aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZInstrInfo.td
blob: 4569be7602e45be329a4a9289fc9c93f58c1c1ca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//

let hasNoSchedulingInfo = 1 in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                                [(callseq_start timm:$amt1, timm:$amt2)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                                [(callseq_end timm:$amt1, timm:$amt2)]>;
}

let hasSideEffects = 0 in {
  // Takes as input the value of the stack pointer after a dynamic allocation
  // has been made.  Sets the output to the address of the dynamically-
  // allocated area itself, skipping the outgoing arguments.
  //
  // This expands to an LA or LAY instruction.  We restrict the offset
  // to the range of LA and keep the LAY range in reserve for when
  // the size of the outgoing arguments is added.
  def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
                           [(set GR64:$dst, dynalloc12only:$src)]>;
}

//===----------------------------------------------------------------------===//
// Branch instructions
//===----------------------------------------------------------------------===//

// Conditional branches.
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
  // with the condition-code mask being the first operand.  It seems friendlier
  // to use mnemonic forms like JE and JLH when writing out the assembly though.
  let isCodeGenOnly = 1 in {
    // An assembler extended mnemonic for BRC.
    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
    // An assembler extended mnemonic for BRCL.  (The extension is "G"
    // rather than "L" because "JL" is "Jump if Less".)
    def BRCL : CondBranchRIL<"jg#", 0xC04>;
    let isIndirectBranch = 1 in {
      def BC  : CondBranchRX<"b#",  0x47>;
      def BCR : CondBranchRR<"b#r", 0x07>;
    }
  }

  // Allow using the raw forms directly from the assembler (and occasional
  // special code generation needs) as well.
  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
  let isIndirectBranch = 1 in {
    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
  }

  // Define AsmParser extended mnemonics for each general condition-code mask
  // (integer or floating-point)
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
    def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
    let isIndirectBranch = 1 in {
      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
    }
  }
}

// Unconditional branches.  These are in fact simply variants of the
// conditional branches with the condition mask set to "always".
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
  def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
  let isIndirectBranch = 1 in {
    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
  }
}

// NOPs.  These are again variants of the conditional branches,
// with the condition mask set to "never".
def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;

// Fused compare-and-branch instructions.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that the relative compare-and-branch
// instructions clobber CC, so that we can lower them to separate
// comparisons and BRCLs if the branch ends up being out of range.
let isBranch = 1, isTerminator = 1 in {
  // As for normal branches, we handle these instructions internally in
  // their raw CRJ-like form, but use assembly macros like CRJE when writing
  // them out.  Using the *Pair multiclasses, we also create the raw forms.
  let Defs = [CC] in {
    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
  }
  let isIndirectBranch = 1 in {
    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
  }

  // Define AsmParser mnemonics for each integer condition-code mask.
  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
    let Defs = [CC] in {
      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
                                          imm32sx8>;
      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
                                          imm64sx8>;
      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
                                          imm32zx8>;
      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
                                          imm64zx8>;
    }
    let isIndirectBranch = 1 in {
      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
                                         imm32sx8>;
      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
                                         imm64sx8>;
      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
                                         imm32zx8>;
      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
                                         imm64zx8>;
    }
  }
}

// Decrement a register and branch if it is nonzero.  These don't clobber CC,
// but we might need to split long relative branches into sequences that do.
let isBranch = 1, isTerminator = 1 in {
  let Defs = [CC] in {
    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
  }
  // This doesn't need to clobber CC since we never need to split it.
  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
              Requires<[FeatureHighWord]>;

  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
}

let isBranch = 1, isTerminator = 1 in {
  let Defs = [CC] in {
    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
  }
  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
}

//===----------------------------------------------------------------------===//
// Trap instructions
//===----------------------------------------------------------------------===//

// Unconditional trap.
let hasCtrlDep = 1 in
  def Trap : Alias<4, (outs), (ins), [(trap)]>;

// Conditional trap.
let hasCtrlDep = 1, Uses = [CC] in
  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;

// Fused compare-and-trap instructions.
let hasCtrlDep = 1 in {
  // These patterns work the same way as for compare-and-branch.
  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
  let Predicates = [FeatureMiscellaneousExtensions] in {
    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
  }

  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
                                         imm32sx16>;
    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
                                         imm64sx16>;
    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
                                         imm32zx16>;
    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
                                         imm64zx16>;
    let Predicates = [FeatureMiscellaneousExtensions] in {
      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
    }
  }
}

