aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
blob: 751034c2d41a1aa32edc3533532e84d813a32902 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the SystemZ target.
//
//===----------------------------------------------------------------------===//

#include "SystemZTargetMachine.h"
#include "SystemZISelLowering.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "systemz-isel"

namespace {
// Used to build addressing modes.
struct SystemZAddressingMode {
  // The shape of the address.
  enum AddrForm {
    // base+displacement
    FormBD,

    // base+displacement+index for load and store operands
    FormBDXNormal,

    // base+displacement+index for load address operands
    FormBDXLA,

    // base+displacement+index+ADJDYNALLOC
    FormBDXDynAlloc
  };
  AddrForm Form;

  // The type of displacement.  The enum names here correspond directly
  // to the definitions in SystemZOperand.td.  We could split them into
  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
  enum DispRange {
    Disp12Only,
    Disp12Pair,
    Disp20Only,
    Disp20Only128,
    Disp20Pair
  };
  DispRange DR;

  // The parts of the address.  The address is equivalent to:
  //
  //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
  SDValue Base;
  int64_t Disp;
  SDValue Index;
  bool IncludesDynAlloc;

  SystemZAddressingMode(AddrForm form, DispRange dr)
    : Form(form), DR(dr), Base(), Disp(0), Index(),
      IncludesDynAlloc(false) {}

  // True if the address can have an index register.
  bool hasIndexField() { return Form != FormBD; }

  // True if the address can (and must) include ADJDYNALLOC.
  bool isDynAlloc() { return Form == FormBDXDynAlloc; }

  void dump(const llvm::SelectionDAG *DAG) {
    errs() << "SystemZAddressingMode " << this << '\n';

    errs() << " Base ";
    if (Base.getNode())
      Base.getNode()->dump(DAG);
    else
      errs() << "null\n";

    if (hasIndexField()) {
      errs() << " Index ";
      if (Index.getNode())
        Index.getNode()->dump(DAG);
      else
        errs() << "null\n";
    }

    errs() << " Disp " << Disp;
    if (IncludesDynAlloc)
      errs() << " + ADJDYNALLOC";
    errs() << '\n';
  }
};

// Return a mask with Count low bits set.
static uint64_t allOnes(unsigned int Count) {
  assert(Count <= 64);
  if (Count > 63)
    return UINT64_MAX;
  return (uint64_t(1) << Count) - 1;
}

// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
// given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
// Rotate (I5).  The combined operand value is effectively:
//
//   (or (rotl Input, Rotate), ~Mask)
//
// for RNSBG and:
//
//   (and (rotl Input, Rotate), Mask)
//
// otherwise.  The output value has BitSize bits, although Input may be
// narrower (in which case the upper bits are don't care), or wider (in which
// case the result will be truncated as part of the operation).
struct RxSBGOperands {
  RxSBGOperands(unsigned Op, SDValue N)
    : Opcode(Op), BitSize(N.getValueSizeInBits()),
      Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
      Rotate(0) {}

  unsigned Opcode;
  unsigned BitSize;
  uint64_t Mask;
  SDValue Input;
  unsigned Start;
  unsigned End;
  unsigned Rotate;
};

class SystemZDAGToDAGISel : public SelectionDAGISel {
  const SystemZSubtarget *Subtarget;

  // Used by SystemZOperands.td to create integer constants.
  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
    return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
  }

  const SystemZTargetMachine &getTargetMachine() const {
    return static_cast<const SystemZTargetMachine &>(TM);
  }

  const SystemZInstrInfo *getInstrInfo() const {
    return Subtarget->getInstrInfo();
  }

  // Try to fold more of the base or index of AM into AM, where IsBase
  // selects between the base and index.
  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;

  // Try to describe N in AM, returning true on success.
  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;

  // Extract individual target operands from matched address AM.
  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
                          SDValue &Base, SDValue &Disp) const;
  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
                          SDValue &Base, SDValue &Disp, SDValue &Index) const;

  // Try to match Addr as a FormBD address with displacement type DR.
  // Return true on success, storing the base and displacement in
  // Base and Disp respectively.
  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
                    SDValue &Base, SDValue &Disp) const;

  // Try to match Addr as a FormBDX address with displacement type DR.
  // Return true on success and if the result had no index.  Store the
  // base and displacement in Base and Disp respectively.
  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
                     SDValue &Base, SDValue &Disp) const;

  // Try to match Addr as a FormBDX* address of form Form with
  // displacement type DR.  Return true on success, storing the base,
  // displacement and index in Base, Disp and Index respectively.
  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
                     SystemZAddressingMode::DispRange DR, SDValue Addr,
                     SDValue &Base, SDValue &Disp, SDValue &Index) const;

  // PC-relative address matching routines used by SystemZOperands.td.
  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
    if (SystemZISD::isPCREL(Addr.getOpcode())) {
      Target = Addr.getOperand(0);
      return true;
    }
    return false;
  }

  // BD matching routines used by SystemZOperands.td.
  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
    return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
  }
  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
    return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
  }
  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
    return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
  }
  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
    return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
  }

  // MVI matching routines used by SystemZOperands.td.
  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
    return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
  }
  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
    return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
  }

  // BDX matching routines used by SystemZOperands.td.
  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
                           SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
                         SystemZAddressingMode::Disp12Only,
                         Addr, Base, Disp, Index);
  }
  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
                           SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
                         SystemZAddressingMode::Disp12Pair,
                         Addr, Base, Disp, Index);
  }
  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
                            SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
                         SystemZAddressingMode::Disp12Only,
                         Addr, Base, Disp, Index);
  }
  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
                           SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
                         SystemZAddressingMode::Disp20Only,
                         Addr, Base, Disp, Index);
  }
  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
                              SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
                         SystemZAddressingMode::Disp20Only128,
                         Addr, Base, Disp, Index);
  }
  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
                           SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
                         SystemZAddressingMode::Disp20Pair,
                         Addr, Base, Disp, Index);
  }
  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
                          SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
                         SystemZAddressingMode::Disp12Pair,
                         Addr, Base, Disp, Index);
  }
  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
                          SDValue &Index) const {
    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
                         SystemZAddressingMode::Disp20Pair,
                         Addr, Base, Disp, Index);
  }

  // Try to match Addr as an address with a base, 12-bit displacement
  // and index, where the index is element Elem of a vector.
  // Return true on success, storing the base, displacement and vector
  // in Base, Disp and Index respectively.
  bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
                           SDValue &Disp, SDValue &Index) const;

  // Check whether (or Op (and X InsertMask)) is effectively an insertion
  // of X into bits InsertMask of some Y != Op.  Return true if so and
  // set Op to that Y.
  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;

  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
  // Return true on success.
  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;

  // Try to fold some of RxSBG.Input into other fields of RxSBG.
  // Return true on success.
  bool expandRxSBG(RxSBGOperands &RxSBG) const;

