aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCVSXFMAMutate.cpp
blob: 6b19a2f7118b22ffce2102db023b2b747480db99 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
//===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass mutates the form of VSX FMA instructions to avoid unnecessary
// copies.
//
//===----------------------------------------------------------------------===//

#include "PPCInstrInfo.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);

#define DEBUG_TYPE "ppc-vsx-fma-mutate"

namespace llvm { namespace PPC {
  int getAltVSXFMAOpcode(uint16_t Opcode);
} }

namespace {
  // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
  // (Altivec and scalar floating-point registers), we need to transform the
  // copies into subregister copies with other restrictions.
  struct PPCVSXFMAMutate : public MachineFunctionPass {
    static char ID;
    PPCVSXFMAMutate() : MachineFunctionPass(ID) {
      initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
    }

    LiveIntervals *LIS;
    const PPCInstrInfo *TII;

protected:
    bool processBlock(MachineBasicBlock &MBB) {
      bool Changed = false;

      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
      const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
           I != IE; ++I) {
        MachineInstr *MI = I;

        // The default (A-type) VSX FMA form kills the addend (it is taken from
        // the target register, which is then updated to reflect the result of
        // the FMA). If the instruction, however, kills one of the registers
        // used for the product, then we can use the M-form instruction (which
        // will take that value from the to-be-defined register).

        int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
        if (AltOpc == -1)
          continue;

        // This pass is run after register coalescing, and so we're looking for
        // a situation like this:
        //   ...
        //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
        //   ...
        //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
        //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
        //   ...
        // Where we can eliminate the copy by changing from the A-type to the
        // M-type instruction. Specifically, for this example, this means:
        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
        // is replaced by:
        //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
        //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
        // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9

        SlotIndex FMAIdx = LIS->getInstructionIndex(MI);

        VNInfo *AddendValNo =
          LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();

        // This can be null if the register is undef.
        if (!AddendValNo)
          continue;

        MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);

        // The addend and this instruction must be in the same block.

        if (!AddendMI || AddendMI->getParent() != MI->getParent())
          continue;

        // The addend must be a full copy within the same register class.

        if (!AddendMI->isFullCopy())
          continue;

        unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
        if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
          if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
              MRI.getRegClass(AddendSrcReg))
            continue;
        } else {
          // If AddendSrcReg is a physical register, make sure the destination
          // register class contains it.
          if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
                ->contains(AddendSrcReg))
            continue;
        }

        // In theory, there could be other uses of the addend copy before this
        // fma.  We could deal with this, but that would require additional
        // logic below and I suspect it will not occur in any relevant
        // situations.  Additionally, check whether the copy source is killed
        // prior to the fma.  In order to replace the addend here with the
        // source of the copy, it must still be live here.  We can't use
        // interval testing for a physical register, so as long as we're
        // walking the MIs we may as well test liveness here.
        //
        // FIXME: There is a case that occurs in practice, like this:
        //   %vreg9<def> = COPY %F1; VSSRC:%vreg9
        //   ...
        //   %vreg6<def> = COPY %vreg9; VSSRC:%vreg6,%vreg9
        //   %vreg7<def> = COPY %vreg9; VSSRC:%vreg7,%vreg9
        //   %vreg9<def,tied1> = XSMADDASP %vreg9<tied0>, %vreg1, %vreg4; VSSRC:
        //   %vreg6<def,tied1> = XSMADDASP %vreg6<tied0>, %vreg1, %vreg2; VSSRC:
        //   %vreg7<def,tied1> = XSMADDASP %vreg7<tied0>, %vreg1, %vreg3; VSSRC:
        // which prevents an otherwise-profitable transformation.
        bool OtherUsers = false, KillsAddendSrc = false;
        for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
             J != JE; --J) {
          if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
            OtherUsers = true;
            break;
          }
          if (J->modifiesRegister(AddendSrcReg, TRI) ||
              J->killsRegister(AddendSrcReg, TRI)) {
            KillsAddendSrc = true;
            break;
          }
        }

        if (OtherUsers || KillsAddendSrc)
          continue;

        // Find one of the product operands that is killed by this instruction.

        unsigned KilledProdOp = 0, OtherProdOp = 0;
        if (LIS->getInterval(MI->getOperand(2).getReg())
                     .Query(FMAIdx).isKill()) {
          KilledProdOp = 2;
          OtherProdOp  = 3;
        } else if (LIS->getInterval(MI->getOperand(3).getReg())
                     .Query(FMAIdx).isKill()) {
          KilledProdOp = 3;
          OtherProdOp  = 2;
        }

        // If there are no killed product operands, then this transformation is
        // likely not profitable.
        if (!KilledProdOp)
          continue;

