1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
|
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetAsmParser.h"
#include "X86.h"
#include "X86Subtarget.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
struct X86Operand;
class X86ATTAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
TargetMachine &TM;
protected:
unsigned Is64Bit : 1;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
X86Operand *ParseOperand();
X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out);
/// @name Auto-generated Matcher Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"
/// }
public:
X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM)
: TargetAsmParser(T), Parser(parser), TM(TM) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(
&TM.getSubtarget<X86Subtarget>()));
}
virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
class X86_32ATTAsmParser : public X86ATTAsmParser {
public:
X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM)
: X86ATTAsmParser(T, Parser, TM) {
Is64Bit = false;
}
};
class X86_64ATTAsmParser : public X86ATTAsmParser {
public:
X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM)
: X86ATTAsmParser(T, Parser, TM) {
Is64Bit = true;
}
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
namespace {
/// X86Operand - Instances of this class represent a parsed X86 machine
/// instruction.
struct X86Operand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
Memory
} Kind;
SMLoc StartLoc, EndLoc;
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNo;
} Reg;
struct {
const MCExpr *Val;
} Imm;
struct {
unsigned SegReg;
const MCExpr *Disp;
unsigned BaseReg;
unsigned IndexReg;
unsigned Scale;
} Mem;
};
X86Operand(KindTy K, SMLoc Start, SMLoc End)
: Kind(K), StartLoc(Start), EndLoc(End) {}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
virtual void dump(raw_ostream &OS) const {}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
void setTokenValue(StringRef Value) {
assert(Kind == Token && "Invalid access!");
Tok.Data = Value.data();
Tok.Length = Value.size();
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNo;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getMemDisp() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Disp;
}
unsigned getMemSegReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.SegReg;
}
unsigned getMemBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.BaseReg;
}
unsigned getMemIndexReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg;
}
unsigned getMemScale() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Scale;
}
bool isToken() const {return Kind == Token; }
bool isImm() const { return Kind == Immediate; }
bool isImmSExti16i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
uint64_t Value = CE->getValue();
return (( Value <= 0x000000000000007FULL)||
(0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
bool isImmSExti32i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
uint64_t Value = CE->getValue();
return (( Value <= 0x000000000000007FULL)||
(0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
bool isImmSExti64i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
uint64_t Value = CE->getValue();
return (( Value <= 0x000000000000007FULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
bool isImmSExti64i32() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
uint64_t Value = CE->getValue();
return (( Value <= 0x000000007FFFFFFFULL)||
(0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
bool isMem() const { return Kind == Memory; }
bool isAbsMem() const {
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
!getMemIndexReg() && getMemScale() == 1;
}
bool isReg() const { return Kind == Register; }
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 5) && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
Inst.addOperand(MCOperand::CreateImm(getMemScale()));
Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
addExpr(Inst, getMemDisp());
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
}
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
}
static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
X86Operand *Res = new X86Operand(Token, Loc, Loc);
Res->Tok.Data = Str.data();
Res->Tok.Length = Str.size();
return Res;
}
static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
Res->Reg.RegNo = RegNo;
return Res;
}
static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
Res->Imm.Val = Val;
return Res;
}
/// Create an absolute memory operand.
static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
SMLoc EndLoc) {
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = 0;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = 0;
Res->Mem.IndexReg = 0;
Res->Mem.Scale = 1;
return Res;
}
/// Create a generalized memory operand.
static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
// We should never just have a displacement, that should be parsed as an
// absolute memory operand.
assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
// The scale should always be one of {1,2,4,8}.
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
"Invalid scale!");
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = SegReg;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = BaseReg;
Res->Mem.IndexReg = IndexReg;
Res->Mem.Scale = Scale;
return Res;
}
};
} // end anonymous namespace.
bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
RegNo = 0;
const AsmToken &TokPercent = Parser.getTok();
assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
StartLoc = TokPercent.getLoc();
Parser.Lex(); // Eat percent token.