  // Return an undefined value of type VT.
  SDValue getUNDEF(const SDLoc &DL, EVT VT) const;

  // Convert N to VT, if it isn't already.
  SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;

  // Try to implement AND or shift node N using RISBG with the zero flag set.
  // Return the selected node on success, otherwise return null.
  bool tryRISBGZero(SDNode *N);

  // Try to use RISBG or Opcode to implement OR or XOR node N.
  // Return the selected node on success, otherwise return null.
  bool tryRxSBG(SDNode *N, unsigned Opcode);

  // If Op0 is null, then Node is a constant that can be loaded using:
  //
  //   (Opcode UpperVal LowerVal)
  //
  // If Op0 is nonnull, then Node can be implemented using:
  //
  //   (Opcode (Opcode Op0 UpperVal) LowerVal)
  void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
                           uint64_t UpperVal, uint64_t LowerVal);

  void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
                          SDNode *Node);

  // Try to use gather instruction Opcode to implement vector insertion N.
  bool tryGather(SDNode *N, unsigned Opcode);

  // Try to use scatter instruction Opcode to implement store Store.
  bool tryScatter(StoreSDNode *Store, unsigned Opcode);

  // Change a chain of {load; op; store} of the same value into a simple op
  // through memory of that value, if the uses of the modified value and its
  // address are suitable.
  bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);

  // Return true if Load and Store are loads and stores of the same size
  // and are guaranteed not to overlap.  Such operations can be implemented
  // using block (SS-format) instructions.
  //
  // Partial overlap would lead to incorrect code, since the block operations
  // are logically bytewise, even though they have a fast path for the
  // non-overlapping case.  We also need to avoid full overlap (i.e. two
  // addresses that might be equal at run time) because although that case
  // would be handled correctly, it might be implemented by millicode.
  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;

  // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
  // from Y to X.
  bool storeLoadCanUseMVC(SDNode *N) const;

  // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
  // to X.
  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;

  // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
  SDValue expandSelectBoolean(SDNode *Node);

public:
  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(TM, OptLevel) {}

  bool runOnMachineFunction(MachineFunction &MF) override {
    const Function &F = MF.getFunction();
    if (F.getFnAttribute("mnop-mcount").getValueAsString() == "true" &&
        F.getFnAttribute("fentry-call").getValueAsString() != "true")
      report_fatal_error("mnop-mcount only supported with fentry-call");

    Subtarget = &MF.getSubtarget<SystemZSubtarget>();
    return SelectionDAGISel::runOnMachineFunction(MF);
  }

  // Override MachineFunctionPass.
  StringRef getPassName() const override {
    return "SystemZ DAG->DAG Pattern Instruction Selection";
  }

  // Override SelectionDAGISel.
  void Select(SDNode *Node) override;
  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
                                    std::vector<SDValue> &OutOps) override;
  bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
  void PreprocessISelDAG() override;

  // Include the pieces autogenerated from the target description.
  #include "SystemZGenDAGISel.inc"
};
} // end anonymous namespace

FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
                                         CodeGenOpt::Level OptLevel) {
  return new SystemZDAGToDAGISel(TM, OptLevel);
}

// Return true if Val should be selected as a displacement for an address
// with range DR.  Here we're interested in the range of both the instruction
// described by DR and of any pairing instruction.
static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
  switch (DR) {
  case SystemZAddressingMode::Disp12Only:
    return isUInt<12>(Val);

  case SystemZAddressingMode::Disp12Pair:
  case SystemZAddressingMode::Disp20Only:
  case SystemZAddressingMode::Disp20Pair:
    return isInt<20>(Val);

  case SystemZAddressingMode::Disp20Only128:
    return isInt<20>(Val) && isInt<20>(Val + 8);
  }
  llvm_unreachable("Unhandled displacement range");
}

// Change the base or index in AM to Value, where IsBase selects
// between the base and index.
static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
                            SDValue Value) {
  if (IsBase)
    AM.Base = Value;
  else
    AM.Index = Value;
}

// The base or index of AM is equivalent to Value + ADJDYNALLOC,
// where IsBase selects between the base and index.  Try to fold the
// ADJDYNALLOC into AM.
static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
                              SDValue Value) {
  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
    changeComponent(AM, IsBase, Value);
    AM.IncludesDynAlloc = true;
    return true;
  }
  return false;
}

// The base of AM is equivalent to Base + Index.  Try to use Index as
// the index register.
static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
                        SDValue Index) {
  if (AM.hasIndexField() && !AM.Index.getNode()) {
    AM.Base = Base;
    AM.Index = Index;
    return true;
  }
  return false;
}

// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
// between the base and index.  Try to fold Op1 into AM's displacement.
static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
                       SDValue Op0, uint64_t Op1) {
  // First try adjusting the displacement.
  int64_t TestDisp = AM.Disp + Op1;
  if (selectDisp(AM.DR, TestDisp)) {
    changeComponent(AM, IsBase, Op0);
    AM.Disp = TestDisp;
    return true;
  }

  // We could consider forcing the displacement into a register and
  // using it as an index, but it would need to be carefully tuned.
  return false;
}

bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
                                        bool IsBase) const {
  SDValue N = IsBase ? AM.Base : AM.Index;
  unsigned Opcode = N.getOpcode();
  if (Opcode == ISD::TRUNCATE) {
    N = N.getOperand(0);
    Opcode = N.getOpcode();
  }
  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
    SDValue Op0 = N.getOperand(0);
    SDValue Op1 = N.getOperand(1);

    unsigned Op0Code = Op0->getOpcode();
    unsigned Op1Code = Op1->getOpcode();

    if (Op0Code == SystemZISD::ADJDYNALLOC)
      return expandAdjDynAlloc(AM, IsBase, Op1);
    if (Op1Code == SystemZISD::ADJDYNALLOC)
      return expandAdjDynAlloc(AM, IsBase, Op0);

    if (Op0Code == ISD::Constant)
      return expandDisp(AM, IsBase, Op1,
                        cast<ConstantSDNode>(Op0)->getSExtValue());
    if (Op1Code == ISD::Constant)
      return expandDisp(AM, IsBase, Op0,
                        cast<ConstantSDNode>(Op1)->getSExtValue());

    if (IsBase && expandIndex(AM, Op0, Op1))
      return true;
  }
  if (Opcode == SystemZISD::PCREL_OFFSET) {
    SDValue Full = N.getOperand(0);
    SDValue Base = N.getOperand(1);
    SDValue Anchor = Base.getOperand(0);
    uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
                       cast<GlobalAddressSDNode>(Anchor)->getOffset());
    return expandDisp(AM, IsBase, Base, Offset);
  }
  return false;
}