//===----------------------------------------------------------------------===//
// Call and return instructions
//===----------------------------------------------------------------------===//

// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
let isCall = 1, Defs = [CC] in {
  def BRAS  : CallRI <"bras", 0xA75>;
  def BRASL : CallRIL<"brasl", 0xC05>;
  def BAS   : CallRX <"bas", 0x4D>;
  def BASR  : CallRR <"basr", 0x0D>;
}

// Regular calls.
let isCall = 1, Defs = [R14D, CC] in {
  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
                        [(z_call pcrel32:$I2)]>;
  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
                        [(z_call ADDR64:$R2)]>;
}

// TLS calls.  These will be lowered into a call to __tls_get_offset,
// with an extra relocation specifying the TLS symbol.
let isCall = 1, Defs = [R14D, CC] in {
  def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
                         [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
  def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
                         [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
}

// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
// are argument registers and since branching to R0 is a no-op.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
                     [(z_sibcall pcrel32:$I2)]>;
  let Uses = [R1D] in
    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
}

// Conditional sibling calls.
let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
                                   pcrel32:$I2), []>;
  let Uses = [R1D] in
    def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
}

// Fused compare and conditional sibling calls.
let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}

// A return instruction (br %r14).
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;

// A conditional return instruction (bcr <cond>, %r14).
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;

// Fused compare and conditional returns.
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}

//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//

def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
def Select32    : SelectWrapper<GR32>;
def Select64    : SelectWrapper<GR64>;

// We don't define 32-bit Mux stores if we don't have STOCFH, because the
// low-only STOC should then always be used if possible.
defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>,
                      Requires<[FeatureHighWord]>;
defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>,
                      Requires<[FeatureHighWord]>;
defm CondStore32Mux : CondStores<GRX32, nonvolatile_store,
                                 nonvolatile_load, bdxaddr20only>,
                      Requires<[FeatureLoadStoreOnCond2]>;
defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32    : CondStores<GR32, nonvolatile_store,
                                 nonvolatile_load, bdxaddr20only>;

defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
                    nonvolatile_anyextloadi8, bdxaddr20only>;
defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
                    nonvolatile_anyextloadi16, bdxaddr20only>;
defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
                    nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, nonvolatile_store,
                              nonvolatile_load, bdxaddr20only>;

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Register moves.
let hasSideEffects = 0 in {
  // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
  def LRMux : UnaryRRPseudo<"lr", null_frag, GRX32, GRX32>,
              Requires<[FeatureHighWord]>;
  def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
  def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
}

// Immediate moves.
let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
    isReMaterializable = 1 in {
  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
  // deopending on the choice of register.
  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
               Requires<[FeatureHighWord]>;
  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;

  // Other 16-bit immediates.
  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;

  // 32-bit immediates.
  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}

// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
  // Expands to L, LY or LFH, depending on the choice of register.
  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
             Requires<[FeatureHighWord]>;
  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
            Requires<[FeatureHighWord]>;
  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
  }
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
}

let canFoldAsLoad = 1 in {
  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}

// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
            (LZRF bdxaddr20only:$src)>;
  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
            (LZRG bdxaddr20only:$src)>;
}

// Load and trap.
let Predicates = [FeatureLoadAndTrap] in {
  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
}

// Register stores.
let SimpleBDXStore = 1 in {
  // Expands to ST, STY or STFH, depending on the choice of register.
  def STMux : StoreRXYPseudo<store, GRX32, 4>,
              Requires<[FeatureHighWord]>;
  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
             Requires<[FeatureHighWord]>;
  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
  }
}
def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;

// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;

// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;

// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
let mayLoad = 1, mayStore = 1, Defs = [CC] in {
  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
}

// String moves.
let mayLoad = 1, mayStore = 1, Defs = [CC] in
  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;

//===----------------------------------------------------------------------===//
// Conditional move instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
  // Load immediate on condition.  Matched via DAG pattern and created
  // by the PeepholeOptimizer via FoldImmediate.
  let hasSideEffects = 0 in {
    // Expands to LOCHI or LOCHHI, depending on the choice of register.
    def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
    defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
    defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
    defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
  }

  // Move register on condition.  Expanded from Select* pseudos and
  // created by early if-conversion.
  let hasSideEffects = 0, isCommutable = 1 in {
    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
    // depending on the choice of registers.
    def LOCRMux : CondBinaryRRFPseudo<GRX32, GRX32>;
    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
  }

