aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86ISelLowering.h
blob: 8464081b1b0856ef2a9109e5d64cb4314d58a89b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H

#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"

namespace llvm {
  class X86Subtarget;
  class X86TargetMachine;

  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType : unsigned {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// Bit scan forward.
      BSF,
      /// Bit scan reverse.
      BSR,

      /// Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      ///  Bitwise logical ANDNOT of floating point values. This
      /// corresponds to X86::ANDNPS or X86::ANDNPD.
      FANDN,

      /// These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      CALL,

      /// This operation implements the lowering for readcyclecounter.
      RDTSC_DAG,

      /// X86 Read Time-Stamp Counter and Processor ID.
      RDTSCP_DAG,

      /// X86 Read Performance Monitoring Counters.
      RDPMC_DAG,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 bit-test instructions.
      BT,

      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
      /// operand, usually produced by a CMP instruction.
      SETCC,

      /// X86 Select
      SELECT, SELECTS,

      // Same as SETCC except it's materialized with a sbb and the value is all
      // one's or all zero's.
      SETCC_CARRY,  // R = carry_bit ? ~0 : 0

      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
      /// Operands are two FP values to compare; result is a mask of
      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
      FSETCC,

      /// X86 FP SETCC, similar to above, but with output as an i1 mask and
      /// with optional rounding mode.
      FSETCCM, FSETCCM_RND,

      /// X86 conditional moves. Operand 0 and operand 1 are the two values
      /// to select from. Operand 2 is the condition code, and operand 3 is the
      /// flag operand produced by a CMP or TEST instruction. It also writes a
      /// flag result.
      CMOV,

      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
      /// is the block to branch if condition is true, operand 2 is the
      /// condition code, and operand 3 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// Return with a flag operand. Operand 0 is the chain operand, operand
      /// 1 is the number of bytes of stack to pop.
      RET_FLAG,

      /// Return from interrupt. Operand 0 is the number of bytes to pop.
      IRET,

      /// Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// A wrapper node for TargetConstantPool, TargetJumpTable,
      /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
      /// MCSymbol and TargetBlockAddress.
      Wrapper,

      /// Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// Copies a 64-bit value from the low word of an XMM vector
      /// to an MMX vector.
      MOVDQ2Q,

      /// Copies a 32-bit value from the low word of a MMX
      /// vector to a GPR.
      MMX_MOVD2W,

      /// Copies a GPR into the low 32-bit word of a MMX vector
      /// and zero out the high word.
      MMX_MOVW2D,

      /// Extract an 8-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRB.
      PEXTRB,

      /// Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// Insert any element of a 4 x float vector into any element
      /// of a destination 4 x floatvector.
      INSERTPS,

      /// Insert the lower 8-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRB.
      PINSRB,

      /// Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW,

      /// Shuffle 16 8-bit values within a vector.
      PSHUFB,

      /// Compute Sum of Absolute Differences.
      PSADBW,
      /// Compute Double Block Packed Sum-Absolute-Differences
      DBPSADBW,

      /// Bitwise Logical AND NOT of Packed FP values.
      ANDNP,

      /// Blend where the selector is an immediate.
      BLENDI,

      /// Dynamic (non-constant condition) vector blend where only the sign bits
      /// of the condition elements are used. This is used to enforce that the
      /// condition mask is not valid for generic VSELECT optimizations.
      SHRUNKBLEND,

      /// Combined add and sub on an FP vector.
      ADDSUB,

      //  FP vector ops with rounding mode.
      FADD_RND, FADDS_RND,
      FSUB_RND, FSUBS_RND,
      FMUL_RND, FMULS_RND,
      FDIV_RND, FDIVS_RND,
      FMAX_RND, FMAXS_RND,
      FMIN_RND, FMINS_RND,
      FSQRT_RND, FSQRTS_RND,

      // FP vector get exponent.
      FGETEXP_RND, FGETEXPS_RND,
      // Extract Normalized Mantissas.
      VGETMANT, VGETMANT_RND, VGETMANTS, VGETMANTS_RND,
      // FP Scale.
      SCALEF,
      SCALEFS,