// Return true if an instruction with displacement range DR should be
// used for displacement value Val.  selectDisp(DR, Val) must already hold.
static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
  assert(selectDisp(DR, Val) && "Invalid displacement");
  switch (DR) {
  case SystemZAddressingMode::Disp12Only:
  case SystemZAddressingMode::Disp20Only:
  case SystemZAddressingMode::Disp20Only128:
    return true;

  case SystemZAddressingMode::Disp12Pair:
    // Use the other instruction if the displacement is too large.
    return isUInt<12>(Val);

  case SystemZAddressingMode::Disp20Pair:
    // Use the other instruction if the displacement is small enough.
    return !isUInt<12>(Val);
  }
  llvm_unreachable("Unhandled displacement range");
}

// Return true if Base + Disp + Index should be performed by LA(Y).
static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
  // Don't use LA(Y) for constants.
  if (!Base)
    return false;

  // Always use LA(Y) for frame addresses, since we know that the destination
  // register is almost always (perhaps always) going to be different from
  // the frame register.
  if (Base->getOpcode() == ISD::FrameIndex)
    return true;

  if (Disp) {
    // Always use LA(Y) if there is a base, displacement and index.
    if (Index)
      return true;

    // Always use LA if the displacement is small enough.  It should always
    // be no worse than AGHI (and better if it avoids a move).
    if (isUInt<12>(Disp))
      return true;

    // For similar reasons, always use LAY if the constant is too big for AGHI.
    // LAY should be no worse than AGFI.
    if (!isInt<16>(Disp))
      return true;
  } else {
    // Don't use LA for plain registers.
    if (!Index)
      return false;

    // Don't use LA for plain addition if the index operand is only used
    // once.  It should be a natural two-operand addition in that case.
    if (Index->hasOneUse())
      return false;

    // Prefer addition if the second operation is sign-extended, in the
    // hope of using AGF.
    unsigned IndexOpcode = Index->getOpcode();
    if (IndexOpcode == ISD::SIGN_EXTEND ||
        IndexOpcode == ISD::SIGN_EXTEND_INREG)
      return false;
  }

  // Don't use LA for two-operand addition if either operand is only
  // used once.  The addition instructions are better in that case.
  if (Base->hasOneUse())
    return false;

  return true;
}

// Return true if Addr is suitable for AM, updating AM if so.
bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
                                        SystemZAddressingMode &AM) const {
  // Start out assuming that the address will need to be loaded separately,
  // then try to extend it as much as we can.
  AM.Base = Addr;

  // First try treating the address as a constant.
  if (Addr.getOpcode() == ISD::Constant &&
      expandDisp(AM, true, SDValue(),
                 cast<ConstantSDNode>(Addr)->getSExtValue()))
    ;
  // Also see if it's a bare ADJDYNALLOC.
  else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
           expandAdjDynAlloc(AM, true, SDValue()))
    ;
  else
    // Otherwise try expanding each component.
    while (expandAddress(AM, true) ||
           (AM.Index.getNode() && expandAddress(AM, false)))
      continue;

  // Reject cases where it isn't profitable to use LA(Y).
  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
      !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
    return false;

  // Reject cases where the other instruction in a pair should be used.
  if (!isValidDisp(AM.DR, AM.Disp))
    return false;

  // Make sure that ADJDYNALLOC is included where necessary.
  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
    return false;

  LLVM_DEBUG(AM.dump(CurDAG));
  return true;
}

// Insert a node into the DAG at least before Pos.  This will reposition
// the node as needed, and will assign it a node ID that is <= Pos's ID.
// Note that this does *not* preserve the uniqueness of node IDs!
// The selection DAG must no longer depend on their uniqueness when this
// function is used.
static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
  if (N->getNodeId() == -1 ||
      (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
       SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
    DAG->RepositionNode(Pos->getIterator(), N.getNode());
    // Mark Node as invalid for pruning as after this it may be a successor to a
    // selected node but otherwise be in the same position of Pos.
    // Conservatively mark it with the same -abs(Id) to assure node id
    // invariant is preserved.
    N->setNodeId(Pos->getNodeId());
    SelectionDAGISel::InvalidateNodeId(N.getNode());
  }
}

void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
                                             EVT VT, SDValue &Base,
                                             SDValue &Disp) const {
  Base = AM.Base;
  if (!Base.getNode())
    // Register 0 means "no base".  This is mostly useful for shifts.
    Base = CurDAG->getRegister(0, VT);
  else if (Base.getOpcode() == ISD::FrameIndex) {
    // Lower a FrameIndex to a TargetFrameIndex.
    int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
    Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
  } else if (Base.getValueType() != VT) {
    // Truncate values from i64 to i32, for shifts.
    assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
           "Unexpected truncation");
    SDLoc DL(Base);
    SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
    insertDAGNode(CurDAG, Base.getNode(), Trunc);
    Base = Trunc;
  }

  // Lower the displacement to a TargetConstant.
  Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
}

void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
                                             EVT VT, SDValue &Base,
                                             SDValue &Disp,
                                             SDValue &Index) const {
  getAddressOperands(AM, VT, Base, Disp);

  Index = AM.Index;
  if (!Index.getNode())
    // Register 0 means "no index".
    Index = CurDAG->getRegister(0, VT);
}

bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
                                       SDValue Addr, SDValue &Base,
                                       SDValue &Disp) const {
  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
  if (!selectAddress(Addr, AM))
    return false;

  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
  return true;
}

bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
                                        SDValue Addr, SDValue &Base,
                                        SDValue &Disp) const {
  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
  if (!selectAddress(Addr, AM) || AM.Index.getNode())
    return false;

  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
  return true;
}

bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
                                        SystemZAddressingMode::DispRange DR,
                                        SDValue Addr, SDValue &Base,
                                        SDValue &Disp, SDValue &Index) const {
  SystemZAddressingMode AM(Form, DR);
  if (!selectAddress(Addr, AM))
    return false;

  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
  return true;
}

bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
                                              SDValue &Base,
                                              SDValue &Disp,
                                              SDValue &Index) const {
  SDValue Regs[2];
  if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
      Regs[0].getNode() && Regs[1].getNode()) {
    for (unsigned int I = 0; I < 2; ++I) {
      Base = Regs[I];
      Index = Regs[1 - I];
      // We can't tell here whether the index vector has the right type
      // for the access; the caller needs to do that instead.
      if (Index.getOpcode() == ISD::ZERO_EXTEND)
        Index = Index.getOperand(0);
      if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
          Index.getOperand(1) == Elem) {
        Index = Index.getOperand(0);
        return true;
      }
    }
  }
  return false;
}

bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
                                               uint64_t InsertMask) const {
  // We're only interested in cases where the insertion is into some operand
  // of Op, rather than into Op itself.  The only useful case is an AND.
  if (Op.getOpcode() != ISD::AND)
    return false;

  // We need a constant mask.
  auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
  if (!MaskNode)
    return false;

  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
  uint64_t AndMask = MaskNode->getZExtValue();
  if (InsertMask & AndMask)
    return false;

  // It's only an insertion if all bits are covered or are known to be zero.
  // The inner check covers all cases but is more expensive.
  uint64_t Used = allOnes(Op.getValueSizeInBits());
  if (Used != (AndMask | InsertMask)) {
    KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
    if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
      return false;
  }

