet that is too big.
  if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
    return false;
  HexagonMCShuffle(MCII, STI, MCB);
  return true;
}

void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
                                       MCContext &Context, MCInst &MCI) {
  assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
         HexagonMCInstrInfo::isExtended(MCII, MCI));
  MCOperand &exOp =
      MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
  // If the extended value is a constant, then use it for the extended and
  // for the extender instructions, masking off the lower 6 bits and
  // including the assumed bits.
  int64_t Value;
  if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
    unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
    exOp.setExpr(MCConstantExpr::create((Value & 0x3f) << Shift, Context));
  }
}

MCInst HexagonMCInstrInfo::createBundle() {
  MCInst Result;
  Result.setOpcode(Hexagon::BUNDLE);
  Result.addOperand(MCOperand::createImm(0));
  return Result;
}

MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
                                         MCInst const &inst0,
                                         MCInst const &inst1) {
  assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
  MCInst *duplexInst = new (Context) MCInst;
  duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);

  MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
  MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
  duplexInst->addOperand(MCOperand::createInst(SubInst0));
  duplexInst->addOperand(MCOperand::createInst(SubInst1));
  return duplexInst;
}

MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
                                          MCInst const &Inst,
                                          MCOperand const &MO) {
  assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
         HexagonMCInstrInfo::isExtended(MCII, Inst));

  MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
  MCInst XMI;
  XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
                 HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
                    ? Hexagon::A4_ext_b
                    : Hexagon::A4_ext);
  if (MO.isImm())
    XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
  else if (MO.isExpr())
    XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
  else
    llvm_unreachable("invalid extendable operand");
  return XMI;
}

MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
                                                   size_t Index) {
  assert(Index <= bundleSize(MCB));
  if (Index == 0)
    return nullptr;
  MCInst const *Inst =
      MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
  if (isImmext(*Inst))
    return Inst;
  return nullptr;
}

void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
                                        MCInstrInfo const &MCII, MCInst &MCB,
                                        MCInst const &MCI, bool MustExtend) {
  if (isConstExtended(MCII, MCI) || MustExtend)
    addConstExtender(Context, MCII, MCB, MCI);
}

HexagonII::MemAccessSize
HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;

  return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
                                   HexagonII::MemAccesSizeMask));
}

unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}

// Return constant extended operand number.
unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
                                                MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}

MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
                                               MCInst const &MCI) {
  return (MCII.get(MCI.getOpcode()));
}

unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
                                                   MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}

MCOperand const &
HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
  MCOperand const &MO = MCI.getOperand(O);

  assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
          HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
         (MO.isImm() || MO.isExpr()));
  return (MO);
}

unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
                                                MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
}

unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
                                           MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}

// Return the max value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  unsigned isSigned =
      (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
  unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;

  if (isSigned) // if value is signed
    return ~(-1U << (bits - 1));
  else
    return ~(-1U << bits);
}

// Return the min value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  unsigned isSigned =
      (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
  unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;

  if (isSigned) // if value is signed
    return -1U << (bits - 1);
  else
    return 0;
}

char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
                                        MCInst const &MCI) {
  return MCII.getName(MCI.getOpcode());
}

unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
                                                 MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
}

MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
                                                        MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  unsigned const O =
      (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
  MCOperand const &MCO = MCI.getOperand(O);

  assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
          HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
         MCO.isReg());
  return (MCO);
}

/// Return the new value or the newly produced value.
unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
                                                  MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
}

MCOperand const &
HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
                                        MCInst const &MCI) {
  unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
  MCOperand const &MCO = MCI.getOperand(O);

  assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
          HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
         MCO.isReg());
  return (MCO);
}

int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
                                     MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;

  HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
      (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);

  switch (Target) {
  default:
    return Hexagon::ArchV4;
  case HexagonII::HasV5SubT:
    return Hexagon::ArchV5;
  }
}

// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
                                     MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;

  return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}

unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
                                      MCSubtargetInfo const &STI,
                                      MCInst const &MCI) {

  const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
  int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
  return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
}

bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
  if (!HexagonMCInstrInfo::isBundle(MCI))
    return false;

  for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
    auto MI = I.getInst();
    if (isImmext(*MI))
      return true;
  }

  return false;
}

bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
  return extenderForIndex(MCB, Index) != nullptr;
}

// Return whether the instruction is a legal new-value producer.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
                                     MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}

/// Return whether the insn produces a second value.
bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
                                      MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
}

MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
  assert(isBundle(MCB));
  assert(Index < HEXAGON_PACKET_SIZE);
  return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
}

bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
  auto Result = Hexagon::BUNDLE == MCI.getOpcode();
  assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
  return Result;
}

// Return whether the insn is an actual insn.
bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
  return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
          !HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
          HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
}

bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
}

bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
  return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
          (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
}

bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
  return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
}

