aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/WebAssembly/WebAssemblyInstrSIMD.td
blob: dd8930f079b08b9940cf2df42a2780ce3438f6cf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
// WebAssemblyInstrSIMD.td - WebAssembly SIMD codegen support -*- tablegen -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// WebAssembly SIMD operand code-gen constructs.
///
//===----------------------------------------------------------------------===//

// Instructions requiring HasSIMD128 and the simd128 prefix byte
multiclass SIMD_I<dag oops_r, dag iops_r, dag oops_s, dag iops_s,
                  list<dag> pattern_r, string asmstr_r = "",
                  string asmstr_s = "", bits<32> simdop = -1> {
  defm "" : I<oops_r, iops_r, oops_s, iops_s, pattern_r, asmstr_r, asmstr_s,
              !or(0xfd00, !and(0xff, simdop))>,
            Requires<[HasSIMD128]>;
}

defm "" : ARGUMENT<V128, v16i8>;
defm "" : ARGUMENT<V128, v8i16>;
defm "" : ARGUMENT<V128, v4i32>;
defm "" : ARGUMENT<V128, v2i64>;
defm "" : ARGUMENT<V128, v4f32>;
defm "" : ARGUMENT<V128, v2f64>;

// Constrained immediate argument types
foreach SIZE = [8, 16] in
def ImmI#SIZE : ImmLeaf<i32,
  "return -(1 << ("#SIZE#" - 1)) <= Imm && Imm < (1 << ("#SIZE#" - 1));"
>;
foreach SIZE = [2, 4, 8, 16, 32] in
def LaneIdx#SIZE : ImmLeaf<i32, "return 0 <= Imm && Imm < "#SIZE#";">;

//===----------------------------------------------------------------------===//
// Load and store
//===----------------------------------------------------------------------===//

// Load: v128.load
multiclass SIMDLoad<ValueType vec_t> {
  let mayLoad = 1, UseNamedOperandTable = 1 in
  defm LOAD_#vec_t :
    SIMD_I<(outs V128:$dst), (ins P2Align:$p2align, offset32_op:$off, I32:$addr),
           (outs), (ins P2Align:$p2align, offset32_op:$off), [],
           "v128.load\t$dst, ${off}(${addr})$p2align",
           "v128.load\t$off$p2align", 0>;
}

foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
defm "" : SIMDLoad<vec_t>;

// Def load and store patterns from WebAssemblyInstrMemory.td for vector types
def : LoadPatNoOffset<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatImmOff<vec_t, load, regPlusImm, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatImmOff<vec_t, load, or_is_add, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatGlobalAddr<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatOffsetOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatGlobalAddrOffOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
}

// Store: v128.store
multiclass SIMDStore<ValueType vec_t> {
  let mayStore = 1, UseNamedOperandTable = 1 in
  defm STORE_#vec_t :
    SIMD_I<(outs), (ins P2Align:$p2align, offset32_op:$off, I32:$addr, V128:$vec),
           (outs), (ins P2Align:$p2align, offset32_op:$off), [],
           "v128.store\t${off}(${addr})$p2align, $vec",
           "v128.store\t$off$p2align", 1>;
}

foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
defm "" : SIMDStore<vec_t>;

// Def load and store patterns from WebAssemblyInstrMemory.td for vector types
def : StorePatNoOffset<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatImmOff<vec_t, store, regPlusImm, !cast<NI>("STORE_"#vec_t)>;
def : StorePatImmOff<vec_t, store, or_is_add, !cast<NI>("STORE_"#vec_t)>;
def : StorePatGlobalAddr<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatOffsetOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatGlobalAddrOffOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
}

//===----------------------------------------------------------------------===//
// Constructing SIMD values
//===----------------------------------------------------------------------===//

// Constant: v128.const
multiclass ConstVec<ValueType vec_t, dag ops, dag pat, string args> {
  let isMoveImm = 1, isReMaterializable = 1,
      Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
  defm CONST_V128_#vec_t : SIMD_I<(outs V128:$dst), ops, (outs), ops,
                                  [(set V128:$dst, (vec_t pat))],
                                  "v128.const\t$dst, "#args,
                                  "v128.const\t"#args, 2>;
}

