aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZInstrVector.td
blob: 261727f89058e2187bc0c67fa70a4007a2f8af4f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Register move.
  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;

  // Load GR from VR element.
  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;

  // Load VR element from GR.
  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
                          v128b, v128b, GR32, 0>;
  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
                          v128h, v128h, GR32, 1>;
  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
                          v128f, v128f, GR32, 2>;
  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
                          v128g, v128g, GR64, 3>;

  // Load VR from GRs disjoint.
  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
  def VLVGP32 : BinaryAliasVRRf<GR32>;
}

// Extractions always assign to the full GR64, even if the element would
// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
// subreg of the result.
class VectorExtractSubreg<ValueType type, Instruction insn>
  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;

def : VectorExtractSubreg<v16i8, VLGVB>;
def : VectorExtractSubreg<v8i16, VLGVH>;
def : VectorExtractSubreg<v4i32, VLGVF>;

//===----------------------------------------------------------------------===//
// Immediate instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {

    // Generate byte mask.
    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;

    // Generate mask.
    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;

    // Replicate immediate.
    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
  }

  // Load element immediate.
  //
  // We want these instructions to be used ahead of VLVG* where possible.
  // However, VLVG* takes a variable BD-format index whereas VLEI takes
  // a plain immediate index.  This means that VLVG* has an extra "base"
  // register operand and is 3 units more complex.  Bumping the complexity
  // of the VLEI* instructions by 4 means that they are strictly better
  // than VLVG* in cases where both forms match.
  let AddedComplexity = 4 in {
    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
                            v128b, v128b, imm32sx16trunc, imm32zx4>;
    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
                            v128h, v128h, imm32sx16trunc, imm32zx3>;
    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
                            v128f, v128f, imm32sx16, imm32zx2>;
    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
                            v128g, v128g, imm64sx16, imm32zx1>;
  }
}

//===----------------------------------------------------------------------===//
// Loads
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Load.
  defm VL : UnaryVRXAlign<"vl", 0xE706>;

  // Load to block boundary.  The number of loaded bytes is only known
  // at run time.  The instruction is really polymorphic, but v128b matches
  // the return type of the associated intrinsic.
  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;

  // Load count to block boundary.
  let Defs = [CC] in
    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
                       "lcbb\t$R1, $XBD2, $M3",
                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
                                                      imm32zx4:$M3))]>;

  // Load with length.  The number of loaded bytes is only known at run time.
  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;

  // Load multiple.
  defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>;

  // Load and replicate
  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
            (VLREPF bdxaddr12only:$addr)>;
  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
            (VLREPG bdxaddr12only:$addr)>;

  // Use VLREP to load subvectors.  These patterns use "12pair" because
  // LEY and LDY offer full 20-bit displacement fields.  It's often better
  // to use those instructions rather than force a 20-bit displacement
  // into a GPR temporary.
  let mayLoad = 1 in {
    def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
    def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
  }

  // Load logical element and zero.
  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
  def : Pat<(z_vllezf32 bdxaddr12only:$addr),
            (VLLEZF bdxaddr12only:$addr)>;
  def : Pat<(z_vllezf64 bdxaddr12only:$addr),
            (VLLEZG bdxaddr12only:$addr)>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
    def : Pat<(z_vllezlf32 bdxaddr12only:$addr),
              (VLLEZLF bdxaddr12only:$addr)>;
  }

  // Load element.
  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;

  // Gather element.
  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
}

let Predicates = [FeatureVectorPackedDecimal] in {
  // Load rightmost with length.  The number of loaded bytes is only known
  // at run time.
  def VLRL : BinaryVSI<"vlrl", 0xE635, int_s390_vlrl, 0>;
  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
}

// Use replicating loads if we're inserting a single element into an
// undefined vector.  This avoids a false dependency on the previous
// register contents.
multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
                             SDPatternOperator load, ValueType scalartype> {
  def : Pat<(vectype (z_vector_insert
                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
            (vlrep bdxaddr12only:$addr)>;
  def : Pat<(vectype (scalar_to_vector
                      (scalartype (load bdxaddr12only:$addr)))),
            (vlrep bdxaddr12only:$addr)>;
}
defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;

