aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
blob: 3dbd5f5b9a928343a1af9593540a71dc2e5e6e80 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "PPCTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

#define DEBUG_TYPE "ppctti"

static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);

// This is currently only used for the data prefetch pass which is only enabled
// for BG/Q by default.
static cl::opt<unsigned>
CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
              cl::desc("The loop prefetch cache line size"));

//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//

TargetTransformInfo::PopcntSupportKind
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
    return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
             TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
  return TTI::PSK_Software;
}

int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Basic;

    if (isInt<32>(Imm.getSExtValue())) {
      // A constant that can be materialized using lis.
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
        return TTI::TCC_Basic;

      return 2 * TTI::TCC_Basic;
    }
  }

  return 4 * TTI::TCC_Basic;
}

int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                              Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(IID, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return PPCTTIImpl::getIntImmCost(Imm, Ty);
}

int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                              Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  unsigned ImmIdx = ~0U;
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
       ZeroFree = false;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::And:
    RunFree = true; // (for the rotate-and-mask instructions)
    LLVM_FALLTHROUGH;
  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    ShiftedFree = true;
    LLVM_FALLTHROUGH;
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    ImmIdx = 1;
    break;
  case Instruction::ICmp:
    UnsignedFree = true;
    ImmIdx = 1;
    // Zero comparisons can use record-form instructions.
    LLVM_FALLTHROUGH;
  case Instruction::Select:
    ZeroFree = true;
    break;
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Ret:
  case Instruction::Load:
  case Instruction::Store:
    break;
  }

  if (ZeroFree && Imm == 0)
    return TTI::TCC_Free;

  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;

    if (RunFree) {
      if (Imm.getBitWidth() <= 32 &&
          (isShiftedMask_32(Imm.getZExtValue()) ||
           isShiftedMask_32(~Imm.getZExtValue())))
        return TTI::TCC_Free;

      if (ST->isPPC64() &&
          (isShiftedMask_64(Imm.getZExtValue()) ||
           isShiftedMask_64(~Imm.getZExtValue())))
        return TTI::TCC_Free;
    }

    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
      return TTI::TCC_Free;

    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
      return TTI::TCC_Free;
  }

  return PPCTTIImpl::getIntImmCost(Imm, Ty);
}

void PPCTTIImpl::getUnrollingPreferences(Loop *L,
                                         TTI::UnrollingPreferences &UP) {
  if (ST->getDarwinDirective() == PPC::DIR_A2) {
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
    // helps expose latency-hiding opportunities to the instruction scheduler.
    UP.Partial = UP.Runtime = true;

    // We unroll a lot on the A2 (hundreds of instructions), and the benefits
    // often outweigh the cost of a division to compute the trip count.
    UP.AllowExpensiveTripCount = true;
  }

  BaseT::getUnrollingPreferences(L, UP);
}

bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
  // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
  // on combining the loads generated for consecutive accesses, and failure to
  // do so is particularly expensive. This makes it much more likely (compared
  // to only using concatenation unrolling).
  if (ST->getDarwinDirective() == PPC::DIR_A2)
    return true;

  return LoopHasReductions;
}

bool PPCTTIImpl::expandMemCmp(Instruction *I, unsigned &MaxLoadSize) {
  MaxLoadSize = 8;
  return true;
}

bool PPCTTIImpl::enableInterleavedAccessVectorization() {
  return true;
}

unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
  if (Vector && !ST->hasAltivec() && !ST->hasQPX())
    return 0;
  return ST->hasVSX() ? 64 : 32;
}

unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
  if (Vector) {
    if (ST->hasQPX()) return 256;
    if (ST->hasAltivec()) return 128;
    return 0;
  }

  if (ST->isPPC64())
    return 64;
  return 32;

}

unsigned PPCTTIImpl::getCacheLineSize() {
  // Check first if the user specified a custom line size.
  if (CacheLineSize.getNumOccurrences() > 0)
    return CacheLineSize;

  // On P7, P8 or P9 we have a cache line size of 128.
  unsigned Directive = ST->getDarwinDirective();
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
      Directive == PPC::DIR_PWR9)
    return 128;

  // On other processors return a default of 64 bytes.
  return 64;
}

unsigned PPCTTIImpl::getPrefetchDistance() {
  // This seems like a reasonable default for the BG/Q (this pass is enabled, by
  // default, only on the BG/Q).
  return 300;
}

unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
  unsigned Directive = ST->getDarwinDirective();
  // The 440 has no SIMD support, but floating-point instructions
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
  if (Directive == PPC::DIR_440)
    return 5;

  // The A2 has no SIMD support, but floating-point instructions
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
  if (Directive == PPC::DIR_A2)
    return 6;

  // FIXME: For lack of any better information, do no harm...
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
    return 1;