defm "" : ConstVec<v16i8,
                   (ins vec_i8imm_op:$i0, vec_i8imm_op:$i1,
                        vec_i8imm_op:$i2, vec_i8imm_op:$i3,
                        vec_i8imm_op:$i4, vec_i8imm_op:$i5,
                        vec_i8imm_op:$i6, vec_i8imm_op:$i7,
                        vec_i8imm_op:$i8, vec_i8imm_op:$i9,
                        vec_i8imm_op:$iA, vec_i8imm_op:$iB,
                        vec_i8imm_op:$iC, vec_i8imm_op:$iD,
                        vec_i8imm_op:$iE, vec_i8imm_op:$iF),
                   (build_vector ImmI8:$i0, ImmI8:$i1, ImmI8:$i2, ImmI8:$i3,
                                 ImmI8:$i4, ImmI8:$i5, ImmI8:$i6, ImmI8:$i7,
                                 ImmI8:$i8, ImmI8:$i9, ImmI8:$iA, ImmI8:$iB,
                                 ImmI8:$iC, ImmI8:$iD, ImmI8:$iE, ImmI8:$iF),
                   !strconcat("$i0, $i1, $i2, $i3, $i4, $i5, $i6, $i7, ",
                              "$i8, $i9, $iA, $iB, $iC, $iD, $iE, $iF")>;
defm "" : ConstVec<v8i16,
                   (ins vec_i16imm_op:$i0, vec_i16imm_op:$i1,
                        vec_i16imm_op:$i2, vec_i16imm_op:$i3,
                        vec_i16imm_op:$i4, vec_i16imm_op:$i5,
                        vec_i16imm_op:$i6, vec_i16imm_op:$i7),
                   (build_vector
                     ImmI16:$i0, ImmI16:$i1, ImmI16:$i2, ImmI16:$i3,
                     ImmI16:$i4, ImmI16:$i5, ImmI16:$i6, ImmI16:$i7),
                   "$i0, $i1, $i2, $i3, $i4, $i5, $i6, $i7">;
let IsCanonical = 1 in
defm "" : ConstVec<v4i32,
                   (ins vec_i32imm_op:$i0, vec_i32imm_op:$i1,
                        vec_i32imm_op:$i2, vec_i32imm_op:$i3),
                   (build_vector (i32 imm:$i0), (i32 imm:$i1),
                                 (i32 imm:$i2), (i32 imm:$i3)),
                   "$i0, $i1, $i2, $i3">;
defm "" : ConstVec<v2i64,
                   (ins vec_i64imm_op:$i0, vec_i64imm_op:$i1),
                   (build_vector (i64 imm:$i0), (i64 imm:$i1)),
                   "$i0, $i1">;
defm "" : ConstVec<v4f32,
                   (ins f32imm_op:$i0, f32imm_op:$i1,
                        f32imm_op:$i2, f32imm_op:$i3),
                   (build_vector (f32 fpimm:$i0), (f32 fpimm:$i1),
                                 (f32 fpimm:$i2), (f32 fpimm:$i3)),
                   "$i0, $i1, $i2, $i3">;
defm "" : ConstVec<v2f64,
                  (ins f64imm_op:$i0, f64imm_op:$i1),
                  (build_vector (f64 fpimm:$i0), (f64 fpimm:$i1)),
                  "$i0, $i1">;

// Shuffle lanes: shuffle
defm SHUFFLE :
  SIMD_I<(outs V128:$dst),
         (ins V128:$x, V128:$y,
           vec_i8imm_op:$m0, vec_i8imm_op:$m1,
           vec_i8imm_op:$m2, vec_i8imm_op:$m3,
           vec_i8imm_op:$m4, vec_i8imm_op:$m5,
           vec_i8imm_op:$m6, vec_i8imm_op:$m7,
           vec_i8imm_op:$m8, vec_i8imm_op:$m9,
           vec_i8imm_op:$mA, vec_i8imm_op:$mB,
           vec_i8imm_op:$mC, vec_i8imm_op:$mD,
           vec_i8imm_op:$mE, vec_i8imm_op:$mF),
         (outs),
         (ins
           vec_i8imm_op:$m0, vec_i8imm_op:$m1,
           vec_i8imm_op:$m2, vec_i8imm_op:$m3,
           vec_i8imm_op:$m4, vec_i8imm_op:$m5,
           vec_i8imm_op:$m6, vec_i8imm_op:$m7,
           vec_i8imm_op:$m8, vec_i8imm_op:$m9,
           vec_i8imm_op:$mA, vec_i8imm_op:$mB,
           vec_i8imm_op:$mC, vec_i8imm_op:$mD,
           vec_i8imm_op:$mE, vec_i8imm_op:$mF),
         [],
         "v8x16.shuffle\t$dst, $x, $y, "#
           "$m0, $m1, $m2, $m3, $m4, $m5, $m6, $m7, "#
           "$m8, $m9, $mA, $mB, $mC, $mD, $mE, $mF",
         "v8x16.shuffle\t"#
           "$m0, $m1, $m2, $m3, $m4, $m5, $m6, $m7, "#
           "$m8, $m9, $mA, $mB, $mC, $mD, $mE, $mF",
         3>;