      // Integer add/sub with unsigned saturation.
      ADDUS,
      SUBUS,

      // Integer add/sub with signed saturation.
      ADDS,
      SUBS,

      // Unsigned Integer average.
      AVG,

      /// Integer horizontal add/sub.
      HADD,
      HSUB,

      /// Floating point horizontal add/sub.
      FHADD,
      FHSUB,

      // Detect Conflicts Within a Vector
      CONFLICT,

      /// Floating point max and min.
      FMAX, FMIN,

      /// Commutative FMIN and FMAX.
      FMAXC, FMINC,

      /// Scalar intrinsic floating point max and min.
      FMAXS, FMINS,

      /// Floating point reciprocal-sqrt and reciprocal approximation.
      /// Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,

      // AVX-512 reciprocal approximations with a little more precision.
      RSQRT14, RSQRT14S, RCP14, RCP14S,

      // Thread Local Storage.
      TLSADDR,

      // Thread Local Storage. A call to get the start address
      // of the TLS block for the current module.
      TLSBASEADDR,

      // Thread Local Storage.  When calling to an OS provided
      // thunk at the address from an earlier relocation.
      TLSCALL,

      // Exception Handling helpers.
      EH_RETURN,

      // SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      // SjLj exception handling dispatch.
      EH_SJLJ_SETUP_DISPATCH,

      /// Tail call return. See X86TargetLowering::LowerCall for
      /// the list of operands.
      TC_RETURN,

      // Vector move to low scalar and zero higher vector elements.
      VZEXT_MOVL,

      // Vector integer zero-extend.
      VZEXT,
      // Vector integer signed-extend.
      VSEXT,

      // Vector integer truncate.
      VTRUNC,
      // Vector integer truncate with unsigned/signed saturation.
      VTRUNCUS, VTRUNCS,

      // Vector FP extend.
      VFPEXT, VFPEXT_RND, VFPEXTS_RND,

      // Vector FP round.
      VFPROUND, VFPROUND_RND, VFPROUNDS_RND,

      // Convert a vector to mask, set bits base on MSB.
      CVT2MASK,

      // 128-bit vector logical left / right shift
      VSHLDQ, VSRLDQ,

      // Vector shift elements
      VSHL, VSRL, VSRA,

      // Vector variable shift right arithmetic.
      // Unlike ISD::SRA, in case shift count greater then element size
      // use sign bit to fill destination data element.
      VSRAV,

      // Vector shift elements by immediate
      VSHLI, VSRLI, VSRAI,

      // Shifts of mask registers.
      KSHIFTL, KSHIFTR,

      // Bit rotate by immediate
      VROTLI, VROTRI,

      // Vector packed double/float comparison.
      CMPP,

      // Vector integer comparisons.
      PCMPEQ, PCMPGT,
      // Vector integer comparisons, the result is in a mask vector.
      PCMPEQM, PCMPGTM,

      // v8i16 Horizontal minimum and position.
      PHMINPOS,

      MULTISHIFT,

      /// Vector comparison generating mask bits for fp and
      /// integer signed and unsigned data types.
      CMPM,
      CMPMU,
      // Vector comparison with rounding mode for FP values
      CMPM_RND,

      // Arithmetic operations with FLAGS results.
      ADD, SUB, ADC, SBB, SMUL,
      INC, DEC, OR, XOR, AND,

      // LOW, HI, FLAGS = umul LHS, RHS.
      UMUL,

      // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS.
      SMUL8, UMUL8,

      // 8-bit divrem that zero-extend the high result (AH).
      UDIVREM8_ZEXT_HREG,
      SDIVREM8_SEXT_HREG,

      // X86-specific multiply by immediate.
      MUL_IMM,

      // Vector sign bit extraction.
      MOVMSK,

      // Vector bitwise comparisons.
      PTEST,

      // Vector packed fp sign bitwise comparisons.
      TESTP,

      // Vector "test" in AVX-512, the result is in a mask vector.
      TESTM,
      TESTNM,