  // Load on condition.  Matched via DAG pattern.
  // Expands to LOC or LOCFH, depending on the choice of register.
  def LOCMux : CondUnaryRSYPseudo<nonvolatile_load, GRX32, 4>;
  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, nonvolatile_load, GRH32, 4>;

  // Store on condition.  Expanded from CondStore* pseudos.
  // Expands to STOC or STOCFH, depending on the choice of register.
  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
                                         imm32sx16>;
    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
                                         imm64sx16>;
    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
                                         imm32sx16>;
    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
  }
}

let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
  // Move register on condition.  Expanded from Select* pseudos and
  // created by early if-conversion.
  let hasSideEffects = 0, isCommutable = 1 in {
    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
  }

  // Load on condition.  Matched via DAG pattern.
  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
  defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;

  // Store on condition.  Expanded from CondStore* pseudos.
  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
  }
}
//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//
//
// Note that putting these before zero extensions mean that we will prefer
// them for anyextload*.  There's not really much to choose between the two
// either way, but signed-extending loads have a short LH and a long LHY,
// while zero-extending loads have only the long LLH.
//
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.
let hasSideEffects = 0 in {
  def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
  def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
}

// 64-bit extensions from registers.
let hasSideEffects = 0 in {
  def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
  def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
  def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;

// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;

// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
// depending on the choice of register.
def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
            Requires<[FeatureHighWord]>;
def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
          Requires<[FeatureHighWord]>;

// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
// depending on the choice of register.
def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
            Requires<[FeatureHighWord]>;
defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
            Requires<[FeatureHighWord]>;
def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;

// 64-bit extensions from memory.
def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;

//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.
let hasSideEffects = 0 in {
  // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
  def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
                Requires<[FeatureHighWord]>;
  def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
  // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
  def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
                Requires<[FeatureHighWord]>;
  def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
}

// 64-bit extensions from registers.
let hasSideEffects = 0 in {
  def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
  def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
  def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
}

// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;

// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
// depending on the choice of register.
def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
             Requires<[FeatureHighWord]>;
def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
           Requires<[FeatureHighWord]>;

// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
// depending on the choice of register.
def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
             Requires<[FeatureHighWord]>;
def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
            Requires<[FeatureHighWord]>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;

// 64-bit extensions from memory.
def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;

// 31-to-64-bit zero extensions.
def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
def : Pat<(and GR64:$src, 0x7fffffff),
          (LLGTR GR64:$src)>;
def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
          (LLGT bdxaddr20only:$src)>;

// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
            (LLZRGF bdxaddr20only:$src)>;
}

// Load and trap.
let Predicates = [FeatureLoadAndTrap] in {
  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
}

// Extend GR64s to GR128s.
let usesCustomInserter = 1 in
  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;

//===----------------------------------------------------------------------===//
// "Any" extensions
//===----------------------------------------------------------------------===//

// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;

// Extend GR64s to GR128s.
let usesCustomInserter = 1 in
  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;

//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//

// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;

// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
// STC, STCY or STCH, depending on the choice of register.
def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
             Requires<[FeatureHighWord]>;
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
           Requires<[FeatureHighWord]>;

// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
// STH, STHY or STHH, depending on the choice of register.
def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
             Requires<[FeatureHighWord]>;
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
           Requires<[FeatureHighWord]>;
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;

// Truncations of 64-bit registers to memory.
defm : StoreGR64Pair<STC, STCY, truncstorei8>;
defm : StoreGR64Pair<STH, STHY, truncstorei16>;
def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
defm : StoreGR64Pair<ST, STY, truncstorei32>;
def  : StoreGR64PC<STRL, aligned_truncstorei32>;

// Store characters under mask -- not (yet) used for codegen.
defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;

//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//

// Multi-register loads.
defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;

// Multi-register stores.
defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

// Byte-swapping register moves.
let hasSideEffects = 0 in {
  def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
  def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
}

// Byte-swapping loads.  Unlike normal loads, these instructions are
// allowed to access storage more than once.
def LRVH : UnaryRXY<"lrvh", 0xE31F, z_lrvh, GR32, 2>;
def LRV  : UnaryRXY<"lrv",  0xE31E, z_lrv,  GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, z_lrvg, GR64, 8>;

// Likewise byte-swapping stores.
def STRVH : StoreRXY<"strvh", 0xE33F, z_strvh, GR32, 2>;
def STRV  : StoreRXY<"strv",  0xE33E, z_strv,  GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, z_strvg, GR64, 8>;

// Byte-swapping memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;