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(Tok.getLoc(), "invalid register name");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
RegNo = MatchRegisterName(Tok.getString());
// If the match failed, try the register name as lowercase.
if (RegNo == 0)
RegNo = MatchRegisterName(LowercaseString(Tok.getString()));
// FIXME: This should be done using Requires<In32BitMode> and
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions
// can be also checked.
if (RegNo == X86::RIZ && !Is64Bit)
return Error(Tok.getLoc(), "riz register in 64-bit mode only");
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
RegNo = X86::ST0;
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (getLexer().isNot(AsmToken::LParen))
return false;
// Lex the paren.
getParser().Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer))
return Error(IntTok.getLoc(), "expected stack index");
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default: return Error(IntTok.getLoc(), "invalid stack index");
}
if (getParser().Lex().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "expected ')'");
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat ')'
return false;
}
// If this is "db[0-7]", match it as an alias
// for dr[0-7].
if (RegNo == 0 && Tok.getString().size() == 3 &&
Tok.getString().startswith("db")) {
switch (Tok.getString()[2]) {
case '0': RegNo = X86::DR0; break;
case '1': RegNo = X86::DR1; break;
case '2': RegNo = X86::DR2; break;
case '3': RegNo = X86::DR3; break;
case '4': RegNo = X86::DR4; break;
case '5': RegNo = X86::DR5; break;
case '6': RegNo = X86::DR6; break;
case '7': RegNo = X86::DR7; break;
}
if (RegNo != 0) {
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat it.
return false;
}
}
if (RegNo == 0)
return Error(Tok.getLoc(), "invalid register name");
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat identifier token.
return false;
}
X86Operand *X86ATTAsmParser::ParseOperand() {
switch (getLexer().getKind()) {
default:
// Parse a memory operand with no segment register.
return ParseMemOperand(0, Parser.getTok().getLoc());
case AsmToken::Percent: {
// Read the register.
unsigned RegNo;
SMLoc Start, End;
if (ParseRegister(RegNo, Start, End)) return 0;
if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
Error(Start, "eiz and riz can only be used as index registers");
return 0;
}
// If this is a segment register followed by a ':', then this is the start
// of a memory reference, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
getParser().Lex(); // Eat the colon.
return ParseMemOperand(RegNo, Start);
}
case AsmToken::Dollar: {
// $42 -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
if (getParser().ParseExpression(Val, End))
return 0;
return X86Operand::CreateImm(Val, Start, End);
}
}
}
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
/// has already been parsed if present.
X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the '(' and see what is
// after it.
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
if (getLexer().isNot(AsmToken::LParen)) {
SMLoc ExprEnd;
if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
} else {
// Okay, we have a '('. We don't know if this is an expression or not, but
// so we have to eat the ( to see beyond it.
SMLoc LParenLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '('.
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
// Nothing to do here, fall into the code below with the '(' part of the
// memory operand consumed.
} else {
SMLoc ExprEnd;
// It must be an parenthesized expression, parse it now.
if (getParser().ParseParenExpression(Disp, ExprEnd))
return 0;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
}
}
// If we reached here, then we just ate the ( of the memory operand. Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(BaseReg, L, L)) return 0;
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
Error(L, "eiz and riz can only be used as index registers");
return 0;
}
}
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Not that even though it would be completely consistent to support syntax
// like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(IndexReg, L, L)) return 0;
if (getLexer().isNot(AsmToken::RParen)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
if (getLexer().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(),
"expected comma in scale expression");
return 0;
}
Parser.Lex(); // Eat the comma.
if (getLexer().isNot(AsmToken::RParen)) {
SMLoc Loc = Parser.getTok().getLoc();
int64_t ScaleVal;
if (getParser().ParseAbsoluteExpression(ScaleVal))
return 0;
// Validate the scale amount.
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
return 0;
}
Scale = (unsigned)ScaleVal;
}
}
} else if (getLexer().isNot(AsmToken::RParen)) {
// A scale amount without an index is ignored.
// index.
SMLoc Loc = Parser.getTok().getLoc();
int64_t Value;
if (getParser().ParseAbsoluteExpression(Value))
return 0;
if (Value != 1)
Warning(Loc, "scale factor without index register is ignored");
Scale = 1;
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
return 0;
}
SMLoc MemEnd = Parser.getTok().getLoc();
Parser.Lex(); // Eat the ')'.