//===----------------------------------------------------------------------===//
// Stores
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Store.
  defm VST : StoreVRXAlign<"vst", 0xE70E>;

  // Store with length.  The number of stored bytes is only known at run time.
  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;

  // Store multiple.
  defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>;

  // Store element.
  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
                       imm32zx2:$index),
            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
                       imm32zx1:$index),
            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;

  // Use VSTE to store subvectors.  These patterns use "12pair" because
  // STEY and STDY offer full 20-bit displacement fields.  It's often better
  // to use those instructions rather than force a 20-bit displacement
  // into a GPR temporary.
  let mayStore = 1 in {
    def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
    def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
  }

  // Scatter element.
  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
}

let Predicates = [FeatureVectorPackedDecimal] in {
  // Store rightmost with length.  The number of stored bytes is only known
  // at run time.
  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, int_s390_vstrl, 0>;
  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
}

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorEnhancements2] in {
  // Load byte-reversed elements.
  def VLBR  : UnaryVRXGeneric<"vlbr", 0xE606>;
  def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>;
  def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>;
  def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>;
  def VLBRQ : UnaryVRX<"vlbrq", 0xE606, null_frag, v128q, 16, 4>;

  // Load elements reversed.
  def VLER  : UnaryVRXGeneric<"vler", 0xE607>;
  def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>;
  def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>;
  def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>;
  def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)),
            (VLERF bdxaddr12only:$addr)>;
  def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)),
            (VLERG bdxaddr12only:$addr)>;
  def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)),
            (VLBRQ bdxaddr12only:$addr)>;

  // Load byte-reversed element.
  def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>;
  def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>;
  def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>;

  // Load byte-reversed element and zero.
  def VLLEBRZ  : UnaryVRXGeneric<"vllebrz", 0xE604>;
  def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>;
  def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>;
  def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>;
  def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>;
  def : InstAlias<"lerv\t$V1, $XBD2",
                  (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>;
  def : InstAlias<"ldrv\t$V1, $XBD2",
                  (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>;

  // Load byte-reversed element and replicate.
  def VLBRREP  : UnaryVRXGeneric<"vlbrrep", 0xE605>;
  def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>;
  def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>;
  def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>;

  // Store byte-reversed elements.
  def VSTBR  : StoreVRXGeneric<"vstbr", 0xE60E>;
  def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>;
  def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>;
  def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>;
  def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, null_frag, v128q, 16, 4>;

  // Store elements reversed.
  def VSTER  : StoreVRXGeneric<"vster", 0xE60F>;
  def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>;
  def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>;
  def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>;
  def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr),
            (VSTERF VR128:$val, bdxaddr12only:$addr)>;
  def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr),
            (VSTERG VR128:$val, bdxaddr12only:$addr)>;
  def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr),
            (VSTBRQ VR128:$val, bdxaddr12only:$addr)>;

  // Store byte-reversed element.
  def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>;
  def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>;
  def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>;
  def : InstAlias<"sterv\t$V1, $XBD2",
                  (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
  def : InstAlias<"stdrv\t$V1, $XBD2",
                  (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
}

//===----------------------------------------------------------------------===//
// Selects and permutes
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Merge high.
  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;

  // Merge low.
  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;

  // Permute.
  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;

  // Permute doubleword immediate.
  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;

  // Bit Permute.
  let Predicates = [FeatureVectorEnhancements1] in
    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;

  // Replicate.
  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
            (VREPF VR128:$vec, imm32zx16:$index)>;
  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
            (VREPG VR128:$vec, imm32zx16:$index)>;

  // Select.
  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
}

//===----------------------------------------------------------------------===//
// Widening and narrowing
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Pack
  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;

  // Pack saturate.
  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
                               v128b, v128h, 1>;
  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
                               v128h, v128f, 2>;
  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
                               v128f, v128g, 3>;

  // Pack saturate logical.
  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
                                v128b, v128h, 1>;
  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
                                v128h, v128f, 2>;
  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
                                v128f, v128g, 3>;

  // Sign-extend to doubleword.
  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;

  // Unpack high.
  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;

  // Unpack logical high.
  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;

  // Unpack low.
  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;