// Shuffles after custom lowering
def wasm_shuffle_t : SDTypeProfile<1, 18, []>;
def wasm_shuffle : SDNode<"WebAssemblyISD::SHUFFLE", wasm_shuffle_t>;
foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
def : Pat<(vec_t (wasm_shuffle (vec_t V128:$x), (vec_t V128:$y),
            (i32 LaneIdx32:$m0), (i32 LaneIdx32:$m1),
            (i32 LaneIdx32:$m2), (i32 LaneIdx32:$m3),
            (i32 LaneIdx32:$m4), (i32 LaneIdx32:$m5),
            (i32 LaneIdx32:$m6), (i32 LaneIdx32:$m7),
            (i32 LaneIdx32:$m8), (i32 LaneIdx32:$m9),
            (i32 LaneIdx32:$mA), (i32 LaneIdx32:$mB),
            (i32 LaneIdx32:$mC), (i32 LaneIdx32:$mD),
            (i32 LaneIdx32:$mE), (i32 LaneIdx32:$mF))),
          (vec_t (SHUFFLE (vec_t V128:$x), (vec_t V128:$y),
            (i32 LaneIdx32:$m0), (i32 LaneIdx32:$m1),
            (i32 LaneIdx32:$m2), (i32 LaneIdx32:$m3),
            (i32 LaneIdx32:$m4), (i32 LaneIdx32:$m5),
            (i32 LaneIdx32:$m6), (i32 LaneIdx32:$m7),
            (i32 LaneIdx32:$m8), (i32 LaneIdx32:$m9),
            (i32 LaneIdx32:$mA), (i32 LaneIdx32:$mB),
            (i32 LaneIdx32:$mC), (i32 LaneIdx32:$mD),
            (i32 LaneIdx32:$mE), (i32 LaneIdx32:$mF)))>;
}

// Create vector with identical lanes: splat
def splat2 : PatFrag<(ops node:$x), (build_vector node:$x, node:$x)>;
def splat4 : PatFrag<(ops node:$x), (build_vector
                       node:$x, node:$x, node:$x, node:$x)>;
def splat8 : PatFrag<(ops node:$x), (build_vector
                       node:$x, node:$x, node:$x, node:$x,
                       node:$x, node:$x, node:$x, node:$x)>;
def splat16 : PatFrag<(ops node:$x), (build_vector
                        node:$x, node:$x, node:$x, node:$x,
                        node:$x, node:$x, node:$x, node:$x,
                        node:$x, node:$x, node:$x, node:$x,
                        node:$x, node:$x, node:$x, node:$x)>;

multiclass Splat<ValueType vec_t, string vec, WebAssemblyRegClass reg_t,
                 PatFrag splat_pat, bits<32> simdop> {
  // Prefer splats over v128.const for const splats (65 is lowest that works)
  let AddedComplexity = 65 in
  defm SPLAT_#vec_t : SIMD_I<(outs V128:$dst), (ins reg_t:$x), (outs), (ins),
                             [(set (vec_t V128:$dst), (splat_pat reg_t:$x))],
                             vec#".splat\t$dst, $x", vec#".splat", simdop>;
}

defm "" : Splat<v16i8, "i8x16", I32, splat16, 4>;
defm "" : Splat<v8i16, "i16x8", I32, splat8, 8>;
defm "" : Splat<v4i32, "i32x4", I32, splat4, 12>;
defm "" : Splat<v2i64, "i64x2", I64, splat2, 15>;
defm "" : Splat<v4f32, "f32x4", F32, splat4, 18>;
defm "" : Splat<v2f64, "f64x2", F64, splat2, 21>;

// scalar_to_vector leaves high lanes undefined, so can be a splat
class ScalarSplatPat<ValueType vec_t, ValueType lane_t,
                     WebAssemblyRegClass reg_t> :
  Pat<(vec_t (scalar_to_vector (lane_t reg_t:$x))),
      (!cast<Instruction>("SPLAT_"#vec_t) reg_t:$x)>;

def : ScalarSplatPat<v16i8, i32, I32>;
def : ScalarSplatPat<v8i16, i32, I32>;
def : ScalarSplatPat<v4i32, i32, I32>;
def : ScalarSplatPat<v2i64, i64, I64>;
def : ScalarSplatPat<v4f32, f32, F32>;
def : ScalarSplatPat<v2f64, f64, F64>;

//===----------------------------------------------------------------------===//
// Accessing lanes
//===----------------------------------------------------------------------===//

// Extract lane as a scalar: extract_lane / extract_lane_s / extract_lane_u
multiclass ExtractLane<ValueType vec_t, string vec, ImmLeaf imm_t,
                       WebAssemblyRegClass reg_t, bits<32> simdop,
                       string suffix = "", SDNode extract = vector_extract> {
  defm EXTRACT_LANE_#vec_t#suffix :
      SIMD_I<(outs reg_t:$dst), (ins V128:$vec, vec_i8imm_op:$idx),
             (outs), (ins vec_i8imm_op:$idx),
             [(set reg_t:$dst, (extract (vec_t V128:$vec), (i32 imm_t:$idx)))],
             vec#".extract_lane"#suffix#"\t$dst, $vec, $idx",
             vec#".extract_lane"#suffix#"\t$idx", simdop>;
}

multiclass ExtractPat<ValueType lane_t, int mask> {
  def _s : PatFrag<(ops node:$vec, node:$idx),
                   (i32 (sext_inreg
                     (i32 (vector_extract
                       node:$vec,
                       node:$idx
                     )),
                     lane_t
                   ))>;
  def _u : PatFrag<(ops node:$vec, node:$idx),
                   (i32 (and
                     (i32 (vector_extract
                       node:$vec,
                       node:$idx
                     )),
                     (i32 mask)
                   ))>;
}