      // OR/AND test for masks.
      KORTEST,
      KTEST,

      // Several flavors of instructions with vector shuffle behaviors.
      // Saturated signed/unnsigned packing.
      PACKSS,
      PACKUS,
      // Intra-lane alignr.
      PALIGNR,
      // AVX512 inter-lane alignr.
      VALIGN,
      PSHUFD,
      PSHUFHW,
      PSHUFLW,
      SHUFP,
      // VBMI2 Concat & Shift.
      VSHLD,
      VSHRD,
      VSHLDV,
      VSHRDV,
      //Shuffle Packed Values at 128-bit granularity.
      SHUF128,
      MOVDDUP,
      MOVSHDUP,
      MOVSLDUP,
      MOVLHPS,
      MOVHLPS,
      MOVLPS,
      MOVLPD,
      MOVSD,
      MOVSS,
      UNPCKL,
      UNPCKH,
      VPERMILPV,
      VPERMILPI,
      VPERMI,
      VPERM2X128,

      // Variable Permute (VPERM).
      // Res = VPERMV MaskV, V0
      VPERMV,

      // 3-op Variable Permute (VPERMT2).
      // Res = VPERMV3 V0, MaskV, V1
      VPERMV3,

      // 3-op Variable Permute overwriting the index (VPERMI2).
      // Res = VPERMIV3 V0, MaskV, V1
      VPERMIV3,

      // Bitwise ternary logic.
      VPTERNLOG,
      // Fix Up Special Packed Float32/64 values.
      VFIXUPIMM,
      VFIXUPIMMS,
      // Range Restriction Calculation For Packed Pairs of Float32/64 values.
      VRANGE, VRANGE_RND, VRANGES, VRANGES_RND,
      // Reduce - Perform Reduction Transformation on scalar\packed FP.
      VREDUCE, VREDUCE_RND, VREDUCES, VREDUCES_RND,
      // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
      // Also used by the legacy (V)ROUND intrinsics where we mask out the
      // scaling part of the immediate.
      VRNDSCALE, VRNDSCALE_RND, VRNDSCALES, VRNDSCALES_RND,
      // Tests Types Of a FP Values for packed types.
      VFPCLASS,
      // Tests Types Of a FP Values for scalar types.
      VFPCLASSS,

      // Broadcast scalar to vector.
      VBROADCAST,
      // Broadcast mask to vector.
      VBROADCASTM,
      // Broadcast subvector to vector.
      SUBV_BROADCAST,

      /// SSE4A Extraction and Insertion.
      EXTRQI, INSERTQI,

      // XOP arithmetic/logical shifts.
      VPSHA, VPSHL,
      // XOP signed/unsigned integer comparisons.
      VPCOM, VPCOMU,
      // XOP packed permute bytes.
      VPPERM,
      // XOP two source permutation.
      VPERMIL2,

      // Vector multiply packed unsigned doubleword integers.
      PMULUDQ,
      // Vector multiply packed signed doubleword integers.
      PMULDQ,
      // Vector Multiply Packed UnsignedIntegers with Round and Scale.
      MULHRS,

      // Multiply and Add Packed Integers.
      VPMADDUBSW, VPMADDWD,

      // AVX512IFMA multiply and add.
      // NOTE: These are different than the instruction and perform
      // op0 x op1 + op2.
      VPMADD52L, VPMADD52H,

      // VNNI
      VPDPBUSD,
      VPDPBUSDS,
      VPDPWSSD,
      VPDPWSSDS,

      // FMA nodes.
      // We use the target independent ISD::FMA for the non-inverted case.
      FNMADD,
      FMSUB,
      FNMSUB,
      FMADDSUB,
      FMSUBADD,

      // FMA with rounding mode.
      FMADD_RND,
      FNMADD_RND,
      FMSUB_RND,
      FNMSUB_RND,
      FMADDSUB_RND,
      FMSUBADD_RND,

      // FMA4 specific scalar intrinsics bits that zero the non-scalar bits.
      FMADD4S, FNMADD4S, FMSUB4S, FNMSUB4S,

      // Scalar intrinsic FMA.
      FMADDS1, FMADDS3,
      FNMADDS1, FNMADDS3,
      FMSUBS1, FMSUBS3,
      FNMSUBS1, FNMSUBS3,

      // Scalar intrinsic FMA with rounding mode.
      // Two versions, passthru bits on op1 or op3.
      FMADDS1_RND, FMADDS3_RND,
      FNMADDS1_RND, FNMADDS3_RND,
      FMSUBS1_RND, FMSUBS3_RND,
      FNMSUBS1_RND, FNMSUBS3_RND,