  // Unpack logical low.
  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
}

//===----------------------------------------------------------------------===//
// Instantiating generic operations for specific types.
//===----------------------------------------------------------------------===//

multiclass GenericVectorOps<ValueType type, ValueType inttype> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (load bdxaddr12only:$addr)),
              (VL bdxaddr12only:$addr)>;
    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
              (VST VR128:$src, bdxaddr12only:$addr)>;
    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
  }
}

defm : GenericVectorOps<v16i8, v16i8>;
defm : GenericVectorOps<v8i16, v8i16>;
defm : GenericVectorOps<v4i32, v4i32>;
defm : GenericVectorOps<v2i64, v2i64>;
defm : GenericVectorOps<v4f32, v4i32>;
defm : GenericVectorOps<v2f64, v2i64>;

//===----------------------------------------------------------------------===//
// Integer arithmetic
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Add.
  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;

  // Add compute carry.
  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;

  // Add with carry.
  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;

  // Add with carry compute carry.
  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;

  // And.
  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;

  // And with complement.
  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;

  // Average.
  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;

  // Average logical.
  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;

  // Checksum.
  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;

  // Count leading zeros.
  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;

  // Count trailing zeros.
  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;

  // Not exclusive or.
  let Predicates = [FeatureVectorEnhancements1] in
    def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;

  // Exclusive or.
  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;

  // Galois field multiply sum.
  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;

  // Galois field multiply sum and accumulate.
  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;

  // Load complement.
  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;

  // Load positive.
  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;

  // Maximum.
  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;

  // Maximum logical.
  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;

  // Minimum.
  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;

  // Minimum logical.
  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;

  // Multiply and add low.
  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;

  // Multiply and add high.
  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;

  // Multiply and add logical high.
  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;

  // Multiply and add even.
  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;

  // Multiply and add logical even.
  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;

  // Multiply and add odd.
  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;

  // Multiply and add logical odd.
  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;

  // Multiply high.
  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;

  // Multiply logical high.
  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;

  // Multiply low.
  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;

  // Multiply even.
  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;

  // Multiply logical even.
  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;

  // Multiply odd.
  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;

  // Multiply logical odd.
  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;

  // Multiply sum logical.
  let Predicates = [FeatureVectorEnhancements1] in {
    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
                               v128q, v128g, v128g, v128q, 3>;
  }

  // Nand.
  let Predicates = [FeatureVectorEnhancements1] in
    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;

  // Nor.
  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;

  // Or.
  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;

  // Or with complement.
  let Predicates = [FeatureVectorEnhancements1] in
    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;

  // Population count.
  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
  }

  // Element rotate left logical (with vector shift amount).
  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
                           v128b, v128b, 0>;
  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
                           v128h, v128h, 1>;
  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
                           v128f, v128f, 2>;
  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
                           v128g, v128g, 3>;

  // Element rotate left logical (with scalar shift amount).
  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;

  // Element rotate and insert under mask.
  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;

  // Element shift left (with vector shift amount).
  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;

  // Element shift left (with scalar shift amount).
  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;

  // Element shift right arithmetic (with vector shift amount).
  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;

  // Element shift right arithmetic (with scalar shift amount).
  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;

  // Element shift right logical (with vector shift amount).
  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;

  // Element shift right logical (with scalar shift amount).
  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;

  // Shift left.
  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;

  // Shift left by byte.
  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;

  // Shift left double by byte.
  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;

  // Shift left double by bit.
  let Predicates = [FeatureVectorEnhancements2] in
    def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>;

  // Shift right arithmetic.
  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;

  // Shift right arithmetic by byte.
  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;

  // Shift right logical.
  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;

  // Shift right logical by byte.
  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;

  // Shift right double by bit.
  let Predicates = [FeatureVectorEnhancements2] in
    def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>;

  // Subtract.
  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;

  // Subtract compute borrow indication.
  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;

  // Subtract with borrow indication.
  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;

  // Subtract with borrow compute borrow indication.
  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
                            v128q, v128q, 4>;

  // Sum across doubleword.
  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;

  // Sum across quadword.
  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;