defm extract_i8x16 : ExtractPat<i8, 0xff>;
defm extract_i16x8 : ExtractPat<i16, 0xffff>;

multiclass ExtractLaneExtended<string sign, bits<32> baseInst> {
  defm "" : ExtractLane<v16i8, "i8x16", LaneIdx16, I32, baseInst, sign,
                        !cast<PatFrag>("extract_i8x16"#sign)>;
  defm "" : ExtractLane<v8i16, "i16x8", LaneIdx8, I32, !add(baseInst, 4), sign,
                        !cast<PatFrag>("extract_i16x8"#sign)>;
}

defm "" : ExtractLaneExtended<"_s", 5>;
let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm "" : ExtractLaneExtended<"_u", 6>;
defm "" : ExtractLane<v4i32, "i32x4", LaneIdx4, I32, 13>;
defm "" : ExtractLane<v2i64, "i64x2", LaneIdx2, I64, 16>;
defm "" : ExtractLane<v4f32, "f32x4", LaneIdx4, F32, 19>;
defm "" : ExtractLane<v2f64, "f64x2", LaneIdx2, F64, 22>;

// It would be more conventional to use unsigned extracts, but v8
// doesn't implement them yet
def : Pat<(i32 (vector_extract (v16i8 V128:$vec), (i32 LaneIdx16:$idx))),
          (EXTRACT_LANE_v16i8_s V128:$vec, (i32 LaneIdx16:$idx))>;
def : Pat<(i32 (vector_extract (v8i16 V128:$vec), (i32 LaneIdx8:$idx))),
          (EXTRACT_LANE_v8i16_s V128:$vec, (i32 LaneIdx8:$idx))>;

// Lower undef lane indices to zero
def : Pat<(and (i32 (vector_extract (v16i8 V128:$vec), undef)), (i32 0xff)),
          (EXTRACT_LANE_v16i8_u V128:$vec, 0)>;
def : Pat<(and (i32 (vector_extract (v8i16 V128:$vec), undef)), (i32 0xffff)),
          (EXTRACT_LANE_v8i16_u V128:$vec, 0)>;
def : Pat<(i32 (vector_extract (v16i8 V128:$vec), undef)),
          (EXTRACT_LANE_v16i8_u V128:$vec, 0)>;
def : Pat<(i32 (vector_extract (v8i16 V128:$vec), undef)),
          (EXTRACT_LANE_v8i16_u V128:$vec, 0)>;
def : Pat<(sext_inreg (i32 (vector_extract (v16i8 V128:$vec), undef)), i8),
          (EXTRACT_LANE_v16i8_s V128:$vec, 0)>;
def : Pat<(sext_inreg (i32 (vector_extract (v8i16 V128:$vec), undef)), i16),
          (EXTRACT_LANE_v8i16_s V128:$vec, 0)>;
def : Pat<(vector_extract (v4i32 V128:$vec), undef),
          (EXTRACT_LANE_v4i32 V128:$vec, 0)>;
def : Pat<(vector_extract (v2i64 V128:$vec), undef),
          (EXTRACT_LANE_v2i64 V128:$vec, 0)>;
def : Pat<(vector_extract (v4f32 V128:$vec), undef),
          (EXTRACT_LANE_v4f32 V128:$vec, 0)>;
def : Pat<(vector_extract (v2f64 V128:$vec), undef),
          (EXTRACT_LANE_v2f64 V128:$vec, 0)>;

// Replace lane value: replace_lane
multiclass ReplaceLane<ValueType vec_t, string vec, ImmLeaf imm_t,
                       WebAssemblyRegClass reg_t, ValueType lane_t,
                       bits<32> simdop> {
  defm REPLACE_LANE_#vec_t :
      SIMD_I<(outs V128:$dst), (ins V128:$vec, vec_i8imm_op:$idx, reg_t:$x),
             (outs), (ins vec_i8imm_op:$idx),
             [(set V128:$dst, (vector_insert
               (vec_t V128:$vec), (lane_t reg_t:$x), (i32 imm_t:$idx)))],
             vec#".replace_lane\t$dst, $vec, $idx, $x",
             vec#".replace_lane\t$idx", simdop>;
}

defm "" : ReplaceLane<v16i8, "i8x16", LaneIdx16, I32, i32, 7>;
defm "" : ReplaceLane<v8i16, "i16x8", LaneIdx8, I32, i32, 11>;
defm "" : ReplaceLane<v4i32, "i32x4", LaneIdx4, I32, i32, 14>;
defm "" : ReplaceLane<v2i64, "i64x2", LaneIdx2, I64, i64, 17>;
defm "" : ReplaceLane<v4f32, "f32x4", LaneIdx4, F32, f32, 20>;
defm "" : ReplaceLane<v2f64, "f64x2", LaneIdx2, F64, f64, 23>;