  Op = Op.getOperand(0);
  return true;
}

bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
                                          uint64_t Mask) const {
  const SystemZInstrInfo *TII = getInstrInfo();
  if (RxSBG.Rotate != 0)
    Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
  Mask &= RxSBG.Mask;
  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
    RxSBG.Mask = Mask;
    return true;
  }
  return false;
}

// Return true if any bits of (RxSBG.Input & Mask) are significant.
static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
  // Rotate the mask in the same way as RxSBG.Input is rotated.
  if (RxSBG.Rotate != 0)
    Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
  return (Mask & RxSBG.Mask) != 0;
}

bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
  SDValue N = RxSBG.Input;
  unsigned Opcode = N.getOpcode();
  switch (Opcode) {
  case ISD::TRUNCATE: {
    if (RxSBG.Opcode == SystemZ::RNSBG)
      return false;
    uint64_t BitSize = N.getValueSizeInBits();
    uint64_t Mask = allOnes(BitSize);
    if (!refineRxSBGMask(RxSBG, Mask))
      return false;
    RxSBG.Input = N.getOperand(0);
    return true;
  }
  case ISD::AND: {
    if (RxSBG.Opcode == SystemZ::RNSBG)
      return false;

    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    if (!MaskNode)
      return false;

    SDValue Input = N.getOperand(0);
    uint64_t Mask = MaskNode->getZExtValue();
    if (!refineRxSBGMask(RxSBG, Mask)) {
      // If some bits of Input are already known zeros, those bits will have
      // been removed from the mask.  See if adding them back in makes the
      // mask suitable.
      KnownBits Known = CurDAG->computeKnownBits(Input);
      Mask |= Known.Zero.getZExtValue();
      if (!refineRxSBGMask(RxSBG, Mask))
        return false;
    }
    RxSBG.Input = Input;
    return true;
  }

  case ISD::OR: {
    if (RxSBG.Opcode != SystemZ::RNSBG)
      return false;

    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    if (!MaskNode)
      return false;

    SDValue Input = N.getOperand(0);
    uint64_t Mask = ~MaskNode->getZExtValue();
    if (!refineRxSBGMask(RxSBG, Mask)) {
      // If some bits of Input are already known ones, those bits will have
      // been removed from the mask.  See if adding them back in makes the
      // mask suitable.
      KnownBits Known = CurDAG->computeKnownBits(Input);
      Mask &= ~Known.One.getZExtValue();
      if (!refineRxSBGMask(RxSBG, Mask))
        return false;
    }
    RxSBG.Input = Input;
    return true;
  }

  case ISD::ROTL: {
    // Any 64-bit rotate left can be merged into the RxSBG.
    if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
      return false;
    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    if (!CountNode)
      return false;

    RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
    RxSBG.Input = N.getOperand(0);
    return true;
  }

  case ISD::ANY_EXTEND:
    // Bits above the extended operand are don't-care.
    RxSBG.Input = N.getOperand(0);
    return true;

  case ISD::ZERO_EXTEND:
    if (RxSBG.Opcode != SystemZ::RNSBG) {
      // Restrict the mask to the extended operand.
      unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
      if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
        return false;

      RxSBG.Input = N.getOperand(0);
      return true;
    }
    LLVM_FALLTHROUGH;

  case ISD::SIGN_EXTEND: {
    // Check that the extension bits are don't-care (i.e. are masked out
    // by the final mask).
    unsigned BitSize = N.getValueSizeInBits();
    unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
    if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
      // In the case where only the sign bit is active, increase Rotate with
      // the extension width.
      if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
        RxSBG.Rotate += (BitSize - InnerBitSize);
      else
        return false;
    }

    RxSBG.Input = N.getOperand(0);
    return true;
  }

  case ISD::SHL: {
    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    if (!CountNode)
      return false;

    uint64_t Count = CountNode->getZExtValue();
    unsigned BitSize = N.getValueSizeInBits();
    if (Count < 1 || Count >= BitSize)
      return false;

    if (RxSBG.Opcode == SystemZ::RNSBG) {
      // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
      // count bits from RxSBG.Input are ignored.
      if (maskMatters(RxSBG, allOnes(Count)))
        return false;
    } else {
      // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
        return false;
    }

    RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
    RxSBG.Input = N.getOperand(0);
    return true;
  }

  case ISD::SRL:
  case ISD::SRA: {
    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    if (!CountNode)
      return false;

    uint64_t Count = CountNode->getZExtValue();
    unsigned BitSize = N.getValueSizeInBits();
    if (Count < 1 || Count >= BitSize)
      return false;

    if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
      // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
      // count bits from RxSBG.Input are ignored.
      if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
        return false;
    } else {
      // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
      // which is similar to SLL above.
      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
        return false;
    }

    RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
    RxSBG.Input = N.getOperand(0);
    return true;
  }
  default:
    return false;
  }
}

SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
  return SDValue(N, 0);
}

SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
                                       SDValue N) const {
  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
    return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
                                         DL, VT, getUNDEF(DL, MVT::i64), N);
  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
    return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
  assert(N.getValueType() == VT && "Unexpected value types");
  return N;
}

bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  if (!VT.isInteger() || VT.getSizeInBits() > 64)
    return false;
  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
  unsigned Count = 0;
  while (expandRxSBG(RISBG))
    // The widening or narrowing is expected to be free.
    // Counting widening or narrowing as a saved operation will result in
    // preferring an R*SBG over a simple shift/logical instruction.
    if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
        RISBG.Input.getOpcode() != ISD::TRUNCATE)
      Count += 1;
  if (Count == 0)
    return false;

  // Prefer to use normal shift instructions over RISBG, since they can handle
  // all cases and are sometimes shorter.
  if (Count == 1 && N->getOpcode() != ISD::AND)
    return false;

  // Prefer register extensions like LLC over RISBG.  Also prefer to start
  // out with normal ANDs if one instruction would be enough.  We can convert
  // these ANDs into an RISBG later if a three-address instruction is useful.
  if (RISBG.Rotate == 0) {
    bool PreferAnd = false;
    // Prefer AND for any 32-bit and-immediate operation.
    if (VT == MVT::i32)
      PreferAnd = true;
    // As well as for any 64-bit operation that can be implemented via LLC(R),
    // LLH(R), LLGT(R), or one of the and-immediate instructions.
    else if (RISBG.Mask == 0xff ||
             RISBG.Mask == 0xffff ||
             RISBG.Mask == 0x7fffffff ||
             SystemZ::isImmLF(~RISBG.Mask) ||
             SystemZ::isImmHF(~RISBG.Mask))
     PreferAnd = true;
    // And likewise for the LLZRGF instruction, which doesn't have a register
    // to register version.
    else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
      if (Load->getMemoryVT() == MVT::i32 &&
          (Load->getExtensionType() == ISD::EXTLOAD ||
           Load->getExtensionType() == ISD::ZEXTLOAD) &&
          RISBG.Mask == 0xffffff00 &&
          Subtarget->hasLoadAndZeroRightmostByte())
      PreferAnd = true;
    }
    if (PreferAnd) {
      // Replace the current node with an AND.  Note that the current node
      // might already be that same AND, in which case it is already CSE'd
      // with it, and we must not call ReplaceNode.
      SDValue In = convertTo(DL, VT, RISBG.Input);
      SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
      SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
      if (N != New.getNode()) {
        insertDAGNode(CurDAG, N, Mask);
        insertDAGNode(CurDAG, N, New);
        ReplaceNode(N, New.getNode());
        N = New.getNode();
      }
      // Now, select the machine opcode to implement this operation.
      if (!N->isMachineOpcode())
        SelectCode(N);
      return true;
    }
  }