//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//

// Load BDX-style addresses.
let hasSideEffects = 0, isAsCheapAsAMove = 1, isReMaterializable = 1 in
  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;

// Load a PC-relative address.  There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
    isReMaterializable = 1 in
  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;

// Load the Global Offset Table address.  This will be lowered into a
//     larl $R1, _GLOBAL_OFFSET_TABLE_
// instruction.
def GOT : Alias<6, (outs GR64:$R1), (ins),
                [(set GR64:$R1, (global_offset_table))]>;

//===----------------------------------------------------------------------===//
// Absolute and Negation
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LPR  : UnaryRR <"lpr",  0x10,   z_iabs, GR32, GR32>;
    def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
}
def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
defm : SXU<z_iabs,   LPGFR>;
defm : SXU<z_iabs64, LPGFR>;

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
}
def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
defm : SXU<z_inegabs,   LNGFR>;
defm : SXU<z_inegabs64, LNGFR>;

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;

//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1 in
  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;

defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;

defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;

// Insert characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
}

// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
//
// IIxMux expands to II[LH]x, depending on the choice of register.
def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
             Requires<[FeatureHighWord]>;
def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
             Requires<[FeatureHighWord]>;
def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;

// ...likewise for 32-bit immediates.  For GR32s this is a general
// full-width move.  (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
               Requires<[FeatureHighWord]>;
  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
}
def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;

// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
                  imm64hf32:$imm)>;

//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//

// Plain addition.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, add, GR32, GR32>;
    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, add, GR64, GR64>;
  }
  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;

  // Addition to a high register.
  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Addition of signed 16-bit immediates.
  defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;

  // Addition of signed 32-bit immediates.
  def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
               Requires<[FeatureHighWord]>;
  def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
  def AIH  : BinaryRIL<"aih",  0xCC8, add, GRH32, simm32>,
             Requires<[FeatureHighWord]>;
  def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;

  // Addition of memory.
  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
  defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
  def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
  def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;

  // Addition to memory.
  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<add, GR64, AGFR>;

// Addition producing a carry.
let Defs = [CC] in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, addc, GR32, GR32>;
    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, addc, GR64, GR64>;
  }
  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;

  // Addition to a high register.
  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
               Requires<[FeatureHighWord]>;
  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
               Requires<[FeatureHighWord]>;

  // Addition of signed 16-bit immediates.
  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
                Requires<[FeatureDistinctOps]>;
  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
                Requires<[FeatureDistinctOps]>;

  // Addition of unsigned 32-bit immediates.
  def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
  def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;

  // Addition of signed 32-bit immediates.
  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
              Requires<[FeatureHighWord]>;

  // Addition of memory.
  defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
  def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
  def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;

  // Addition to memory.
  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
}
defm : ZXB<addc, GR64, ALGFR>;

// Addition producing and using a carry.
let Defs = [CC], Uses = [CC] in {
  // Addition of a register.
  def ALCR  : BinaryRRE<"alcr",  0xB998, adde, GR32, GR32>;
  def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;

  // Addition of memory.
  def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
  def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
}

// Addition that does not modify the condition code.
def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
             Requires<[FeatureHighWord]>;

//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//

// Plain subtraction.  Although immediate forms exist, we use the
// add-immediate instruction instead.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
  // Subtraction of a register.
  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, sub, GR32, GR32>;
  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, sub, GR64, GR64>;

  // Subtraction from a high register.
  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Subtraction of memory.
  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
  defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
  def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
  def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
}
defm : SXB<sub, GR64, SGFR>;

// Subtraction producing a carry.
let Defs = [CC] in {
  // Subtraction of a register.
  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, subc, GR32, GR32>;
  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, subc, GR64, GR64>;

  // Subtraction from a high register.
  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
               Requires<[FeatureHighWord]>;
  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
               Requires<[FeatureHighWord]>;

  // Subtraction of unsigned 32-bit immediates.  These don't match
  // subc because we prefer addc for constants.
  def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
  def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;

  // Subtraction of memory.
  defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
  def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
  def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
}
defm : ZXB<subc, GR64, SLGFR>;

// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC] in {
  // Subtraction of a register.
  def SLBR  : BinaryRRE<"slbr",  0xB999, sube, GR32, GR32>;
  def SLBGR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;

  // Subtraction of memory.
  def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
  def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
}

