aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/NVPTX/NVPTXTargetMachine.cpp
blob: 11b3fe2fa3d35dceb655556adebe6d62154e44be (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the NVPTX target.
//
//===----------------------------------------------------------------------===//

#include "NVPTXTargetMachine.h"
#include "NVPTX.h"
#include "NVPTXAllocaHoisting.h"
#include "NVPTXLowerAggrCopies.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXTargetTransformInfo.h"
#include "TargetInfo/NVPTXTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Vectorize.h"
#include <cassert>
#include <string>

using namespace llvm;

// LSV is still relatively new; this switch lets us turn it off in case we
// encounter (or suspect) a bug.
static cl::opt<bool>
    DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
                               cl::desc("Disable load/store vectorizer"),
                               cl::init(false), cl::Hidden);

// TODO: Remove this flag when we are confident with no regressions.
static cl::opt<bool> DisableRequireStructuredCFG(
    "disable-nvptx-require-structured-cfg",
    cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
             "structured CFG. The requirement should be disabled only when "
             "unexpected regressions happen."),
    cl::init(false), cl::Hidden);

static cl::opt<bool> UseShortPointersOpt(
    "nvptx-short-ptr",
    cl::desc(
        "Use 32-bit pointers for accessing const/local/shared address spaces."),
    cl::init(false), cl::Hidden);

namespace llvm {

void initializeNVVMIntrRangePass(PassRegistry&);
void initializeNVVMReflectPass(PassRegistry&);
void initializeGenericToNVVMPass(PassRegistry&);
void initializeNVPTXAllocaHoistingPass(PassRegistry &);
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
void initializeNVPTXLowerArgsPass(PassRegistry &);
void initializeNVPTXLowerAllocaPass(PassRegistry &);
void initializeNVPTXProxyRegErasurePass(PassRegistry &);

} // end namespace llvm

extern "C" void LLVMInitializeNVPTXTarget() {
  // Register the target.
  RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
  RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());

  // FIXME: This pass is really intended to be invoked during IR optimization,
  // but it's very NVPTX-specific.
  PassRegistry &PR = *PassRegistry::getPassRegistry();
  initializeNVVMReflectPass(PR);
  initializeNVVMIntrRangePass(PR);
  initializeGenericToNVVMPass(PR);
  initializeNVPTXAllocaHoistingPass(PR);
  initializeNVPTXAssignValidGlobalNamesPass(PR);
  initializeNVPTXLowerArgsPass(PR);
  initializeNVPTXLowerAllocaPass(PR);
  initializeNVPTXLowerAggrCopiesPass(PR);
  initializeNVPTXProxyRegErasurePass(PR);
}

static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
  std::string Ret = "e";

  if (!is64Bit)
    Ret += "-p:32:32";
  else if (UseShortPointers)
    Ret += "-p3:32:32-p4:32:32-p5:32:32";

  Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";

  return Ret;
}

NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Optional<Reloc::Model> RM,
                                       Optional<CodeModel::Model> CM,
                                       CodeGenOpt::Level OL, bool is64bit)
    // The pic relocation model is used regardless of what the client has
    // specified, as it is the only relocation model currently supported.
    : LLVMTargetMachine(T, computeDataLayout(is64bit, UseShortPointersOpt), TT,
                        CPU, FS, Options, Reloc::PIC_,
                        getEffectiveCodeModel(CM, CodeModel::Small), OL),
      is64bit(is64bit), UseShortPointers(UseShortPointersOpt),
      TLOF(llvm::make_unique<NVPTXTargetObjectFile>()),
      Subtarget(TT, CPU, FS, *this) {
  if (TT.getOS() == Triple::NVCL)
    drvInterface = NVPTX::NVCL;
  else
    drvInterface = NVPTX::CUDA;
  if (!DisableRequireStructuredCFG)
    setRequiresStructuredCFG(true);
  initAsmInfo();
}