  unsigned Opcode = SystemZ::RISBG;
  // Prefer RISBGN if available, since it does not clobber CC.
  if (Subtarget->hasMiscellaneousExtensions())
    Opcode = SystemZ::RISBGN;
  EVT OpcodeVT = MVT::i64;
  if (VT == MVT::i32 && Subtarget->hasHighWord() &&
      // We can only use the 32-bit instructions if all source bits are
      // in the low 32 bits without wrapping, both after rotation (because
      // of the smaller range for Start and End) and before rotation
      // (because the input value is truncated).
      RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
      ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
      ((RISBG.End + RISBG.Rotate) & 63) >=
      ((RISBG.Start + RISBG.Rotate) & 63)) {
    Opcode = SystemZ::RISBMux;
    OpcodeVT = MVT::i32;
    RISBG.Start &= 31;
    RISBG.End &= 31;
  }
  SDValue Ops[5] = {
    getUNDEF(DL, OpcodeVT),
    convertTo(DL, OpcodeVT, RISBG.Input),
    CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
    CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
    CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
  };
  SDValue New = convertTo(
      DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
  ReplaceNode(N, New.getNode());
  return true;
}

bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  if (!VT.isInteger() || VT.getSizeInBits() > 64)
    return false;
  // Try treating each operand of N as the second operand of the RxSBG
  // and see which goes deepest.
  RxSBGOperands RxSBG[] = {
    RxSBGOperands(Opcode, N->getOperand(0)),
    RxSBGOperands(Opcode, N->getOperand(1))
  };
  unsigned Count[] = { 0, 0 };
  for (unsigned I = 0; I < 2; ++I)
    while (expandRxSBG(RxSBG[I]))
      // The widening or narrowing is expected to be free.
      // Counting widening or narrowing as a saved operation will result in
      // preferring an R*SBG over a simple shift/logical instruction.
      if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
          RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
        Count[I] += 1;

  // Do nothing if neither operand is suitable.
  if (Count[0] == 0 && Count[1] == 0)
    return false;

  // Pick the deepest second operand.
  unsigned I = Count[0] > Count[1] ? 0 : 1;
  SDValue Op0 = N->getOperand(I ^ 1);

  // Prefer IC for character insertions from memory.
  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
    if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
      if (Load->getMemoryVT() == MVT::i8)
        return false;

  // See whether we can avoid an AND in the first operand by converting
  // ROSBG to RISBG.
  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
    Opcode = SystemZ::RISBG;
    // Prefer RISBGN if available, since it does not clobber CC.
    if (Subtarget->hasMiscellaneousExtensions())
      Opcode = SystemZ::RISBGN;
  }

  SDValue Ops[5] = {
    convertTo(DL, MVT::i64, Op0),
    convertTo(DL, MVT::i64, RxSBG[I].Input),
    CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
    CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
    CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
  };
  SDValue New = convertTo(
      DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
  ReplaceNode(N, New.getNode());
  return true;
}

void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
                                              SDValue Op0, uint64_t UpperVal,
                                              uint64_t LowerVal) {
  EVT VT = Node->getValueType(0);
  SDLoc DL(Node);
  SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
  if (Op0.getNode())
    Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);

  {
    // When we haven't passed in Op0, Upper will be a constant. In order to
    // prevent folding back to the large immediate in `Or = getNode(...)` we run
    // SelectCode first and end up with an opaque machine node. This means that
    // we need to use a handle to keep track of Upper in case it gets CSE'd by
    // SelectCode.
    //
    // Note that in the case where Op0 is passed in we could just call
    // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
    // the handle at all, but it's fine to do it here.
    //
    // TODO: This is a pretty hacky way to do this. Can we do something that
    // doesn't require a two paragraph explanation?
    HandleSDNode Handle(Upper);
    SelectCode(Upper.getNode());
    Upper = Handle.getValue();
  }

  SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);

  ReplaceNode(Node, Or.getNode());

  SelectCode(Or.getNode());
}

void SystemZDAGToDAGISel::loadVectorConstant(
    const SystemZVectorConstantInfo &VCI, SDNode *Node) {
  assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
          VCI.Opcode == SystemZISD::REPLICATE ||
          VCI.Opcode == SystemZISD::ROTATE_MASK) &&
         "Bad opcode!");
  assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
  EVT VT = Node->getValueType(0);
  SDLoc DL(Node);
  SmallVector<SDValue, 2> Ops;
  for (unsigned OpVal : VCI.OpVals)
    Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
  SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);

  if (VCI.VecVT == VT.getSimpleVT())
    ReplaceNode(Node, Op.getNode());
  else if (VT.getSizeInBits() == 128) {
    SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
    ReplaceNode(Node, BitCast.getNode());
    SelectCode(BitCast.getNode());
  } else { // float or double
    unsigned SubRegIdx =
        (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
    ReplaceNode(
        Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
  }
  SelectCode(Op.getNode());
}

bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
  SDValue ElemV = N->getOperand(2);
  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
  if (!ElemN)
    return false;

  unsigned Elem = ElemN->getZExtValue();
  EVT VT = N->getValueType(0);
  if (Elem >= VT.getVectorNumElements())
    return false;

  auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
  if (!Load || !Load->hasNUsesOfValue(1, 0))
    return false;
  if (Load->getMemoryVT().getSizeInBits() !=
      Load->getValueType(0).getSizeInBits())
    return false;

  SDValue Base, Disp, Index;
  if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
      Index.getValueType() != VT.changeVectorElementTypeToInteger())
    return false;

  SDLoc DL(Load);
  SDValue Ops[] = {
    N->getOperand(0), Base, Disp, Index,
    CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
  };
  SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
  ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
  ReplaceNode(N, Res);
  return true;
}

bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
  SDValue Value = Store->getValue();
  if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
    return false;
  if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
    return false;

  SDValue ElemV = Value.getOperand(1);
  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
  if (!ElemN)
    return false;

  SDValue Vec = Value.getOperand(0);
  EVT VT = Vec.getValueType();
  unsigned Elem = ElemN->getZExtValue();
  if (Elem >= VT.getVectorNumElements())
    return false;