//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ANDs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
  }

  let isConvertibleToThreeAddress = 1 in {
    // ANDs of a 16-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 16-bit field, not the full register.
    //
    // NIxMux expands to NI[LH]x, depending on the choice of register.
    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
                 Requires<[FeatureHighWord]>;
    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
                 Requires<[FeatureHighWord]>;
    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;

    // ANDs of a 32-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 32-bit field, which means we can
    // use it as a zero indicator for i32 operations but not otherwise.
    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
      // Expands to NILF or NIHF, depending on the choice of register.
      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
                   Requires<[FeatureHighWord]>;
      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
    }
    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
  }

  // ANDs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
    def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
  }

  // AND to memory
  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;

  // Block AND.
  let mayLoad = 1, mayStore = 1 in
    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;

//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
  }

  // ORs of a 16-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 16-bit field, not the full register.
  //
  // OIxMux expands to OI[LH]x, depending on the choice of register.
  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
               Requires<[FeatureHighWord]>;
  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
               Requires<[FeatureHighWord]>;
  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;

  // ORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    // Expands to OILF or OIHF, depending on the choice of register.
    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
                 Requires<[FeatureHighWord]>;
    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
  }
  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;

  // ORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
    def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
  }

  // OR to memory
  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;

  // Block OR.
  let mayLoad = 1, mayStore = 1 in
    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;

//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // XORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
  }

  // XORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    // Expands to XILF or XIHF, depending on the choice of register.
    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
                 Requires<[FeatureHighWord]>;
    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
  }
  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;

  // XORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
    def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
  }

  // XOR to memory
  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;

  // Block XOR.
  let mayLoad = 1, mayStore = 1 in
    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;

//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//

// Multiplication of a register.
let isCommutable = 1 in {
  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;

// Multiplication of a signed 16-bit immediate.
def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;

// Multiplication of a signed 32-bit immediate.
def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;

// Multiplication of memory.
defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;

// Multiplication of a register, producing two results.
def MR   : BinaryRR <"mr",   0x1C,   null_frag, GR128, GR32>;
def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;

// Multiplication of memory, producing two results.
def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;

//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//

let hasSideEffects = 1 in {  // Do not speculatively execute.
  // Division and remainder, from registers.
  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;

  // Division and remainder, from memory.
  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
}
def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;

def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
                                       subreg_l32)), GR32:$src2)>;
def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
                                      subreg_l32)), bdxaddr20only:$src2)>;
def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;

//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//

// Logical shift left.
let hasSideEffects = 0 in {
  defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
  def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
  def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
}

// Arithmetic shift left.
let Defs = [CC] in {
  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
}

// Logical shift right.
let hasSideEffects = 0 in {
  defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
  def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
  def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
}

// Arithmetic shift right.
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
  def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
}

// Rotate left.
let hasSideEffects = 0 in {
  def RLL  : BinaryRSY<"rll",  0xEB1D, rotl, GR32>;
  def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
}

// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64).
let Defs = [CC] in {
  let isCodeGenOnly = 1 in
    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}

// On zEC12 we have a variant of RISBG that does not set CC.
let Predicates = [FeatureMiscellaneousExtensions] in
  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;

// Forms of RISBG that only affect one word of the destination register.
// They do not set CC.
let Predicates = [FeatureHighWord] in {
  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
}

// Rotate second operand left and perform a logical operation with selected
// bits of the first operand.  The CC result only describes the selected bits,
// so isn't useful for a full comparison against zero.
let Defs = [CC] in {
  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
}

//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//

// Signed comparisons.  We put these before the unsigned comparisons because
// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
// of the unsigned forms do.
let Defs = [CC], CCValues = 0xE in {
  // Comparison with a register.
  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;

  // Comparison with a high register.
  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
             Requires<[FeatureHighWord]>;
  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
             Requires<[FeatureHighWord]>;

  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
  // depending on the choice of register.
  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
               Requires<[FeatureHighWord]>;
  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;

  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
  // depending on the choice of register.
  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
               Requires<[FeatureHighWord]>;
  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
             Requires<[FeatureHighWord]>;
  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;

  // Comparison with memory.
  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
               Requires<[FeatureHighWord]>;
  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
               Requires<[FeatureHighWord]>;
  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;

  // Comparison between memory and a signed 16-bit immediate.
  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
}
defm : SXB<z_scmp, GR64, CGFR>;

// Unsigned comparisons.
let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
  // Comparison with a register.
  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;

  // Comparison with a high register.
  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
  // or CLIH, depending on the choice of register.
  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
                Requires<[FeatureHighWord]>;
  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
              Requires<[FeatureHighWord]>;
  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;