NVPTXTargetMachine::~NVPTXTargetMachine() = default;

void NVPTXTargetMachine32::anchor() {}

NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Optional<Reloc::Model> RM,
                                           Optional<CodeModel::Model> CM,
                                           CodeGenOpt::Level OL, bool JIT)
    : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}

void NVPTXTargetMachine64::anchor() {}

NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Optional<Reloc::Model> RM,
                                           Optional<CodeModel::Model> CM,
                                           CodeGenOpt::Level OL, bool JIT)
    : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}

namespace {

class NVPTXPassConfig : public TargetPassConfig {
public:
  NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
      : TargetPassConfig(TM, PM) {}

  NVPTXTargetMachine &getNVPTXTargetMachine() const {
    return getTM<NVPTXTargetMachine>();
  }

  void addIRPasses() override;
  bool addInstSelector() override;
  void addPreRegAlloc() override;
  void addPostRegAlloc() override;
  void addMachineSSAOptimization() override;

  FunctionPass *createTargetRegisterAllocator(bool) override;
  void addFastRegAlloc() override;
  void addOptimizedRegAlloc() override;

  bool addRegAssignmentFast() override {
    llvm_unreachable("should not be used");
  }

  bool addRegAssignmentOptimized() override {
    llvm_unreachable("should not be used");
  }

private:
  // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
  // function is only called in opt mode.
  void addEarlyCSEOrGVNPass();

  // Add passes that propagate special memory spaces.
  void addAddressSpaceInferencePasses();

  // Add passes that perform straight-line scalar optimizations.
  void addStraightLineScalarOptimizationPasses();
};

} // end anonymous namespace

TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new NVPTXPassConfig(*this, PM);
}

void NVPTXTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
  Builder.addExtension(
    PassManagerBuilder::EP_EarlyAsPossible,
    [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
      PM.add(createNVVMReflectPass(Subtarget.getSmVersion()));
      PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
    });
}

TargetTransformInfo
NVPTXTargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(NVPTXTTIImpl(this, F));
}

void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
  if (getOptLevel() == CodeGenOpt::Aggressive)
    addPass(createGVNPass());
  else
    addPass(createEarlyCSEPass());
}

void NVPTXPassConfig::addAddressSpaceInferencePasses() {
  // NVPTXLowerArgs emits alloca for byval parameters which can often
  // be eliminated by SROA.
  addPass(createSROAPass());
  addPass(createNVPTXLowerAllocaPass());
  addPass(createInferAddressSpacesPass());
}

void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
  addPass(createSeparateConstOffsetFromGEPPass());
  addPass(createSpeculativeExecutionPass());
  // ReassociateGEPs exposes more opportunites for SLSR. See
  // the example in reassociate-geps-and-slsr.ll.
  addPass(createStraightLineStrengthReducePass());
  // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
  // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
  // for some of our benchmarks.
  addEarlyCSEOrGVNPass();
  // Run NaryReassociate after EarlyCSE/GVN to be more effective.
  addPass(createNaryReassociatePass());
  // NaryReassociate on GEPs creates redundant common expressions, so run
  // EarlyCSE after it.
  addPass(createEarlyCSEPass());
}

void NVPTXPassConfig::addIRPasses() {
  // The following passes are known to not play well with virtual regs hanging
  // around after register allocation (which in our case, is *all* registers).
  // We explicitly disable them here.  We do, however, need some functionality
  // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
  // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
  disablePass(&PrologEpilogCodeInserterID);
  disablePass(&MachineCopyPropagationID);
  disablePass(&TailDuplicateID);
  disablePass(&StackMapLivenessID);
  disablePass(&LiveDebugValuesID);
  disablePass(&PostRAMachineSinkingID);
  disablePass(&PostRASchedulerID);
  disablePass(&FuncletLayoutID);
  disablePass(&PatchableFunctionID);
  disablePass(&ShrinkWrapID);

  // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
  // it here does nothing.  But since we need it for correctness when lowering
  // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
  // call addEarlyAsPossiblePasses.
  const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
  addPass(createNVVMReflectPass(ST.getSmVersion()));

  if (getOptLevel() != CodeGenOpt::None)
    addPass(createNVPTXImageOptimizerPass());
  addPass(createNVPTXAssignValidGlobalNamesPass());
  addPass(createGenericToNVVMPass());