  SDValue Base, Disp, Index;
  if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
      Index.getValueType() != VT.changeVectorElementTypeToInteger())
    return false;

  SDLoc DL(Store);
  SDValue Ops[] = {
    Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
    Store->getChain()
  };
  ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
  return true;
}

// Check whether or not the chain ending in StoreNode is suitable for doing
// the {load; op; store} to modify transformation.
static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
                                        SDValue StoredVal, SelectionDAG *CurDAG,
                                        LoadSDNode *&LoadNode,
                                        SDValue &InputChain) {
  // Is the stored value result 0 of the operation?
  if (StoredVal.getResNo() != 0)
    return false;

  // Are there other uses of the loaded value than the operation?
  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
    return false;

  // Is the store non-extending and non-indexed?
  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
    return false;

  SDValue Load = StoredVal->getOperand(0);
  // Is the stored value a non-extending and non-indexed load?
  if (!ISD::isNormalLoad(Load.getNode()))
    return false;

  // Return LoadNode by reference.
  LoadNode = cast<LoadSDNode>(Load);

  // Is store the only read of the loaded value?
  if (!Load.hasOneUse())
    return false;

  // Is the address of the store the same as the load?
  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
      LoadNode->getOffset() != StoreNode->getOffset())
    return false;

  // Check if the chain is produced by the load or is a TokenFactor with
  // the load output chain as an operand. Return InputChain by reference.
  SDValue Chain = StoreNode->getChain();

  bool ChainCheck = false;
  if (Chain == Load.getValue(1)) {
    ChainCheck = true;
    InputChain = LoadNode->getChain();
  } else if (Chain.getOpcode() == ISD::TokenFactor) {
    SmallVector<SDValue, 4> ChainOps;
    SmallVector<const SDNode *, 4> LoopWorklist;
    SmallPtrSet<const SDNode *, 16> Visited;
    const unsigned int Max = 1024;
    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
      SDValue Op = Chain.getOperand(i);
      if (Op == Load.getValue(1)) {
        ChainCheck = true;
        // Drop Load, but keep its chain. No cycle check necessary.
        ChainOps.push_back(Load.getOperand(0));
        continue;
      }
      LoopWorklist.push_back(Op.getNode());
      ChainOps.push_back(Op);
    }

    if (ChainCheck) {
      // Add the other operand of StoredVal to worklist.
      for (SDValue Op : StoredVal->ops())
        if (Op.getNode() != LoadNode)
          LoopWorklist.push_back(Op.getNode());

      // Check if Load is reachable from any of the nodes in the worklist.
      if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
                                       true))
        return false;

      // Make a new TokenFactor with all the other input chains except
      // for the load.
      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
                                   MVT::Other, ChainOps);
    }
  }
  if (!ChainCheck)
    return false;

  return true;
}

// Change a chain of {load; op; store} of the same value into a simple op
// through memory of that value, if the uses of the modified value and its
// address are suitable.
//
// The tablegen pattern memory operand pattern is currently not able to match
// the case where the CC on the original operation are used.
//
// See the equivalent routine in X86ISelDAGToDAG for further comments.
bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
  StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
  SDValue StoredVal = StoreNode->getOperand(1);
  unsigned Opc = StoredVal->getOpcode();
  SDLoc DL(StoreNode);

  // Before we try to select anything, make sure this is memory operand size
  // and opcode we can handle. Note that this must match the code below that
  // actually lowers the opcodes.
  EVT MemVT = StoreNode->getMemoryVT();
  unsigned NewOpc = 0;
  bool NegateOperand = false;
  switch (Opc) {
  default:
    return false;
  case SystemZISD::SSUBO:
    NegateOperand = true;
    LLVM_FALLTHROUGH;
  case SystemZISD::SADDO:
    if (MemVT == MVT::i32)
      NewOpc = SystemZ::ASI;
    else if (MemVT == MVT::i64)
      NewOpc = SystemZ::AGSI;
    else
      return false;
    break;
  case SystemZISD::USUBO:
    NegateOperand = true;
    LLVM_FALLTHROUGH;
  case SystemZISD::UADDO:
    if (MemVT == MVT::i32)
      NewOpc = SystemZ::ALSI;
    else if (MemVT == MVT::i64)
      NewOpc = SystemZ::ALGSI;
    else
      return false;
    break;
  }

  LoadSDNode *LoadNode = nullptr;
  SDValue InputChain;
  if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
                                   InputChain))
    return false;

  SDValue Operand = StoredVal.getOperand(1);
  auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
  if (!OperandC)
    return false;
  auto OperandV = OperandC->getAPIntValue();
  if (NegateOperand)
    OperandV = -OperandV;
  if (OperandV.getMinSignedBits() > 8)
    return false;
  Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);

  SDValue Base, Disp;
  if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
    return false;

  SDValue Ops[] = { Base, Disp, Operand, InputChain };
  MachineSDNode *Result =
    CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
  CurDAG->setNodeMemRefs(
      Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});

  ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
  ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
  CurDAG->RemoveDeadNode(Node);
  return true;
}

bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
                                               LoadSDNode *Load) const {
  // Check that the two memory operands have the same size.
  if (Load->getMemoryVT() != Store->getMemoryVT())
    return false;

  // Volatility stops an access from being decomposed.
  if (Load->isVolatile() || Store->isVolatile())
    return false;

  // There's no chance of overlap if the load is invariant.
  if (Load->isInvariant() && Load->isDereferenceable())
    return true;

  // Otherwise we need to check whether there's an alias.
  const Value *V1 = Load->getMemOperand()->getValue();
  const Value *V2 = Store->getMemOperand()->getValue();
  if (!V1 || !V2)
    return false;

  // Reject equality.
  uint64_t Size = Load->getMemoryVT().getStoreSize();
  int64_t End1 = Load->getSrcValueOffset() + Size;
  int64_t End2 = Store->getSrcValueOffset() + Size;
  if (V1 == V2 && End1 == End2)
    return false;

  return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
                    MemoryLocation(V2, End2, Store->getAAInfo()));
}

bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
  auto *Store = cast<StoreSDNode>(N);
  auto *Load = cast<LoadSDNode>(Store->getValue());