// Lower undef lane indices to zero
def : Pat<(vector_insert (v16i8 V128:$vec), I32:$x, undef),
          (REPLACE_LANE_v16i8 V128:$vec, 0, I32:$x)>;
def : Pat<(vector_insert (v8i16 V128:$vec), I32:$x, undef),
          (REPLACE_LANE_v8i16 V128:$vec, 0, I32:$x)>;
def : Pat<(vector_insert (v4i32 V128:$vec), I32:$x, undef),
          (REPLACE_LANE_v4i32 V128:$vec, 0, I32:$x)>;
def : Pat<(vector_insert (v2i64 V128:$vec), I64:$x, undef),
          (REPLACE_LANE_v2i64 V128:$vec, 0, I64:$x)>;
def : Pat<(vector_insert (v4f32 V128:$vec), F32:$x, undef),
          (REPLACE_LANE_v4f32 V128:$vec, 0, F32:$x)>;
def : Pat<(vector_insert (v2f64 V128:$vec), F64:$x, undef),
          (REPLACE_LANE_v2f64 V128:$vec, 0, F64:$x)>;

//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//

multiclass SIMDCondition<ValueType vec_t, ValueType out_t, string vec,
                         string name, CondCode cond, bits<32> simdop> {
  defm _#vec_t :
    SIMD_I<(outs V128:$dst), (ins V128:$lhs, V128:$rhs), (outs), (ins),
           [(set (out_t V128:$dst),
             (setcc (vec_t V128:$lhs), (vec_t V128:$rhs), cond)
           )],
           vec#"."#name#"\t$dst, $lhs, $rhs", vec#"."#name, simdop>;
}

multiclass SIMDConditionInt<string name, CondCode cond, bits<32> baseInst> {
  defm "" : SIMDCondition<v16i8, v16i8, "i8x16", name, cond, baseInst>;
  defm "" : SIMDCondition<v8i16, v8i16, "i16x8", name, cond,
                          !add(baseInst, 10)>;
  defm "" : SIMDCondition<v4i32, v4i32, "i32x4", name, cond,
                          !add(baseInst, 20)>;
}

multiclass SIMDConditionFP<string name, CondCode cond, bits<32> baseInst> {
  defm "" : SIMDCondition<v4f32, v4i32, "f32x4", name, cond, baseInst>;
  defm "" : SIMDCondition<v2f64, v2i64, "f64x2", name, cond,
                          !add(baseInst, 6)>;
}

// Equality: eq
let isCommutable = 1 in {
defm EQ : SIMDConditionInt<"eq", SETEQ, 24>;
defm EQ : SIMDConditionFP<"eq", SETOEQ, 64>;
} // isCommutable = 1

// Non-equality: ne
let isCommutable = 1 in {
defm NE : SIMDConditionInt<"ne", SETNE, 25>;
defm NE : SIMDConditionFP<"ne", SETUNE, 65>;
} // isCommutable = 1

// Less than: lt_s / lt_u / lt
defm LT_S : SIMDConditionInt<"lt_s", SETLT, 26>;
defm LT_U : SIMDConditionInt<"lt_u", SETULT, 27>;
defm LT : SIMDConditionFP<"lt", SETOLT, 66>;

// Greater than: gt_s / gt_u / gt
defm GT_S : SIMDConditionInt<"gt_s", SETGT, 28>;
defm GT_U : SIMDConditionInt<"gt_u", SETUGT, 29>;
defm GT : SIMDConditionFP<"gt", SETOGT, 67>;

// Less than or equal: le_s / le_u / le
defm LE_S : SIMDConditionInt<"le_s", SETLE, 30>;
defm LE_U : SIMDConditionInt<"le_u", SETULE, 31>;
defm LE : SIMDConditionFP<"le", SETOLE, 68>;

// Greater than or equal: ge_s / ge_u / ge
defm GE_S : SIMDConditionInt<"ge_s", SETGE, 32>;
defm GE_U : SIMDConditionInt<"ge_u", SETUGE, 33>;
defm GE : SIMDConditionFP<"ge", SETOGE, 69>;

// Lower float comparisons that don't care about NaN to standard WebAssembly
// float comparisons. These instructions are generated with nnan and in the
// target-independent expansion of unordered comparisons and ordered ne.
foreach nodes = [[seteq, EQ_v4f32], [setne, NE_v4f32], [setlt, LT_v4f32],
                 [setgt, GT_v4f32], [setle, LE_v4f32], [setge, GE_v4f32]] in
def : Pat<(v4i32 (nodes[0] (v4f32 V128:$lhs), (v4f32 V128:$rhs))),
          (v4i32 (nodes[1] (v4f32 V128:$lhs), (v4f32 V128:$rhs)))>;

foreach nodes = [[seteq, EQ_v2f64], [setne, NE_v2f64], [setlt, LT_v2f64],
                 [setgt, GT_v2f64], [setle, LE_v2f64], [setge, GE_v2f64]] in
def : Pat<(v2i64 (nodes[0] (v2f64 V128:$lhs), (v2f64 V128:$rhs))),
          (v2i64 (nodes[1] (v2f64 V128:$lhs), (v2f64 V128:$rhs)))>;