      // Compress and expand.
      COMPRESS,
      EXPAND,

      // Bits shuffle
      VPSHUFBITQMB,

      // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
      SINT_TO_FP_RND, UINT_TO_FP_RND,
      SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,

      // Vector float/double to signed/unsigned integer.
      CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
      // Scalar float/double to signed/unsigned integer.
      CVTS2SI_RND, CVTS2UI_RND,

      // Vector float/double to signed/unsigned integer with truncation.
      CVTTP2SI, CVTTP2UI, CVTTP2SI_RND, CVTTP2UI_RND,
      // Scalar float/double to signed/unsigned integer with truncation.
      CVTTS2SI_RND, CVTTS2UI_RND,

      // Vector signed/unsigned integer to float/double.
      CVTSI2P, CVTUI2P,

      // Save xmm argument registers to the stack, according to %al. An operator
      // is needed so that this can be expanded with control flow.
      VASTART_SAVE_XMM_REGS,

      // Windows's _chkstk call to do stack probing.
      WIN_ALLOCA,

      // For allocating variable amounts of stack space when using
      // segmented stacks. Check if the current stacklet has enough space, and
      // falls back to heap allocation if not.
      SEG_ALLOCA,

      // Memory barriers.
      MEMBARRIER,
      MFENCE,

      // Store FP status word into i16 register.
      FNSTSW16r,

      // Store contents of %ah into %eflags.
      SAHF,

      // Get a random integer and indicate whether it is valid in CF.
      RDRAND,

      // Get a NIST SP800-90B & C compliant random integer and
      // indicate whether it is valid in CF.
      RDSEED,

      // SSE42 string comparisons.
      PCMPISTRI,
      PCMPESTRI,

      // Test if in transactional execution.
      XTEST,

      // ERI instructions.
      RSQRT28, RSQRT28S, RCP28, RCP28S, EXP2,

      // Conversions between float and half-float.
      CVTPS2PH, CVTPH2PS, CVTPH2PS_RND,

      // Galois Field Arithmetic Instructions
      GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,

      // LWP insert record.
      LWPINS,

      // Compare and swap.
      LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
      LCMPXCHG8_DAG,
      LCMPXCHG16_DAG,
      LCMPXCHG8_SAVE_EBX_DAG,
      LCMPXCHG16_SAVE_RBX_DAG,

      /// LOCK-prefixed arithmetic read-modify-write instructions.
      /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
      LADD, LSUB, LOR, LXOR, LAND, LINC, LDEC,

      // Load, scalar_to_vector, and zero extend.
      VZEXT_LOAD,

      // Store FP control world into i16 memory.
      FNSTCW16m,

      /// This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain).
      FP_TO_INT16_IN_MEM,
      FP_TO_INT32_IN_MEM,
      FP_TO_INT64_IN_MEM,

      /// This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has three inputs (token chain, address,
      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
      /// also produces a flag).
      FILD,
      FILD_FLAG,

      /// This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, ptr to load from, and a ValueType node indicating the type
      /// to load to.
      FLD,

      /// This instruction implements a truncating store to FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and a ValueType to store it
      /// as.
      FST,

      /// This instruction grabs the address of the next argument
      /// from a va_list. (reads and modifies the va_list in memory)
      VAARG_64,

      // Vector truncating store with unsigned/signed saturation
      VTRUNCSTOREUS, VTRUNCSTORES,
      // Vector truncating masked store with unsigned/signed saturation
      VMTRUNCSTOREUS, VMTRUNCSTORES,

      // X86 specific gather and scatter
      MGATHER, MSCATTER,

      // WARNING: Do not add anything in the end unless you want the node to
      // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
      // opcodes will be thought as target memory ops!
    };
  } // end namespace X86ISD

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// Returns true if Elt is a constant zero or floating point constant +0.0.
    bool isZeroNode(SDValue Elt);

    /// Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement = true);

    /// Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool GuaranteeTCO);

  } // end namespace X86

  //===--------------------------------------------------------------------===//
  //  X86 Implementation of the TargetLowering interface
  class X86TargetLowering final : public TargetLowering {
  public:
    explicit X86TargetLowering(const X86TargetMachine &TM,
                               const X86Subtarget &STI);

    unsigned getJumpTableEncoding() const override;
    bool useSoftFloat() const override;

    void markLibCallAttributes(MachineFunction *MF, unsigned CC,
                               ArgListTy &Args) const override;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
      return MVT::i8;
    }

    const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const override;