  // Comparison with memory.
  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
                Requires<[FeatureHighWord]>;
  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
                Requires<[FeatureHighWord]>;
  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
                             aligned_azextloadi16>;
  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
                             aligned_load>;
  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
                             aligned_azextloadi16>;
  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
                             aligned_azextloadi32>;
  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
                             aligned_load>;

  // Comparison between memory and an unsigned 8-bit immediate.
  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;

  // Comparison between memory and an unsigned 16-bit immediate.
  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;

// Memory-to-memory comparison.
let mayLoad = 1, Defs = [CC] in {
  defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
}

// String comparison.
let mayLoad = 1, Defs = [CC] in
  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;

// Test under mask.
let Defs = [CC] in {
  // TMxMux expands to TM[LH]x, depending on the choice of register.
  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
               Requires<[FeatureHighWord]>;
  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
               Requires<[FeatureHighWord]>;
  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;

  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;

  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
}

def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;

// Compare logical characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
}

//===----------------------------------------------------------------------===//
// Prefetch and execution hint
//===----------------------------------------------------------------------===//

def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;

let Predicates = [FeatureExecutionHint] in {
  // Branch Prediction Preload
  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
  def BPRP : BranchPreloadMII<"bprp", 0xC5>;

  // Next Instruction Access Intent
  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
}

//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//

// A serialization instruction that acts as a barrier for all memory
// accesses, which expands to "bcr 14, 0".
let hasSideEffects = 1 in
def Serialize : Alias<2, (outs), (ins), []>;

// A pseudo instruction that serves as a compiler barrier.
let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;

let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
}

def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;

def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
}

def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;

def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
                                                 imm32ll16c>;
  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
                                                 imm32lh16c>;
  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64ll16c>;
  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64lh16c>;
  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hl16c>;
  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hh16c>;
  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64lf32c>;
  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hf32c>;
}

def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
}

def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
}

def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
                                               imm32lh16c>;
def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32ll16c>;
def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32lh16c>;
def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64ll16c>;
def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lh16c>;
def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hl16c>;
def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hh16c>;
def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lf32c>;
def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hf32c>;

def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;

def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;

def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;

def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;

def ATOMIC_CMP_SWAPW
  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                  ADDR32:$bitshift, ADDR32:$negbitshift,
                                  uimm32:$bitsize),
           [(set GR32:$dst,
                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                     ADDR32:$bitshift, ADDR32:$negbitshift,
                                     uimm32:$bitsize))]> {
  let Defs = [CC];
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
}

// Test and set.
let mayLoad = 1, Defs = [CC] in
  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;

// Compare and swap.
let Defs = [CC] in {
  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
  def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
}

// Compare double and swap.
let Defs = [CC] in {
  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, null_frag, GR128>;
}

// Compare and swap and store.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;

// Perform locked operation.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;

// Load/store pair from/to quadword.
def LPQ  : UnaryRXY<"lpq", 0xE38F, null_frag, GR128, 16>;
def STPQ : StoreRXY<"stpq", 0xE38E, null_frag, GR128, 16>;

// Load pair disjoint.
let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
}

//===----------------------------------------------------------------------===//
// Translate and convert
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1 in
  def TR : SideEffectBinarySSa<"tr", 0xDC>;

let mayLoad = 1, Defs = [CC, R0L, R1D] in {
  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
}

let mayLoad = 1, mayStore = 1, Uses = [R0L] in
  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;

let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
}

let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
}

let mayLoad = 1, mayStore = 1, Defs = [CC] in {
  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;

  let isAsmParserOnly = 1 in {
    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
  }
}

//===----------------------------------------------------------------------===//
// Message-security assist
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;

  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;

  let Predicates = [FeatureMessageSecurityAssist4] in {
    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
                                               GR128, GR128, GR128>;
    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
  }
  let Predicates = [FeatureMessageSecurityAssist5] in
    def PPNO  : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
}

//===----------------------------------------------------------------------===//
// Decimal arithmetic
//===----------------------------------------------------------------------===//

defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;

defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;

let mayLoad = 1, mayStore = 1 in {
  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;

  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
  let Defs = [CC] in {
    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
  }
}

let mayLoad = 1, mayStore = 1 in {
  let Defs = [CC] in {
    def AP : SideEffectBinarySSb<"ap", 0xFA>;
    def SP : SideEffectBinarySSb<"sp", 0xFB>;
    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
  }
  def MP : SideEffectBinarySSb<"mp", 0xFC>;
  def DP : SideEffectBinarySSb<"dp", 0xFD>;
  let Defs = [CC] in {
    def ED : SideEffectBinarySSa<"ed", 0xDE>;
    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
  }
}

let Defs = [CC] in {
  def CP : CompareSSb<"cp", 0xF9>;
  def TP : TestRSL<"tp", 0xEBC0>;
}