//===----------------------------------------------------------------------===//
// Bitwise operations
//===----------------------------------------------------------------------===//

multiclass SIMDBinary<ValueType vec_t, string vec, SDNode node, string name,
                      bits<32> simdop> {
  defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$lhs, V128:$rhs),
                        (outs), (ins),
                        [(set (vec_t V128:$dst),
                          (node (vec_t V128:$lhs), (vec_t V128:$rhs))
                        )],
                        vec#"."#name#"\t$dst, $lhs, $rhs", vec#"."#name,
                        simdop>;
}

multiclass SIMDBitwise<SDNode node, string name, bits<32> simdop> {
  defm "" : SIMDBinary<v16i8, "v128", node, name, simdop>;
  defm "" : SIMDBinary<v8i16, "v128", node, name, simdop>;
  defm "" : SIMDBinary<v4i32, "v128", node, name, simdop>;
  defm "" : SIMDBinary<v2i64, "v128", node, name, simdop>;
}

multiclass SIMDUnary<ValueType vec_t, string vec, SDNode node, string name,
                     bits<32> simdop> {
  defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$vec), (outs), (ins),
                        [(set (vec_t V128:$dst),
                          (vec_t (node (vec_t V128:$vec)))
                        )],
                        vec#"."#name#"\t$dst, $vec", vec#"."#name, simdop>;
}

// Bitwise logic: v128.not
foreach vec_t = [v16i8, v8i16, v4i32, v2i64] in
defm NOT: SIMDUnary<vec_t, "v128", vnot, "not", 76>;

// Bitwise logic: v128.and / v128.or / v128.xor
let isCommutable = 1 in {
defm AND : SIMDBitwise<and, "and", 77>;
defm OR : SIMDBitwise<or, "or", 78>;
defm XOR : SIMDBitwise<xor, "xor", 79>;
} // isCommutable = 1

// Bitwise select: v128.bitselect
foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in
  defm BITSELECT_#vec_t :
    SIMD_I<(outs V128:$dst), (ins V128:$v1, V128:$v2, V128:$c), (outs), (ins),
           [(set (vec_t V128:$dst),
             (vec_t (int_wasm_bitselect
               (vec_t V128:$v1), (vec_t V128:$v2), (vec_t V128:$c)
             ))
           )],
           "v128.bitselect\t$dst, $v1, $v2, $c", "v128.bitselect", 80>;

// Bitselect is equivalent to (c & v1) | (~c & v2)
foreach vec_t = [v16i8, v8i16, v4i32, v2i64] in
  def : Pat<(vec_t (or (and (vec_t V128:$c), (vec_t V128:$v1)),
              (and (vnot V128:$c), (vec_t V128:$v2)))),
            (!cast<Instruction>("BITSELECT_"#vec_t)
              V128:$v1, V128:$v2, V128:$c)>;

//===----------------------------------------------------------------------===//
// Integer unary arithmetic
//===----------------------------------------------------------------------===//

multiclass SIMDUnaryInt<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDUnary<v16i8, "i8x16", node, name, baseInst>;
  defm "" : SIMDUnary<v8i16, "i16x8", node, name, !add(baseInst, 17)>;
  defm "" : SIMDUnary<v4i32, "i32x4", node, name, !add(baseInst, 34)>;
  defm "" : SIMDUnary<v2i64, "i64x2", node, name, !add(baseInst, 51)>;
}

multiclass SIMDReduceVec<ValueType vec_t, string vec, SDNode op, string name,
                         bits<32> simdop> {
  defm _#vec_t : SIMD_I<(outs I32:$dst), (ins V128:$vec), (outs), (ins),
                        [(set I32:$dst, (i32 (op (vec_t V128:$vec))))],
                        vec#"."#name#"\t$dst, $vec", vec#"."#name, simdop>;
}

multiclass SIMDReduce<SDNode op, string name, bits<32> baseInst> {
  defm "" : SIMDReduceVec<v16i8, "i8x16", op, name, baseInst>;
  defm "" : SIMDReduceVec<v8i16, "i16x8", op, name, !add(baseInst, 17)>;
  defm "" : SIMDReduceVec<v4i32, "i32x4", op, name, !add(baseInst, 34)>;
  defm "" : SIMDReduceVec<v2i64, "i64x2", op, name, !add(baseInst, 51)>;
}

// Integer vector negation
def ivneg : PatFrag<(ops node:$in), (sub immAllZerosV, node:$in)>;

// Integer negation: neg
defm NEG : SIMDUnaryInt<ivneg, "neg", 81>;

// Any lane true: any_true
defm ANYTRUE : SIMDReduce<int_wasm_anytrue, "any_true", 82>;

// All lanes true: all_true
defm ALLTRUE : SIMDReduce<int_wasm_alltrue, "all_true", 83>;