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
MemStart, MemEnd);
}
bool X86ATTAsmParser::
ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
StringRef PatchedName = Name;
// FIXME: Hack to recognize setneb as setne.
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
PatchedName != "setb" && PatchedName != "setnb")
PatchedName = PatchedName.substr(0, Name.size()-1);
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
const MCExpr *ExtraImmOp = 0;
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
bool IsVCMP = PatchedName.startswith("vcmp");
unsigned SSECCIdx = IsVCMP ? 4 : 3;
unsigned SSEComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
.Case("eq", 0)
.Case("lt", 1)
.Case("le", 2)
.Case("unord", 3)
.Case("neq", 4)
.Case("nlt", 5)
.Case("nle", 6)
.Case("ord", 7)
.Case("eq_uq", 8)
.Case("nge", 9)
.Case("ngt", 0x0A)
.Case("false", 0x0B)
.Case("neq_oq", 0x0C)
.Case("ge", 0x0D)
.Case("gt", 0x0E)
.Case("true", 0x0F)
.Case("eq_os", 0x10)
.Case("lt_oq", 0x11)
.Case("le_oq", 0x12)
.Case("unord_s", 0x13)
.Case("neq_us", 0x14)
.Case("nlt_uq", 0x15)
.Case("nle_uq", 0x16)
.Case("ord_s", 0x17)
.Case("eq_us", 0x18)
.Case("nge_uq", 0x19)
.Case("ngt_uq", 0x1A)
.Case("false_os", 0x1B)
.Case("neq_os", 0x1C)
.Case("ge_oq", 0x1D)
.Case("gt_oq", 0x1E)
.Case("true_us", 0x1F)
.Default(~0U);
if (SSEComparisonCode != ~0U) {
ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
getParser().getContext());
if (PatchedName.endswith("ss")) {
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
} else if (PatchedName.endswith("sd")) {
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
} else if (PatchedName.endswith("ps")) {
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
} else {
assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
}
}
}
// FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq
if (PatchedName.startswith("vpclmul")) {
unsigned CLMULQuadWordSelect = StringSwitch<unsigned>(
PatchedName.slice(7, PatchedName.size() - 2))
.Case("lqlq", 0x00) // src1[63:0], src2[63:0]
.Case("hqlq", 0x01) // src1[127:64], src2[63:0]
.Case("lqhq", 0x10) // src1[63:0], src2[127:64]
.Case("hqhq", 0x11) // src1[127:64], src2[127:64]
.Default(~0U);
if (CLMULQuadWordSelect != ~0U) {
ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect,
getParser().getContext());
assert(PatchedName.endswith("dq") && "Unexpected mnemonic!");
PatchedName = "vpclmulqdq";
}
}
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
if (ExtraImmOp)
Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
// Determine whether this is an instruction prefix.
bool isPrefix =
Name == "lock" || Name == "rep" ||
Name == "repe" || Name == "repz" ||
Name == "repne" || Name == "repnz" ||
Name == "rex64" || Name == "data16";
// This does the actual operand parsing. Don't parse any more if we have a
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
// just want to parse the "lock" as the first instruction and the "incl" as
// the next one.
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(X86Operand::CreateToken("*", Loc));
Parser.Lex(); // Eat the star.
}
// Read the first operand.
if (X86Operand *Op = ParseOperand())
Operands.push_back(Op);
else {
Parser.EatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (X86Operand *Op = ParseOperand())
Operands.push_back(Op);
else {
Parser.EatToEndOfStatement();
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
if (getLexer().is(AsmToken::EndOfStatement))
Parser.Lex(); // Consume the EndOfStatement
else if (isPrefix && getLexer().is(AsmToken::Slash))
Parser.Lex(); // Consume the prefix separator Slash
// This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
// documented form in various unofficial manuals, so a lot of code uses it.
if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
Operands.size() == 3) {
X86Operand &Op = *(X86Operand*)Operands.back();
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
delete &Op;
}
}
// Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
Operands.size() == 3) {
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
delete &Op;
}
}
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
// "shift <op>".