//===----------------------------------------------------------------------===//
// Access registers
//===----------------------------------------------------------------------===//

// Read a 32-bit access register into a GR32.  As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;

// Set access register.
def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;

// Copy access register.
def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;

// Load address extended.
defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;

// Load access multiple.
defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;

// Load access multiple.
defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;

//===----------------------------------------------------------------------===//
// Program mask and addressing mode
//===----------------------------------------------------------------------===//

// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
let Uses = [CC] in
  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;

// Set CC and program mask from a register.
let hasSideEffects = 1, Defs = [CC] in
  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;

// Branch and link - like BAS, but also extracts CC and program mask.
let isCall = 1, Uses = [CC], Defs = [CC] in {
  def BAL  : CallRX<"bal", 0x45>;
  def BALR : CallRR<"balr", 0x05>;
}

// Test addressing mode.
let Defs = [CC] in
  def TAM : SideEffectInherentE<"tam", 0x010B>;

// Set addressing mode.
let hasSideEffects = 1 in {
  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
}

// Branch and set mode.  Not really a call, but also sets an output register.
let isBranch = 1, isTerminator = 1, isBarrier = 1 in
  def BSM : CallRR<"bsm", 0x0B>;

// Branch and save and set mode.
let isCall = 1, Defs = [CC] in
  def BASSM : CallRR<"bassm", 0x0C>;

//===----------------------------------------------------------------------===//
// Transactional execution
//===----------------------------------------------------------------------===//

let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
  // Transaction Begin
  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
    def TBEGIN : SideEffectBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
    def TBEGIN_nofloat : SideEffectBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;

    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
                                      int_s390_tbeginc, imm32zx16>;
  }

  // Transaction End
  let Defs = [CC] in
    def TEND : SideEffectInherentS<"tend", 0xB2F8, z_tend>;

  // Transaction Abort
  let isTerminator = 1, isBarrier = 1 in
    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;

  // Nontransactional Store
  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;

  // Extract Transaction Nesting Depth
  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
}

//===----------------------------------------------------------------------===//
// Processor assist
//===----------------------------------------------------------------------===//

let Predicates = [FeatureProcessorAssist] in {
  let hasSideEffects = 1 in
    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
  def : Pat<(int_s390_ppa_txassist GR32:$src),
            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
                 0, 1)>;
}

//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//

// Find leftmost one, AKA count leading zeros.  The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared.  We only use the first result here.
let Defs = [CC] in
  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
def : Pat<(ctlz GR64:$src),
          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;

// Population count.  Counts bits set per byte.
let Predicates = [FeaturePopulationCount], Defs = [CC] in
  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;

// Search a block of memory for a character.
let mayLoad = 1, Defs = [CC] in
  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
let mayLoad = 1, Defs = [CC], Uses = [R0L] in
  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;

// Compare until substring equal.
let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;

// Compare and form codeword.
let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;

// Update tree.
let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
  def UPT : SideEffectInherentE<"upt", 0x0102>;

// Checksum.
let mayLoad = 1, Defs = [CC] in
  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;

// Compression call.
let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;

// Execute.
let hasSideEffects = 1 in {
  def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>;
  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
}