  // Prefer not to use MVC if either address can use ... RELATIVE LONG
  // instructions.
  uint64_t Size = Load->getMemoryVT().getStoreSize();
  if (Size > 1 && Size <= 8) {
    // Prefer LHRL, LRL and LGRL.
    if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
      return false;
    // Prefer STHRL, STRL and STGRL.
    if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
      return false;
  }

  return canUseBlockOperation(Store, Load);
}

bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
                                                     unsigned I) const {
  auto *StoreA = cast<StoreSDNode>(N);
  auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
  auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
}

void SystemZDAGToDAGISel::Select(SDNode *Node) {
  // If we have a custom node, we already have selected!
  if (Node->isMachineOpcode()) {
    LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
    Node->setNodeId(-1);
    return;
  }

  unsigned Opcode = Node->getOpcode();
  switch (Opcode) {
  case ISD::OR:
    if (Node->getOperand(1).getOpcode() != ISD::Constant)
      if (tryRxSBG(Node, SystemZ::ROSBG))
        return;
    goto or_xor;

  case ISD::XOR:
    if (Node->getOperand(1).getOpcode() != ISD::Constant)
      if (tryRxSBG(Node, SystemZ::RXSBG))
        return;
    // Fall through.
  or_xor:
    // If this is a 64-bit operation in which both 32-bit halves are nonzero,
    // split the operation into two.  If both operands here happen to be
    // constant, leave this to common code to optimize.
    if (Node->getValueType(0) == MVT::i64 &&
        Node->getOperand(0).getOpcode() != ISD::Constant)
      if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
        uint64_t Val = Op1->getZExtValue();
        // Don't split the operation if we can match one of the combined
        // logical operations provided by miscellaneous-extensions-3.
        if (Subtarget->hasMiscellaneousExtensions3()) {
          unsigned ChildOpcode = Node->getOperand(0).getOpcode();
          // Check whether this expression matches NAND/NOR/NXOR.
          if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
            if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
                ChildOpcode == ISD::XOR)
              break;
          // Check whether this expression matches OR-with-complement.
          if (Opcode == ISD::OR && ChildOpcode == ISD::XOR) {
            auto Op0 = Node->getOperand(0);
            if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
              if (Op0Op1->getZExtValue() == (uint64_t)-1)
                break;
          }
        }
        if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
          splitLargeImmediate(Opcode, Node, Node->getOperand(0),
                              Val - uint32_t(Val), uint32_t(Val));
          return;
        }
      }
    break;

  case ISD::AND:
    if (Node->getOperand(1).getOpcode() != ISD::Constant)
      if (tryRxSBG(Node, SystemZ::RNSBG))
        return;
    LLVM_FALLTHROUGH;
  case ISD::ROTL:
  case ISD::SHL:
  case ISD::SRL:
  case ISD::ZERO_EXTEND:
    if (tryRISBGZero(Node))
      return;
    break;

  case ISD::Constant:
    // If this is a 64-bit constant that is out of the range of LLILF,
    // LLIHF and LGFI, split it into two 32-bit pieces.
    if (Node->getValueType(0) == MVT::i64) {
      uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
      if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
        splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
                            uint32_t(Val));
        return;
      }
    }
    break;

  case SystemZISD::SELECT_CCMASK: {
    SDValue Op0 = Node->getOperand(0);
    SDValue Op1 = Node->getOperand(1);
    // Prefer to put any load first, so that it can be matched as a
    // conditional load.  Likewise for constants in range for LOCHI.
    if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
        (Subtarget->hasLoadStoreOnCond2() &&
         Node->getValueType(0).isInteger() &&
         Op1.getOpcode() == ISD::Constant &&
         isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
         !(Op0.getOpcode() == ISD::Constant &&
           isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
      SDValue CCValid = Node->getOperand(2);
      SDValue CCMask = Node->getOperand(3);
      uint64_t ConstCCValid =
        cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
      uint64_t ConstCCMask =
        cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
      // Invert the condition.
      CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
                                         SDLoc(Node), CCMask.getValueType());
      SDValue Op4 = Node->getOperand(4);
      SDNode *UpdatedNode =
        CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
      if (UpdatedNode != Node) {
        // In case this node already exists then replace Node with it.
        ReplaceNode(Node, UpdatedNode);
        Node = UpdatedNode;
      }
    }
    break;
  }

  case ISD::INSERT_VECTOR_ELT: {
    EVT VT = Node->getValueType(0);
    unsigned ElemBitSize = VT.getScalarSizeInBits();
    if (ElemBitSize == 32) {
      if (tryGather(Node, SystemZ::VGEF))
        return;
    } else if (ElemBitSize == 64) {
      if (tryGather(Node, SystemZ::VGEG))
        return;
    }
    break;
  }

  case ISD::BUILD_VECTOR: {
    auto *BVN = cast<BuildVectorSDNode>(Node);
    SystemZVectorConstantInfo VCI(BVN);
    if (VCI.isVectorConstantLegal(*Subtarget)) {
      loadVectorConstant(VCI, Node);
      return;
    }
    break;
  }

  case ISD::ConstantFP: {
    APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
    if (Imm.isZero() || Imm.isNegZero())
      break;
    SystemZVectorConstantInfo VCI(Imm);
    bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
    assert(Success && "Expected legal FP immediate");
    loadVectorConstant(VCI, Node);
    return;
  }

  case ISD::STORE: {
    if (tryFoldLoadStoreIntoMemOperand(Node))
      return;
    auto *Store = cast<StoreSDNode>(Node);
    unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
    if (ElemBitSize == 32) {
      if (tryScatter(Store, SystemZ::VSCEF))
        return;
    } else if (ElemBitSize == 64) {
      if (tryScatter(Store, SystemZ::VSCEG))
        return;
    }
    break;
  }
  }

  SelectCode(Node);
}

bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op,
                             unsigned ConstraintID,
                             std::vector<SDValue> &OutOps) {
  SystemZAddressingMode::AddrForm Form;
  SystemZAddressingMode::DispRange DispRange;
  SDValue Base, Disp, Index;

  switch(ConstraintID) {
  default:
    llvm_unreachable("Unexpected asm memory constraint");
  case InlineAsm::Constraint_i:
  case InlineAsm::Constraint_Q:
    // Accept an address with a short displacement, but no index.
    Form = SystemZAddressingMode::FormBD;
    DispRange = SystemZAddressingMode::Disp12Only;
    break;
  case InlineAsm::Constraint_R:
    // Accept an address with a short displacement and an index.
    Form = SystemZAddressingMode::FormBDXNormal;
    DispRange = SystemZAddressingMode::Disp12Only;
    break;
  case InlineAsm::Constraint_S:
    // Accept an address with a long displacement, but no index.
    Form = SystemZAddressingMode::FormBD;
    DispRange = SystemZAddressingMode::Disp20Only;
    break;
  case InlineAsm::Constraint_T:
  case InlineAsm::Constraint_m:
  case InlineAsm::Constraint_o:
    // Accept an address with a long displacement and an index.
    // m works the same as T, as this is the most general case.
    // We don't really have any special handling of "offsettable"
    // memory addresses, so just treat o the same as m.
    Form = SystemZAddressingMode::FormBDXNormal;
    DispRange = SystemZAddressingMode::Disp20Only;
    break;
  }

  if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
    const TargetRegisterClass *TRC =
      Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
    SDLoc DL(Base);
    SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);

    // Make sure that the base address doesn't go into %r0.
    // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
    if (Base.getOpcode() != ISD::TargetFrameIndex &&
        Base.getOpcode() != ISD::Register) {
      Base =
        SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                       DL, Base.getValueType(),
                                       Base, RC), 0);
    }