        // If the addend copy is used only by this MI, then the addend source
        // register is likely not live here. This could be fixed (based on the
        // legality checks above, the live range for the addend source register
        // could be extended), but it seems likely that such a trivial copy can
        // be coalesced away later, and thus is not worth the effort.
        if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) &&
            !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
          continue;

        // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.

        unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
        unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg();

        unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
        unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
        unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg();

        bool AddRegKill = AddendMI->getOperand(1).isKill();
        bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
        bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill();

        bool AddRegUndef = AddendMI->getOperand(1).isUndef();
        bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
        bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef();

        unsigned OldFMAReg = MI->getOperand(0).getReg();

        // The transformation doesn't work well with things like:
        //    %vreg5 = A-form-op %vreg5, %vreg11, %vreg5;
        // so leave such things alone.
        if (OldFMAReg == KilledProdReg)
          continue;

        // If there isn't a class that fits, we can't perform the transform.
        // This is needed for correctness with a mixture of VSX and Altivec
        // instructions to make sure that a low VSX register is not assigned to
        // the Altivec instruction.
        if (!MRI.constrainRegClass(KilledProdReg,
                                   MRI.getRegClass(OldFMAReg)))
          continue;

        assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
               "Addend copy not tied to old FMA output!");

        DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;);

        MI->getOperand(0).setReg(KilledProdReg);
        MI->getOperand(1).setReg(KilledProdReg);
        MI->getOperand(3).setReg(AddendSrcReg);
        MI->getOperand(2).setReg(OtherProdReg);

        MI->getOperand(0).setSubReg(KilledProdSubReg);
        MI->getOperand(1).setSubReg(KilledProdSubReg);
        MI->getOperand(3).setSubReg(AddSubReg);
        MI->getOperand(2).setSubReg(OtherProdSubReg);

        MI->getOperand(1).setIsKill(KilledProdRegKill);
        MI->getOperand(3).setIsKill(AddRegKill);
        MI->getOperand(2).setIsKill(OtherProdRegKill);

        MI->getOperand(1).setIsUndef(KilledProdRegUndef);
        MI->getOperand(3).setIsUndef(AddRegUndef);
        MI->getOperand(2).setIsUndef(OtherProdRegUndef);

        MI->setDesc(TII->get(AltOpc));

        DEBUG(dbgs() << " -> " << *MI);

        // The killed product operand was killed here, so we can reuse it now
        // for the result of the fma.

        LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
        VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
        for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
             UI != UE;) {
          MachineOperand &UseMO = *UI;
          MachineInstr *UseMI = UseMO.getParent();
          ++UI;

          // Don't replace the result register of the copy we're about to erase.
          if (UseMI == AddendMI)
            continue;

          UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
        }

        // Extend the live intervals of the killed product operand to hold the
        // fma result.

        LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
        for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
             AI != AE; ++AI) {
          // Don't add the segment that corresponds to the original copy.
          if (AI->valno == AddendValNo)
            continue;

          VNInfo *NewFMAValNo =
            NewFMAInt.getNextValue(AI->start,
                                   LIS->getVNInfoAllocator());

          NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
                                                     NewFMAValNo));
        }
        DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');

        // Extend the live interval of the addend source (it might end at the
        // copy to be removed, or somewhere in between there and here). This
        // is necessary only if it is a physical register.
        if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg))
          for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
               ++Units) {
            unsigned Unit = *Units;

            LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
            AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
                                         FMAIdx.getRegSlot());
            DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n');
          }

        FMAInt.removeValNo(FMAValNo);
        DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');

        // Remove the (now unused) copy.

        DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
        LIS->RemoveMachineInstrFromMaps(AddendMI);
        AddendMI->eraseFromParent();

        Changed = true;
      }

      return Changed;
    }

public:
    bool runOnMachineFunction(MachineFunction &MF) override {
      // If we don't have VSX then go ahead and return without doing
      // anything.
      const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
      if (!STI.hasVSX())
        return false;

      LIS = &getAnalysis<LiveIntervals>();

      TII = STI.getInstrInfo();

      bool Changed = false;

      if (DisableVSXFMAMutate)
        return Changed;

      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
        MachineBasicBlock &B = *I++;
        if (processBlock(B))
          Changed = true;
      }

      return Changed;
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addRequired<SlotIndexes>();
      AU.addPreserved<SlotIndexes>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };
}

INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
                      "PowerPC VSX FMA Mutation", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
                    "PowerPC VSX FMA Mutation", false, false)

char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;

char PPCVSXFMAMutate::ID = 0;
FunctionPass *llvm::createPPCVSXFMAMutatePass() {
  return new PPCVSXFMAMutate();
}