  // Sum across word.
  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
}

// Instantiate the bitwise ops for type TYPE.
multiclass BitwiseVectorOps<ValueType type> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
              (VNC VR128:$x, VR128:$y)>;
    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
    def : Pat<(type (or (and VR128:$x, VR128:$z),
                        (and VR128:$y, (z_vnot VR128:$z)))),
              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
              (VNO VR128:$x, VR128:$y)>;
    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
              (VNX VR128:$x, VR128:$y)>;
    def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
              (VNN VR128:$x, VR128:$y)>;
    def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
              (VOC VR128:$x, VR128:$y)>;
  }
}

defm : BitwiseVectorOps<v16i8>;
defm : BitwiseVectorOps<v8i16>;
defm : BitwiseVectorOps<v4i32>;
defm : BitwiseVectorOps<v2i64>;

// Instantiate additional patterns for absolute-related expressions on
// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
// instruction.
multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
                                    Instruction lp, int shift> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
                             (z_vneg VR128:$x), VR128:$x)),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
                             VR128:$x, (z_vneg VR128:$x))),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
                             VR128:$x, (z_vneg VR128:$x))),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
                             (z_vneg VR128:$x), VR128:$x)),
              (lc (lp VR128:$x))>;
    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
                             (z_vneg VR128:$x)),
                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
                             VR128:$x))),
              (lp VR128:$x)>;
    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
                             VR128:$x),
                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
                             (z_vneg VR128:$x)))),
              (lc (lp VR128:$x))>;
  }
}

defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;

// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
// signed or unsigned "set if greater than" comparison instruction and
// MIN and MAX are the associated minimum and maximum instructions.
multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
                                  Instruction min, Instruction max> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
              (max VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
              (min VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
                             VR128:$x, VR128:$y)),
              (min VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
                             VR128:$y, VR128:$x)),
              (max VR128:$x, VR128:$y)>;
  }
}

// Signed min/max.
defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;

// Unsigned min/max.
defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;

//===----------------------------------------------------------------------===//
// Integer comparison
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Element compare.
  let Defs = [CC] in {
    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
  }

  // Element compare logical.
  let Defs = [CC] in {
    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
  }

  // Compare equal.
  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128b, v128b, 0>;
  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128h, v128h, 1>;
  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128f, v128f, 2>;
  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128g, v128g, 3>;

  // Compare high.
  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
                              v128b, v128b, 0>;
  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
                              v128h, v128h, 1>;
  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
                              v128f, v128f, 2>;
  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
                              v128g, v128g, 3>;

  // Compare high logical.
  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128b, v128b, 0>;
  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128h, v128h, 1>;
  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128f, v128f, 2>;
  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128g, v128g, 3>;

  // Test under mask.
  let Defs = [CC] in
    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
}

//===----------------------------------------------------------------------===//
// Floating-point arithmetic
//===----------------------------------------------------------------------===//

// See comments in SystemZInstrFP.td for the suppression flags and
// rounding modes.
multiclass VectorRounding<Instruction insn, TypedReg tr> {
  def : FPConversion<insn, any_frint,      tr, tr, 0, 0>;
  def : FPConversion<insn, any_fnearbyint, tr, tr, 4, 0>;
  def : FPConversion<insn, any_ffloor,     tr, tr, 4, 7>;
  def : FPConversion<insn, any_fceil,      tr, tr, 4, 6>;
  def : FPConversion<insn, any_ftrunc,     tr, tr, 4, 5>;
  def : FPConversion<insn, any_fround,     tr, tr, 4, 1>;
}

let Predicates = [FeatureVector] in {
  // Add.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
    def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>;
    def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>;
      def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8>;
      def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>;
    }
  }

  // Convert from fixed.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
    def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
    def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
  }
  def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCFPS  : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>;
      def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>;
      def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>;
    }
    def : FPConversion<VCEFB, sint_to_fp, v128sb, v128f, 0, 0>;
  }

  // Convert from logical.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
    def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
    def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
  }
  def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCFPL  : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>;
      def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>;
      def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>;
    }
    def : FPConversion<VCELFB, uint_to_fp, v128sb, v128f, 0, 0>;
  }