    // Make sure that the index register isn't assigned to %r0 either.
    if (Index.getOpcode() != ISD::Register) {
      Index =
        SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                       DL, Index.getValueType(),
                                       Index, RC), 0);
    }

    OutOps.push_back(Base);
    OutOps.push_back(Disp);
    OutOps.push_back(Index);
    return false;
  }

  return true;
}

// IsProfitableToFold - Returns true if is profitable to fold the specific
// operand node N of U during instruction selection that starts at Root.
bool
SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
                                        SDNode *Root) const {
  // We want to avoid folding a LOAD into an ICMP node if as a result
  // we would be forced to spill the condition code into a GPR.
  if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
    if (!N.hasOneUse() || !U->hasOneUse())
      return false;

    // The user of the CC value will usually be a CopyToReg into the
    // physical CC register, which in turn is glued and chained to the
    // actual instruction that uses the CC value.  Bail out if we have
    // anything else than that.
    SDNode *CCUser = *U->use_begin();
    SDNode *CCRegUser = nullptr;
    if (CCUser->getOpcode() == ISD::CopyToReg ||
        cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
      for (auto *U : CCUser->uses()) {
        if (CCRegUser == nullptr)
          CCRegUser = U;
        else if (CCRegUser != U)
          return false;
      }
    }
    if (CCRegUser == nullptr)
      return false;

    // If the actual instruction is a branch, the only thing that remains to be
    // checked is whether the CCUser chain is a predecessor of the load.
    if (CCRegUser->isMachineOpcode() &&
        CCRegUser->getMachineOpcode() == SystemZ::BRC)
      return !N->isPredecessorOf(CCUser->getOperand(0).getNode());

    // Otherwise, the instruction may have multiple operands, and we need to
    // verify that none of them are a predecessor of the load.  This is exactly
    // the same check that would be done by common code if the CC setter were
    // glued to the CC user, so simply invoke that check here.
    if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
      return false;
  }

  return true;
}

namespace {
// Represents a sequence for extracting a 0/1 value from an IPM result:
// (((X ^ XORValue) + AddValue) >> Bit)
struct IPMConversion {
  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}

  int64_t XORValue;
  int64_t AddValue;
  unsigned Bit;
};
} // end anonymous namespace

// Return a sequence for getting a 1 from an IPM result when CC has a
// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
// The handling of CC values outside CCValid doesn't matter.
static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
  // Deal with cases where the result can be taken directly from a bit
  // of the IPM result.
  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
    return IPMConversion(0, 0, SystemZ::IPM_CC);
  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);

  // Deal with cases where we can add a value to force the sign bit
  // to contain the right value.  Putting the bit in 31 means we can
  // use SRL rather than RISBG(L), and also makes it easier to get a
  // 0/-1 value, so it has priority over the other tests below.
  //
  // These sequences rely on the fact that the upper two bits of the
  // IPM result are zero.
  uint64_t TopBit = uint64_t(1) << 31;
  if (CCMask == (CCValid & SystemZ::CCMASK_0))
    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & (SystemZ::CCMASK_0
                            | SystemZ::CCMASK_1
                            | SystemZ::CCMASK_2)))
    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & SystemZ::CCMASK_3))
    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & (SystemZ::CCMASK_1
                            | SystemZ::CCMASK_2
                            | SystemZ::CCMASK_3)))
    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);

  // Next try inverting the value and testing a bit.  0/1 could be
  // handled this way too, but we dealt with that case above.
  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
    return IPMConversion(-1, 0, SystemZ::IPM_CC);

  // Handle cases where adding a value forces a non-sign bit to contain
  // the right value.
  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);

  // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
  // can be done by inverting the low CC bit and applying one of the
  // sign-based extractions above.
  if (CCMask == (CCValid & SystemZ::CCMASK_1))
    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & SystemZ::CCMASK_2))
    return IPMConversion(1 << SystemZ::IPM_CC,
                         TopBit - (3 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & (SystemZ::CCMASK_0
                            | SystemZ::CCMASK_1
                            | SystemZ::CCMASK_3)))
    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
  if (CCMask == (CCValid & (SystemZ::CCMASK_0
                            | SystemZ::CCMASK_2
                            | SystemZ::CCMASK_3)))
    return IPMConversion(1 << SystemZ::IPM_CC,
                         TopBit - (1 << SystemZ::IPM_CC), 31);

  llvm_unreachable("Unexpected CC combination");
}

SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
  auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
  auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
  if (!TrueOp || !FalseOp)
    return SDValue();
  if (FalseOp->getZExtValue() != 0)
    return SDValue();
  if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
    return SDValue();

  auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
  auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
  if (!CCValidOp || !CCMaskOp)
    return SDValue();
  int CCValid = CCValidOp->getZExtValue();
  int CCMask = CCMaskOp->getZExtValue();

  SDLoc DL(Node);
  SDValue CCReg = Node->getOperand(4);
  IPMConversion IPM = getIPMConversion(CCValid, CCMask);
  SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);

  if (IPM.XORValue)
    Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
                             CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));

  if (IPM.AddValue)
    Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
                             CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));

  EVT VT = Node->getValueType(0);
  if (VT == MVT::i32 && IPM.Bit == 31) {
    unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
    Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
                             CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
  } else {
    if (VT != MVT::i32)
      Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);

    if (TrueOp->getSExtValue() == 1) {
      // The SHR/AND sequence should get optimized to an RISBG.
      Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
                               CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
      Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
                               CurDAG->getConstant(1, DL, VT));
    } else {
      // Sign-extend from IPM.Bit using a pair of shifts.
      int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
      int SraAmt = VT.getSizeInBits() - 1;
      Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
                               CurDAG->getConstant(ShlAmt, DL, MVT::i32));
      Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
                               CurDAG->getConstant(SraAmt, DL, MVT::i32));
    }
  }

  return Result;
}

void SystemZDAGToDAGISel::PreprocessISelDAG() {
  // If we have conditional immediate loads, we always prefer
  // using those over an IPM sequence.
  if (Subtarget->hasLoadStoreOnCond2())
    return;

  bool MadeChange = false;

  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
                                       E = CurDAG->allnodes_end();
       I != E;) {
    SDNode *N = &*I++;
    if (N->use_empty())
      continue;

    SDValue Res;
    switch (N->getOpcode()) {
    default: break;
    case SystemZISD::SELECT_CCMASK:
      Res = expandSelectBoolean(N);
      break;
    }

    if (Res) {
      LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    ");
      LLVM_DEBUG(N->dump(CurDAG));
      LLVM_DEBUG(dbgs() << "\nNew: ");
      LLVM_DEBUG(Res.getNode()->dump(CurDAG));
      LLVM_DEBUG(dbgs() << "\n");

      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
      MadeChange = true;
    }
  }

  if (MadeChange)
    CurDAG->RemoveDeadNodes();
}