// Reductions already return 0 or 1, so and 1, setne 0, and seteq 1
// can be folded out
foreach reduction =
  [["int_wasm_anytrue", "ANYTRUE"], ["int_wasm_alltrue", "ALLTRUE"]] in
foreach ty = [v16i8, v8i16, v4i32, v2i64] in {
def : Pat<(i32 (and
            (i32 (!cast<Intrinsic>(reduction[0]) (ty V128:$x))),
            (i32 1)
          )),
          (i32 (!cast<NI>(reduction[1]#"_"#ty) (ty V128:$x)))>;
def : Pat<(i32 (setne
            (i32 (!cast<Intrinsic>(reduction[0]) (ty V128:$x))),
            (i32 0)
          )),
          (i32 (!cast<NI>(reduction[1]#"_"#ty) (ty V128:$x)))>;
def : Pat<(i32 (seteq
            (i32 (!cast<Intrinsic>(reduction[0]) (ty V128:$x))),
            (i32 1)
          )),
          (i32 (!cast<NI>(reduction[1]#"_"#ty) (ty V128:$x)))>;
}

//===----------------------------------------------------------------------===//
// Bit shifts
//===----------------------------------------------------------------------===//

multiclass SIMDShift<ValueType vec_t, string vec, SDNode node, dag shift_vec,
                     string name, bits<32> simdop> {
  defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$vec, I32:$x),
                        (outs), (ins),
                        [(set (vec_t V128:$dst),
                          (node V128:$vec, (vec_t shift_vec)))],
                        vec#"."#name#"\t$dst, $vec, $x", vec#"."#name, simdop>;
}

multiclass SIMDShiftInt<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDShift<v16i8, "i8x16", node, (splat16 I32:$x), name, baseInst>;
  defm "" : SIMDShift<v8i16, "i16x8", node, (splat8 I32:$x), name,
                      !add(baseInst, 17)>;
  defm "" : SIMDShift<v4i32, "i32x4", node, (splat4 I32:$x), name,
                      !add(baseInst, 34)>;
  defm "" : SIMDShift<v2i64, "i64x2", node, (splat2 (i64 (zext I32:$x))),
                      name, !add(baseInst, 51)>;
}

// Left shift by scalar: shl
defm SHL : SIMDShiftInt<shl, "shl", 84>;

// Right shift by scalar: shr_s / shr_u
defm SHR_S : SIMDShiftInt<sra, "shr_s", 85>;
defm SHR_U : SIMDShiftInt<srl, "shr_u", 86>;

// Truncate i64 shift operands to i32s, except if they are already i32s
foreach shifts = [[shl, SHL_v2i64], [sra, SHR_S_v2i64], [srl, SHR_U_v2i64]] in {
def : Pat<(v2i64 (shifts[0]
            (v2i64 V128:$vec),
            (v2i64 (splat2 (i64 (sext I32:$x))))
          )),
          (v2i64 (shifts[1] (v2i64 V128:$vec), (i32 I32:$x)))>;
def : Pat<(v2i64 (shifts[0] (v2i64 V128:$vec), (v2i64 (splat2 I64:$x)))),
          (v2i64 (shifts[1] (v2i64 V128:$vec), (I32_WRAP_I64 I64:$x)))>;
}

// 2xi64 shifts with constant shift amounts are custom lowered to avoid wrapping
def wasm_shift_t : SDTypeProfile<1, 2,
  [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]
>;
def wasm_shl : SDNode<"WebAssemblyISD::VEC_SHL", wasm_shift_t>;
def wasm_shr_s : SDNode<"WebAssemblyISD::VEC_SHR_S", wasm_shift_t>;
def wasm_shr_u : SDNode<"WebAssemblyISD::VEC_SHR_U", wasm_shift_t>;
foreach shifts = [[wasm_shl, SHL_v2i64],
                  [wasm_shr_s, SHR_S_v2i64],
                  [wasm_shr_u, SHR_U_v2i64]] in
def : Pat<(v2i64 (shifts[0] (v2i64 V128:$vec), I32:$x)),
          (v2i64 (shifts[1] (v2i64 V128:$vec), I32:$x))>;

//===----------------------------------------------------------------------===//
// Integer binary arithmetic
//===----------------------------------------------------------------------===//

multiclass SIMDBinaryIntSmall<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDBinary<v16i8, "i8x16", node, name, baseInst>;
  defm "" : SIMDBinary<v8i16, "i16x8", node, name, !add(baseInst, 17)>;
}

multiclass SIMDBinaryIntNoI64x2<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDBinaryIntSmall<node, name, baseInst>;
  defm "" : SIMDBinary<v4i32, "i32x4", node, name, !add(baseInst, 34)>;
}

multiclass SIMDBinaryInt<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDBinaryIntNoI64x2<node, name, baseInst>;
  defm "" : SIMDBinary<v2i64, "i64x2", node, name, !add(baseInst, 51)>;
}

// Integer addition: add / add_saturate_s / add_saturate_u
let isCommutable = 1 in {
defm ADD : SIMDBinaryInt<add, "add", 87>;
defm ADD_SAT_S : SIMDBinaryIntSmall<saddsat, "add_saturate_s", 88>;
defm ADD_SAT_U : SIMDBinaryIntSmall<uaddsat, "add_saturate_u", 89>;
} // isCommutable = 1

// Integer subtraction: sub / sub_saturate_s / sub_saturate_u
defm SUB : SIMDBinaryInt<sub, "sub", 90>;
defm SUB_SAT_S :
  SIMDBinaryIntSmall<int_wasm_sub_saturate_signed, "sub_saturate_s", 91>;
defm SUB_SAT_U :
  SIMDBinaryIntSmall<int_wasm_sub_saturate_unsigned, "sub_saturate_u", 92>;