  // NVPTXLowerArgs is required for correctness and should be run right
  // before the address space inference passes.
  addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine()));
  if (getOptLevel() != CodeGenOpt::None) {
    addAddressSpaceInferencePasses();
    if (!DisableLoadStoreVectorizer)
      addPass(createLoadStoreVectorizerPass());
    addStraightLineScalarOptimizationPasses();
  }

  // === LSR and other generic IR passes ===
  TargetPassConfig::addIRPasses();
  // EarlyCSE is not always strong enough to clean up what LSR produces. For
  // example, GVN can combine
  //
  //   %0 = add %a, %b
  //   %1 = add %b, %a
  //
  // and
  //
  //   %0 = shl nsw %a, 2
  //   %1 = shl %a, 2
  //
  // but EarlyCSE can do neither of them.
  if (getOptLevel() != CodeGenOpt::None)
    addEarlyCSEOrGVNPass();
}

bool NVPTXPassConfig::addInstSelector() {
  const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();

  addPass(createLowerAggrCopies());
  addPass(createAllocaHoisting());
  addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));

  if (!ST.hasImageHandles())
    addPass(createNVPTXReplaceImageHandlesPass());

  return false;
}

void NVPTXPassConfig::addPreRegAlloc() {
  // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
  addPass(createNVPTXProxyRegErasurePass());
}

void NVPTXPassConfig::addPostRegAlloc() {
  addPass(createNVPTXPrologEpilogPass(), false);
  if (getOptLevel() != CodeGenOpt::None) {
    // NVPTXPrologEpilogPass calculates frame object offset and replace frame
    // index with VRFrame register. NVPTXPeephole need to be run after that and
    // will replace VRFrame with VRFrameLocal when possible.
    addPass(createNVPTXPeephole());
  }
}

FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
  return nullptr; // No reg alloc
}

void NVPTXPassConfig::addFastRegAlloc() {
  addPass(&PHIEliminationID);
  addPass(&TwoAddressInstructionPassID);
}

void NVPTXPassConfig::addOptimizedRegAlloc() {
  addPass(&ProcessImplicitDefsID);
  addPass(&LiveVariablesID);
  addPass(&MachineLoopInfoID);
  addPass(&PHIEliminationID);

  addPass(&TwoAddressInstructionPassID);
  addPass(&RegisterCoalescerID);

  // PreRA instruction scheduling.
  if (addPass(&MachineSchedulerID))
    printAndVerify("After Machine Scheduling");


  addPass(&StackSlotColoringID);

  // FIXME: Needs physical registers
  //addPass(&MachineLICMID);

  printAndVerify("After StackSlotColoring");
}

void NVPTXPassConfig::addMachineSSAOptimization() {
  // Pre-ra tail duplication.
  if (addPass(&EarlyTailDuplicateID))
    printAndVerify("After Pre-RegAlloc TailDuplicate");

  // Optimize PHIs before DCE: removing dead PHI cycles may make more
  // instructions dead.
  addPass(&OptimizePHIsID);

  // This pass merges large allocas. StackSlotColoring is a different pass
  // which merges spill slots.
  addPass(&StackColoringID);

  // If the target requests it, assign local variables to stack slots relative
  // to one another and simplify frame index references where possible.
  addPass(&LocalStackSlotAllocationID);

  // With optimization, dead code should already be eliminated. However
  // there is one known exception: lowered code for arguments that are only
  // used by tail calls, where the tail calls reuse the incoming stack
  // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
  addPass(&DeadMachineInstructionElimID);
  printAndVerify("After codegen DCE pass");

  // Allow targets to insert passes that improve instruction level parallelism,
  // like if-conversion. Such passes will typically need dominator trees and
  // loop info, just like LICM and CSE below.
  if (addILPOpts())
    printAndVerify("After ILP optimizations");

  addPass(&EarlyMachineLICMID);
  addPass(&MachineCSEID);

  addPass(&MachineSinkingID);
  printAndVerify("After Machine LICM, CSE and Sinking passes");

  addPass(&PeepholeOptimizerID);
  printAndVerify("After codegen peephole optimization pass");
}