  // Convert to fixed.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
    def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
    def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
  }
  // Rounding mode should agree with SystemZInstrFP.td.
  def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCSFP  : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>;
      def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>;
      def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>;
    }
    // Rounding mode should agree with SystemZInstrFP.td.
    def : FPConversion<VCFEB, fp_to_sint, v128f, v128sb, 0, 5>;
  }

  // Convert to logical.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
    def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
    def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
  }
  // Rounding mode should agree with SystemZInstrFP.td.
  def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCLFP  : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>;
      def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>;
      def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>;
    }
    // Rounding mode should agree with SystemZInstrFP.td.
    def : FPConversion<VCLFEB, fp_to_uint, v128f, v128sb, 0, 5>;
  }

  // Divide.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
    def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>;
    def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>;
      def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8>;
      def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>;
    }
  }

  // Load FP integer.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
    def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
    def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
  }
  defm : VectorRounding<VFIDB, v128db>;
  defm : VectorRounding<WFIDB, v64db>;
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
      def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
      def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
    }
    defm : VectorRounding<VFISB, v128sb>;
    defm : VectorRounding<WFISB, v32sb>;
    defm : VectorRounding<WFIXB, v128xb>;
  }

  // Load lengthened.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
    def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128sb, 2, 0>;
    def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in {
        def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
        def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
        def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
      }
      def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>;
    }
    def : Pat<(f128 (any_fpextend (f32 VR32:$src))),
              (WFLLD (WLDEB VR32:$src))>;
  }

  // Load rounded.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
    def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
    def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
  }
  def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
  def : FPConversion<WLEDB, any_fpround, v32sb, v64db, 0, 0>;
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in {
        def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
        def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
        def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
      }
      def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
    }
    def : FPConversion<WFLRX, any_fpround, v64db, v128xb, 0, 0>;
    def : Pat<(f32 (any_fpround (f128 VR128:$src))),
              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
  }

  // Maximum.
  multiclass VectorMax<Instruction insn, TypedReg tr> {
    def : FPMinMax<insn, any_fmaxnum, tr, 4>;
    def : FPMinMax<insn, fmaximum, tr, 1>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
      def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
                                     v128db, v128db, 3, 0>;
      def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
                                     v64db, v64db, 3, 8>;
      def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
                                     v128sb, v128sb, 2, 0>;
      def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
                                     v32sb, v32sb, 2, 8>;
      def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
                                     v128xb, v128xb, 4, 8>;
    }
    defm : VectorMax<VFMAXDB, v128db>;
    defm : VectorMax<WFMAXDB, v64db>;
    defm : VectorMax<VFMAXSB, v128sb>;
    defm : VectorMax<WFMAXSB, v32sb>;
    defm : VectorMax<WFMAXXB, v128xb>;
  }

  // Minimum.
  multiclass VectorMin<Instruction insn, TypedReg tr> {
    def : FPMinMax<insn, any_fminnum, tr, 4>;
    def : FPMinMax<insn, fminimum, tr, 1>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
      def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
                                     v128db, v128db, 3, 0>;
      def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
                                     v64db, v64db, 3, 8>;
      def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
                                     v128sb, v128sb, 2, 0>;
      def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
                                     v32sb, v32sb, 2, 8>;
      def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
                                     v128xb, v128xb, 4, 8>;
    }
    defm : VectorMin<VFMINDB, v128db>;
    defm : VectorMin<WFMINDB, v64db>;
    defm : VectorMin<VFMINSB, v128sb>;
    defm : VectorMin<WFMINSB, v32sb>;
    defm : VectorMin<WFMINXB, v128xb>;
  }

  // Multiply.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
    def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>;
    def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>;
      def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8>;
      def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>;
    }
  }

  // Multiply and add.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
    def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>;
    def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>;
      def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2>;
      def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>;
    }
  }

  // Multiply and subtract.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
    def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>;
    def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>;
      def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2>;
      def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>;
    }
  }

  // Negative multiply and add.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>;
    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>;
    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>;
    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>;
    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>;
  }

  // Negative multiply and subtract.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>;
    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>;
    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>;
    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>;
    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>;
  }

  // Perform sign operation.
  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
  }

  // Load complement.
  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
  }

  // Load negative.
  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
  }

  // Load positive.
  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
  }

  // Square root.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
    def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>;
    def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>;
      def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8>;
      def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>;
    }
  }