//===----------------------------------------------------------------------===//
// .insn directive instructions
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1 in {
  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
                                             imm32sx16:$I2),
                                ".insn ri,$enc,$R1,$I2", []>;
  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              AnyReg:$R3, brtarget16:$I2),
                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              brtarget32:$I2),
                                 ".insn ril,$enc,$R1,$I2", []>;
  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                               uimm32:$I2),
                                  ".insn rilu,$enc,$R1,$I2", []>;
  def InsnRIS : DirectiveInsnRIS<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      imm32sx8:$I2, imm32zx4:$M3,
                                      bdaddr12only:$BD4),
                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
  def InsnRR : DirectiveInsnRR<(outs),
                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
                               ".insn rr,$enc,$R1,$R2", []>;
  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
                                              AnyReg:$R1, AnyReg:$R2),
                                 ".insn rre,$enc,$R1,$R2", []>;
  def InsnRRF : DirectiveInsnRRF<(outs),
                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
                                      AnyReg:$R3, imm32zx4:$M4),
                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
  def InsnRRS : DirectiveInsnRRS<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R2, imm32zx4:$M3,
                                      bdaddr12only:$BD4),
                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
  def InsnRS  : DirectiveInsnRS<(outs),
                                (ins imm64zx32:$enc, AnyReg:$R1,
                                     AnyReg:$R3, bdaddr12only:$BD2),
                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
  def InsnRSE : DirectiveInsnRSE<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdaddr12only:$BD2),
                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
  def InsnRSI : DirectiveInsnRSI<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, brtarget16:$RI2),
                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
  def InsnRSY : DirectiveInsnRSY<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdaddr20only:$BD2),
                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
                                             bdxaddr12only:$XBD2),
                                ".insn rx,$enc,$R1,$XBD2", []>;
  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              bdxaddr12only:$XBD2),
                                 ".insn rxe,$enc,$R1,$XBD2", []>;
  def InsnRXF : DirectiveInsnRXF<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdxaddr12only:$XBD2),
                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              bdxaddr20only:$XBD2),
                                 ".insn rxy,$enc,$R1,$XBD2", []>;
  def InsnS : DirectiveInsnS<(outs),
                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
                             ".insn s,$enc,$BD2", []>;
  def InsnSI : DirectiveInsnSI<(outs),
                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
                                    imm32sx8:$I2),
                               ".insn si,$enc,$BD1,$I2", []>;
  def InsnSIY : DirectiveInsnSIY<(outs),
                                 (ins imm64zx48:$enc,
                                      bdaddr20only:$BD1, imm32zx8:$I2),
                                 ".insn siy,$enc,$BD1,$I2", []>;
  def InsnSIL : DirectiveInsnSIL<(outs),
                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
                                      imm32zx16:$I2),
                                 ".insn sil,$enc,$BD1,$I2", []>;
  def InsnSS : DirectiveInsnSS<(outs),
                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
                                    bdaddr12only:$BD2, AnyReg:$R3),
                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
  def InsnSSE : DirectiveInsnSSE<(outs),
                                 (ins imm64zx48:$enc,
                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
                                 ".insn sse,$enc,$BD1,$BD2", []>;
  def InsnSSF : DirectiveInsnSSF<(outs),
                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
                                      bdaddr12only:$BD2, AnyReg:$R3),
                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
}

//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//

// Use AL* for GR64 additions of unsigned 32-bit values.
defm : ZXB<add, GR64, ALGFR>;
def  : Pat<(add GR64:$src1, imm64zx32:$src2),
           (ALGFI GR64:$src1, imm64zx32:$src2)>;
def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
           (ALGF GR64:$src1, bdxaddr20only:$addr)>;

// Use SL* for GR64 subtractions of unsigned 32-bit values.
defm : ZXB<sub, GR64, SLGFR>;
def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
           (SLGFI GR64:$src1, imm64zx32n:$src2)>;
def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
           (SLGF GR64:$src1, bdxaddr20only:$addr)>;

// Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
// for vector legalization.
def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
                         (i32 31)),
                    (i32 31)),
          (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
                                                       imm32zx4:$cc)))),
                    (i32 63)),
               (i32 63)),
          (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;

// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
// equivalent to (and (xor x, -1), y)
def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;

// Shift/rotate instructions only use the last 6 bits of the second operand
// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
// last 16 bits.
// Complexity is added so that we match this before we match NILF on the AND
// operation alone.
let AddedComplexity = 4 in {
  def : Pat<(shl GR32:$val, (and GR32:$shift, uimm32:$imm)),
            (SLL GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(sra GR32:$val, (and GR32:$shift, uimm32:$imm)),
            (SRA GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(srl GR32:$val, (and GR32:$shift, uimm32:$imm)),
            (SRL GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(shl GR64:$val, (and GR32:$shift, uimm32:$imm)),
            (SLLG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(sra GR64:$val, (and GR32:$shift, uimm32:$imm)),
            (SRAG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(srl GR64:$val, (and GR32:$shift, uimm32:$imm)),
            (SRLG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(rotl GR32:$val, (and GR32:$shift, uimm32:$imm)),
            (RLL GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;

  def : Pat<(rotl GR64:$val, (and GR32:$shift, uimm32:$imm)),
            (RLLG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
}

// Peepholes for turning scalar operations into block operations.
defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 2>;
defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 4>;
defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
                      OCSequence, XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 2>;
defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 4>;
defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 8>;