// Return whether the instruction needs to be constant extended.
// 1) Always return true if the instruction has 'isExtended' flag set.
//
// isExtendable:
// 2) For immediate extended operands, return true only if the value is
//    out-of-range.
// 3) For global address, always return true.

bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  if (HexagonMCInstrInfo::isExtended(MCII, MCI))
    return true;
  // Branch insns are handled as necessary by relaxation.
  if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
      (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
       HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
      (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
       HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
    return false;
  // Otherwise loop instructions and other CR insts are handled by relaxation
  else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
           (MCI.getOpcode() != Hexagon::C4_addipc))
    return false;
  else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
    return false;

  MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);

  // We could be using an instruction with an extendable immediate and shoehorn
  // a global address into it. If it is a global address it will be constant
  // extended. We do this for COMBINE.
  // We currently only handle isGlobal() because it is the only kind of
  // object we are going to end up with here for now.
  // In the future we probably should add isSymbol(), etc.
  assert(!MO.isImm());
  int64_t Value;
  if (!MO.getExpr()->evaluateAsAbsolute(Value))
    return true;
  int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
  int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
  return (MinValue > Value || Value > MaxValue);
}

bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
                                      MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}

bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}

bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
}

bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
  auto Op = MCI.getOpcode();
  return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
          Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
}

bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
  assert(isBundle(MCI));
  int64_t Flags = MCI.getOperand(0).getImm();
  return (Flags & innerLoopMask) != 0;
}

bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
  return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
}

bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
  return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
}

// Return whether the insn is a new-value consumer.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}

// Return whether the operand can be constant extended.
bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
                                           MCInst const &MCI,
                                           unsigned short OperandNum) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
         OperandNum;
}

bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
  assert(isBundle(MCI));
  int64_t Flags = MCI.getOperand(0).getImm();
  return (Flags & outerLoopMask) != 0;
}

bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
                                      MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}

bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
}

/// Return whether the insn is newly predicated.
bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}

bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
                                          MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return (
      !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
}

bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
  return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
}

bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
  return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
}

bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}

bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
  assert(isBundle(MCI));
  auto Flags = MCI.getOperand(0).getImm();
  return (Flags & memReorderDisabledMask) != 0;
}

bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
  assert(isBundle(MCI));
  auto Flags = MCI.getOperand(0).getImm();
  return (Flags & memStoreReorderEnabledMask) != 0;
}

bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
}

bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
}

bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
  if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
      (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
    return true;
  return false;
}

int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
  auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
                  << 8;
  if (MCI.size() <= Index)
    return Sentinal;
  MCOperand const &MCO = MCI.getOperand(Index);
  if (!MCO.isExpr())
    return Sentinal;
  int64_t Value;
  if (!MCO.getExpr()->evaluateAsAbsolute(Value))
    return Sentinal;
  return Value;
}

void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) {
  MCInst Nop;
  Nop.setOpcode(Hexagon::A2_nop);
  assert(isBundle(MCB));
  while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
          (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
         ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
           (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
    MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
}

bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
                                      MCInst const &MCI) {
  if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
    return false;

  unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
  switch (SchedClass) {
  case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
  case Hexagon::Sched::ALU64_tc_2_SLOT23:
  case Hexagon::Sched::ALU64_tc_3x_SLOT23:
  case Hexagon::Sched::M_tc_2_SLOT23:
  case Hexagon::Sched::M_tc_3x_SLOT23:
  case Hexagon::Sched::S_2op_tc_2_SLOT23:
  case Hexagon::Sched::S_3op_tc_2_SLOT23:
  case Hexagon::Sched::S_3op_tc_3x_SLOT23:
    return true;
  }
  return false;
}

void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
                                       DuplexCandidate Candidate) {
  assert(Candidate.packetIndexI < MCB.size());
  assert(Candidate.packetIndexJ < MCB.size());
  assert(isBundle(MCB));
  MCInst *Duplex =
      deriveDuplex(Context, Candidate.iClass,
                   *MCB.getOperand(Candidate.packetIndexJ).getInst(),
                   *MCB.getOperand(Candidate.packetIndexI).getInst());
  assert(Duplex != nullptr);
  MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
  MCB.erase(MCB.begin() + Candidate.packetIndexJ);
}

void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
  assert(isBundle(MCI));
  MCOperand &Operand = MCI.getOperand(0);
  Operand.setImm(Operand.getImm() | innerLoopMask);
}

void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
  assert(isBundle(MCI));
  MCOperand &Operand = MCI.getOperand(0);
  Operand.setImm(Operand.getImm() | memReorderDisabledMask);
  assert(isMemReorderDisabled(MCI));
}

void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
  assert(isBundle(MCI));
  MCOperand &Operand = MCI.getOperand(0);
  Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
  assert(isMemStoreReorderEnabled(MCI));
}

void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
  assert(isBundle(MCI));
  MCOperand &Operand = MCI.getOperand(0);
  Operand.setImm(Operand.getImm() | outerLoopMask);
}
}