  // Subtract.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
    def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>;
    def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>;
      def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8>;
      def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>;
    }
  }

  // Test data class immediate.
  let Defs = [CC] in {
    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
    }
  }
}

//===----------------------------------------------------------------------===//
// Floating-point comparison
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Compare scalar.
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_fcmp, v32sb, 2>;
      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_fcmp, v128xb, 4>;
    }
  }

  // Compare and signal scalar.
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, null_frag, v32sb, 2>;
      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, null_frag, v128xb, 4>;
    }
  }

  // Compare equal.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
    defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
                                  v128g, v128db, 3, 0>;
    defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
                                  v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_vfcmpe, z_vfcmpes,
                                    v128f, v128sb, 2, 0>;
      defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
                                    v32f, v32sb, 2, 8>;
      defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
                                    v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal equal.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, null_frag, null_frag,
                                  v128g, v128db, 3, 4>;
    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
                                  v64g, v64db, 3, 12>;
    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, null_frag, null_frag,
                                  v128f, v128sb, 2, 4>;
    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
                                  v32f, v32sb, 2, 12>;
    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
                                  v128q, v128xb, 4, 12>;
  }

  // Compare high.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
    defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
                                  v128g, v128db, 3, 0>;
    defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
                                  v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_vfcmph, z_vfcmphs,
                                    v128f, v128sb, 2, 0>;
      defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
                                    v32f, v32sb, 2, 8>;
      defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
                                    v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal high.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, null_frag, null_frag,
                                  v128g, v128db, 3, 4>;
    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
                                  v64g, v64db, 3, 12>;
    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, null_frag, null_frag,
                                  v128f, v128sb, 2, 4>;
    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
                                  v32f, v32sb, 2, 12>;
    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
                                  v128q, v128xb, 4, 12>;
  }

  // Compare high or equal.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
    defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
                                   v128g, v128db, 3, 0>;
    defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
                                   v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_vfcmphe, z_vfcmphes,
                                     v128f, v128sb, 2, 0>;
      defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
                                     v32f, v32sb, 2, 8>;
      defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
                                     v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal high or equal.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, null_frag, null_frag,
                                   v128g, v128db, 3, 4>;
    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
                                   v64g, v64db, 3, 12>;
    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, null_frag, null_frag,
                                   v128f, v128sb, 2, 4>;
    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
                                   v32f, v32sb, 2, 12>;
    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
                                   v128q, v128xb, 4, 12>;
  }
}

//===----------------------------------------------------------------------===//
// Conversions
//===----------------------------------------------------------------------===//

def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;

def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;

def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;

def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;

def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;

def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;

def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;

//===----------------------------------------------------------------------===//
// Replicating scalars
//===----------------------------------------------------------------------===//

// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
// INDEX is 8 minus the element size in bytes.
class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
  : Pat<(type (z_replicate GR32:$scalar)),
        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;

def : VectorReplicateScalar<v16i8, VREPB, 7>;
def : VectorReplicateScalar<v8i16, VREPH, 3>;
def : VectorReplicateScalar<v4i32, VREPF, 1>;

// i64 replications are just a single isntruction.
def : Pat<(v2i64 (z_replicate GR64:$scalar)),
          (VLVGP GR64:$scalar, GR64:$scalar)>;

//===----------------------------------------------------------------------===//
// Floating-point insertion and extraction
//===----------------------------------------------------------------------===//

// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
// and VLGVF.
let Predicates = [FeatureVector] in {
  def LEFR : UnaryAliasVRS<VR32, GR32>;
  def LFER : UnaryAliasVRS<GR64, VR32>;
  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
}

// Floating-point values are stored in element 0 of the corresponding
// vector register.  Scalar to vector conversion is just a subreg and
// scalar replication can just replicate element 0 of the vector register.
multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
                            SubRegIndex subreg> {
  def : Pat<(vt (scalar_to_vector cls:$scalar)),
            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
  def : Pat<(vt (z_replicate cls:$scalar)),
            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
                                 subreg), 0)>;
}
defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_h32>;
defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_h64>;

// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
// TableGen for the base register operand in VLVG-based integer insertions
// and ensures that this version is strictly better.
let AddedComplexity = 4 in {
  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
                                 subreg_h64), VR128:$vec, 1)>;
  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
                                             subreg_h64), 0)>;
}

// We extract floating-point element X by replicating (for elements other
// than 0) and then taking a high subreg.  The AddedComplexity counters the
// 3 added by TableGen for the base register operand in VLGV-based integer
// extractions and ensures that this version is strictly better.
let AddedComplexity = 4 in {
  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
            (EXTRACT_SUBREG VR128:$vec, subreg_h32)>;
  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>;

  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
            (EXTRACT_SUBREG VR128:$vec, subreg_h64)>;
  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>;
}

//===----------------------------------------------------------------------===//
// Support for 128-bit floating-point values in vector registers
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorEnhancements1] in {
  def : Pat<(f128 (load bdxaddr12only:$addr)),
            (VL bdxaddr12only:$addr)>;
  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
            (VST VR128:$src, bdxaddr12only:$addr)>;

  def : Pat<(f128 fpimm0), (VZERO)>;
  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
}

//===----------------------------------------------------------------------===//
// String instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
                                   z_vfae_cc, v128b, v128b, 0>;
  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
                                   z_vfae_cc, v128h, v128h, 1>;
  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
                                   z_vfae_cc, v128f, v128f, 2>;
  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
                                    z_vfaez_cc, v128b, v128b, 0, 2>;
  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
                                    z_vfaez_cc, v128h, v128h, 1, 2>;
  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
                                    z_vfaez_cc, v128f, v128f, 2, 2>;

  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
                                    z_vfee_cc, v128b, v128b, 0>;
  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
                                    z_vfee_cc, v128h, v128h, 1>;
  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
                                    z_vfee_cc, v128f, v128f, 2>;
  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
                                z_vfeez_cc, v128b, v128b, 0, 2>;
  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
                                z_vfeez_cc, v128h, v128h, 1, 2>;
  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
                                z_vfeez_cc, v128f, v128f, 2, 2>;

  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
                                     z_vfene_cc, v128b, v128b, 0>;
  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
                                     z_vfene_cc, v128h, v128h, 1>;
  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
                                     z_vfene_cc, v128f, v128f, 2>;
  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
                                 z_vfenez_cc, v128b, v128b, 0, 2>;
  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
                                 z_vfenez_cc, v128h, v128h, 1, 2>;
  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
                                 z_vfenez_cc, v128f, v128f, 2, 2>;

  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
                                    z_vistr_cc, v128b, v128b, 0>;
  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
                                    z_vistr_cc, v128h, v128h, 1>;
  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
                                    z_vistr_cc, v128f, v128f, 2>;

  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
                                       z_vstrc_cc, v128b, v128b, 0>;
  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
                                       z_vstrc_cc, v128h, v128h, 1>;
  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
                                       z_vstrc_cc, v128f, v128f, 2>;
  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
}

let Predicates = [FeatureVectorEnhancements2] in {
  defm VSTRS  : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>;
  defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B,
                                 z_vstrs_cc, v128b, v128b, 0>;
  defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B,
                                 z_vstrs_cc, v128b, v128h, 1>;
  defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B,
                                 z_vstrs_cc, v128b, v128f, 2>;
  let Defs = [CC] in {
    def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B,
                              z_vstrsz_cc, v128b, v128b, 0, 2>;
    def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B,
                              z_vstrsz_cc, v128b, v128h, 1, 2>;
    def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B,
                              z_vstrsz_cc, v128b, v128f, 2, 2>;
  }
}

//===----------------------------------------------------------------------===//
// Packed-decimal instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorPackedDecimal] in {
  def VLIP : BinaryVRIh<"vlip", 0xE649>;

  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;

  let Defs = [CC] in {
    let Predicates = [FeatureVectorPackedDecimalEnhancement] in {
      def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>;
      def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>;
    }
    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;

    def VAP : QuaternaryVRIf<"vap", 0xE671>;
    def VSP : QuaternaryVRIf<"vsp", 0xE673>;

    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;

    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;

    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;

    def VTP : TestVRRg<"vtp", 0xE65F>;
    def VCP : CompareVRRh<"vcp", 0xE677>;
  }
}