// Integer multiplication: mul
defm MUL : SIMDBinaryIntNoI64x2<mul, "mul", 93>;

//===----------------------------------------------------------------------===//
// Floating-point unary arithmetic
//===----------------------------------------------------------------------===//

multiclass SIMDUnaryFP<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDUnary<v4f32, "f32x4", node, name, baseInst>;
  defm "" : SIMDUnary<v2f64, "f64x2", node, name, !add(baseInst, 11)>;
}

// Absolute value: abs
defm ABS : SIMDUnaryFP<fabs, "abs", 149>;

// Negation: neg
defm NEG : SIMDUnaryFP<fneg, "neg", 150>;

// Square root: sqrt
let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm SQRT : SIMDUnaryFP<fsqrt, "sqrt", 151>;

//===----------------------------------------------------------------------===//
// Floating-point binary arithmetic
//===----------------------------------------------------------------------===//

multiclass SIMDBinaryFP<SDNode node, string name, bits<32> baseInst> {
  defm "" : SIMDBinary<v4f32, "f32x4", node, name, baseInst>;
  defm "" : SIMDBinary<v2f64, "f64x2", node, name, !add(baseInst, 11)>;
}

// Addition: add
let isCommutable = 1 in
defm ADD : SIMDBinaryFP<fadd, "add", 154>;

// Subtraction: sub
defm SUB : SIMDBinaryFP<fsub, "sub", 155>;

// Multiplication: mul
let isCommutable = 1 in
defm MUL : SIMDBinaryFP<fmul, "mul", 156>;

// Division: div
let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm DIV : SIMDBinaryFP<fdiv, "div", 157>;

// NaN-propagating minimum: min
defm MIN : SIMDBinaryFP<fminimum, "min", 158>;

// NaN-propagating maximum: max
defm MAX : SIMDBinaryFP<fmaximum, "max", 159>;

//===----------------------------------------------------------------------===//
// Conversions
//===----------------------------------------------------------------------===//

multiclass SIMDConvert<ValueType vec_t, ValueType arg_t, SDNode op,
                       string name, bits<32> simdop> {
  defm op#_#vec_t#_#arg_t :
    SIMD_I<(outs V128:$dst), (ins V128:$vec), (outs), (ins),
           [(set (vec_t V128:$dst), (vec_t (op (arg_t V128:$vec))))],
           name#"\t$dst, $vec", name, simdop>;
}

// Integer to floating point: convert
defm "" : SIMDConvert<v4f32, v4i32, sint_to_fp, "f32x4.convert_i32x4_s", 175>;
defm "" : SIMDConvert<v4f32, v4i32, uint_to_fp, "f32x4.convert_i32x4_u", 176>;
defm "" : SIMDConvert<v2f64, v2i64, sint_to_fp, "f64x2.convert_i64x2_s", 177>;
defm "" : SIMDConvert<v2f64, v2i64, uint_to_fp, "f64x2.convert_i64x2_u", 178>;

// Floating point to integer with saturation: trunc_sat
defm "" : SIMDConvert<v4i32, v4f32, fp_to_sint, "i32x4.trunc_sat_f32x4_s", 171>;
defm "" : SIMDConvert<v4i32, v4f32, fp_to_uint, "i32x4.trunc_sat_f32x4_u", 172>;
defm "" : SIMDConvert<v2i64, v2f64, fp_to_sint, "i64x2.trunc_sat_f64x2_s", 173>;
defm "" : SIMDConvert<v2i64, v2f64, fp_to_uint, "i64x2.trunc_sat_f64x2_u", 174>;

// Lower llvm.wasm.trunc.saturate.* to saturating instructions
def : Pat<(v4i32 (int_wasm_trunc_saturate_signed (v4f32 V128:$src))),
          (fp_to_sint_v4i32_v4f32 (v4f32 V128:$src))>;
def : Pat<(v4i32 (int_wasm_trunc_saturate_unsigned (v4f32 V128:$src))),
          (fp_to_uint_v4i32_v4f32 (v4f32 V128:$src))>;
def : Pat<(v2i64 (int_wasm_trunc_saturate_signed (v2f64 V128:$src))),
          (fp_to_sint_v2i64_v2f64 (v2f64 V128:$src))>;
def : Pat<(v2i64 (int_wasm_trunc_saturate_unsigned (v2f64 V128:$src))),
          (fp_to_uint_v2i64_v2f64 (v2f64 V128:$src))>;

// Bitcasts are nops
// Matching bitcast t1 to t1 causes strange errors, so avoid repeating types
foreach t1 = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in
foreach t2 = !foldl(
  []<ValueType>, [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
  acc, cur, !if(!eq(!cast<string>(t1), !cast<string>(cur)),
    acc, !listconcat(acc, [cur])
  )
) in
def : Pat<(t1 (bitconvert (t2 V128:$v))), (t1 V128:$v)>;