if ((Name.startswith("shr") || Name.startswith("sar") ||
Name.startswith("shl") || Name.startswith("sal") ||
Name.startswith("rcl") || Name.startswith("rcr") ||
Name.startswith("rol") || Name.startswith("ror")) &&
Operands.size() == 3) {
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
delete Operands[1];
Operands.erase(Operands.begin() + 1);
}
}
return false;
}
bool X86ATTAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out) {
assert(!Operands.empty() && "Unexpect empty operand list!");
X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
assert(Op->isToken() && "Leading operand should always be a mnemonic!");
// First, handle aliases that expand to multiple instructions.
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should do actually *do* the EmitInstruction
// call.
if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
Op->getToken() == "finit" || Op->getToken() == "fsave" ||
Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Out.EmitInstruction(Inst);
const char *Repl =
StringSwitch<const char*>(Op->getToken())
.Case("finit", "fninit")
.Case("fsave", "fnsave")
.Case("fstcw", "fnstcw")
.Case("fstcww", "fnstcw")
.Case("fstenv", "fnstenv")
.Case("fstsw", "fnstsw")
.Case("fstsww", "fnstsw")
.Case("fclex", "fnclex")
.Default(0);
assert(Repl && "Unknown wait-prefixed instruction");
delete Operands[0];
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
bool WasOriginallyInvalidOperand = false;
unsigned OrigErrorInfo;
MCInst Inst;
// First, try a direct match.
switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
case Match_Success:
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_ConversionFail:
return Error(IDLoc, "unable to convert operands to instruction");
case Match_InvalidOperand:
WasOriginallyInvalidOperand = true;
break;
case Match_MnemonicFail:
break;
}
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
StringRef Base = Op->getToken();
SmallString<16> Tmp;
Tmp += Base;
Tmp += ' ';
Op->setTokenValue(Tmp.str());
// If this instruction starts with an 'f', then it is a floating point stack
// instruction. These come in up to three forms for 32-bit, 64-bit, and
// 80-bit floating point, which use the suffixes s,l,t respectively.
//
// Otherwise, we assume that this may be an integer instruction, which comes
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// Check for the various suffix matches.
Tmp[Base.size()] = Suffixes[0];
unsigned ErrorInfoIgnore;
MatchResultTy Match1, Match2, Match3, Match4;
Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
Tmp[Base.size()] = Suffixes[1];
Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
Tmp[Base.size()] = Suffixes[2];
Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
Tmp[Base.size()] = Suffixes[3];
Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
// Restore the old token.
Op->setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
(Match1 == Match_Success) + (Match2 == Match_Success) +
(Match3 == Match_Success) + (Match4 == Match_Success);
if (NumSuccessfulMatches == 1) {
Out.EmitInstruction(Inst);
return false;
}
// Otherwise, the match failed, try to produce a decent error message.
// If we had multiple suffix matches, then identify this as an ambiguous
// match.
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "ambiguous instructions require an explicit suffix (could be ";
for (unsigned i = 0; i != NumMatches; ++i) {
if (i != 0)
OS << ", ";
if (i + 1 == NumMatches)
OS << "or ";
OS << "'" << Base << MatchChars[i] << "'";
}
OS << ")";
Error(IDLoc, OS.str());
return true;
}
// Okay, we know that none of the variants matched successfully.
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
(Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
if (!WasOriginallyInvalidOperand) {
Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
return true;
}
// Recover location info for the operand if we know which was the problem.
SMLoc ErrorLoc = IDLoc;
if (OrigErrorInfo != ~0U) {
if (OrigErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
(Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
(Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
Error(IDLoc, "invalid operand for instruction");
return true;
}
// If all of these were an outright failure, report it in a useless way.
// FIXME: We should give nicer diagnostics about the exact failure.
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
return true;
}
bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
extern "C" void LLVMInitializeX86AsmLexer();
// Force static initialization.
extern "C" void LLVMInitializeX86AsmParser() {
RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target);
RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target);
LLVMInitializeX86AsmLexer();
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "X86GenAsmMatcher.inc"
|