  // For P7 and P8, floating-point instructions have a 6-cycle latency and
  // there are two execution units, so unroll by 12x for latency hiding.
  // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
      Directive == PPC::DIR_PWR9)
    return 12;

  // For most things, modern systems have two execution units (and
  // out-of-order execution).
  return 2;
}

int PPCTTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
    TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  // Fallback to the default implementation.
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
                                       Opd1PropInfo, Opd2PropInfo);
}

int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                               Type *SubTp) {
  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

  // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
  // (at least in the sense that there need only be one non-loop-invariant
  // instruction). We need one such shuffle instruction for each actual
  // register (this is not true for arbitrary shuffles, but is true for the
  // structured types of shuffles covered by TTI::ShuffleKind).
  return LT.first;
}

int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                 const Instruction *I) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  return BaseT::getCastInstrCost(Opcode, Dst, Src);
}

int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                   const Instruction *I) {
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}

int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
    // Double-precision scalars are already located in index #0.
    if (Index == 0)
      return 0;

    return BaseT::getVectorInstrCost(Opcode, Val, Index);
  } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
    // Floating point scalars are already located in index #0.
    if (Index == 0)
      return 0;

    return BaseT::getVectorInstrCost(Opcode, Val, Index);
  }

  // Estimated cost of a load-hit-store delay.  This was obtained
  // experimentally as a minimum needed to prevent unprofitable
  // vectorization for the paq8p benchmark.  It may need to be
  // raised further if other unprofitable cases remain.
  unsigned LHSPenalty = 2;
  if (ISD == ISD::INSERT_VECTOR_ELT)
    LHSPenalty += 7;

  // Vector element insert/extract with Altivec is very expensive,
  // because they require store and reload with the attendant
  // processor stall for load-hit-store.  Until VSX is available,
  // these need to be estimated as very costly.
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
      ISD == ISD::INSERT_VECTOR_ELT)
    return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);

  return BaseT::getVectorInstrCost(Opcode, Val, Index);
}

int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                                unsigned AddressSpace, const Instruction *I) {
  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);

  bool IsAltivecType = ST->hasAltivec() &&
                       (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
                        LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
  bool IsVSXType = ST->hasVSX() &&
                   (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
  bool IsQPXType = ST->hasQPX() &&
                   (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);

  // VSX has 32b/64b load instructions. Legalization can handle loading of
  // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
  // PPCTargetLowering can't compute the cost appropriately. So here we
  // explicitly check this case.
  unsigned MemBytes = Src->getPrimitiveSizeInBits();
  if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
      (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
    return 1;

  // Aligned loads and stores are easy.
  unsigned SrcBytes = LT.second.getStoreSize();
  if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
    return Cost;

  // If we can use the permutation-based load sequence, then this is also
  // relatively cheap (not counting loop-invariant instructions): one load plus
  // one permute (the last load in a series has extra cost, but we're
  // neglecting that here). Note that on the P7, we could do unaligned loads
  // for Altivec types using the VSX instructions, but that's more expensive
  // than using the permutation-based load sequence. On the P8, that's no
  // longer true.
  if (Opcode == Instruction::Load &&
      ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
      Alignment >= LT.second.getScalarType().getStoreSize())
    return Cost + LT.first; // Add the cost of the permutations.

  // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
  // P7, unaligned vector loads are more expensive than the permutation-based
  // load sequence, so that might be used instead, but regardless, the net cost
  // is about the same (not counting loop-invariant instructions).
  if (IsVSXType || (ST->hasVSX() && IsAltivecType))
    return Cost;

  // Newer PPC supports unaligned memory access.
  if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
    return Cost;

  // PPC in general does not support unaligned loads and stores. They'll need
  // to be decomposed based on the alignment factor.

  // Add the cost of each scalar load or store.
  Cost += LT.first*(SrcBytes/Alignment-1);

  // For a vector type, there is also scalarization overhead (only for
  // stores, loads are expanded using the vector-load + permutation sequence,
  // which is much less expensive).
  if (Src->isVectorTy() && Opcode == Instruction::Store)
    for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
      Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);

  return Cost;
}

int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                           unsigned Factor,
                                           ArrayRef<unsigned> Indices,
                                           unsigned Alignment,
                                           unsigned AddressSpace) {
  assert(isa<VectorType>(VecTy) &&
         "Expect a vector type for interleaved memory op");

  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);

  // Firstly, the cost of load/store operation.
  int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);

  // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
  // (at least in the sense that there need only be one non-loop-invariant
  // instruction). For each result vector, we need one shuffle per incoming
  // vector (except that the first shuffle can take two incoming vectors
  // because it does not need to take itself).
  Cost += Factor*(LT.first-1);

  return Cost;
}