    /// Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    unsigned getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    /// Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
                            bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                            MachineFunction &MF) const override;

    /// Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    bool isSafeMemOpType(MVT VT) const override;

    /// Returns true if the target allows unaligned memory accesses of the
    /// specified type. Returns whether it is "fast" in the last argument.
    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
                                       bool *Fast) const override;

    /// Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// Places new result values for the node in Results (their number
    /// and types must exactly match those of the original return values of
    /// the node), or leaves Results empty, which indicates that the node is not
    /// to be custom lowered after all.
    void LowerOperationWrapper(SDNode *N,
                               SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG) const override;

    /// Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    // Return true if it is profitable to combine a BUILD_VECTOR with a
    // stride-pattern to a shuffle and a truncate.
    // Example of such a combine:
    // v4i32 build_vector((extract_elt V, 1),
    //                    (extract_elt V, 3),
    //                    (extract_elt V, 5),
    //                    (extract_elt V, 7))
    //  -->
    // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
    // v4i64)
    bool isDesirableToCombineBuildVectorToShuffleTruncate(
        ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;

    /// Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;

    /// Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;

    /// This method returns the name of a target specific DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    bool mergeStoresAfterLegalization() const override { return true; }

    bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                          const SelectionDAG &DAG) const override;

    bool isCheapToSpeculateCttz() const override;

    bool isCheapToSpeculateCtlz() const override;

    bool isCtlzFast() const override;

    bool hasBitPreservingFPLogic(EVT VT) const override {
      return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
    }

    bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
      // If the pair to store is a mixture of float and int values, we will
      // save two bitwise instructions and one float-to-int instruction and
      // increase one store instruction. There is potentially a more
      // significant benefit because it avoids the float->int domain switch
      // for input value. So It is more likely a win.
      if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
          (LTy.isInteger() && HTy.isFloatingPoint()))
        return true;
      // If the pair only contains int values, we will save two bitwise
      // instructions and increase one store instruction (costing one more
      // store buffer). Since the benefit is more blurred so we leave
      // such pair out until we get testcase to prove it is a win.
      return false;
    }

    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

    bool hasAndNotCompare(SDValue Y) const override;

    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }

    /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
    MVT hasFastEqualityCompare(unsigned NumBits) const override;

    /// Return the value type to use for ISD::SETCC.
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    /// Determine which of the bits specified in Mask are known to be either
    /// zero or one and return them in the KnownZero/KnownOne bitsets.
    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    /// Determine the number of bits in the operation that are sign bits.
    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                             const APInt &DemandedElts,
                                             const SelectionDAG &DAG,
                                             unsigned Depth) const override;

    SDValue unwrapAddress(SDValue N) const override;

    bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
                        int64_t &Offset) const override;

    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;

    bool ExpandInlineAsm(CallInst *CI) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight
      getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                     const char *constraint) const override;

    const char *LowerXConstraint(EVT ConstraintVT) const override;

    /// Lower the specified operand into the Ops vector. If it is invalid, don't
    /// add anything to Ops. If hasMemory is true it means one of the asm
    /// constraint of the inline asm instruction being processed is 'm'.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "i")
        return InlineAsm::Constraint_i;
      else if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      else if (ConstraintCode == "v")
        return InlineAsm::Constraint_v;
      else if (ConstraintCode == "X")
        return InlineAsm::Constraint_X;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    /// Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;

    /// Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    /// \brief Return the cost of the scaling factor used in the addressing
    /// mode represented by AM for this target, for a load/store
    /// of the specified type.
    /// If the AM is supported, the return value must be >= 0.
    /// If the AM is not supported, it returns a negative value.
    int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS) const override;

    bool isVectorShiftByScalarCheap(Type *Ty) const override;

    /// Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    bool isZExtFree(EVT VT1, EVT VT2) const override;
    bool isZExtFree(SDValue Val, EVT VT2) const override;

    /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    /// extend node) is profitable.
    bool isVectorLoadExtDesirable(SDValue) const override;

    /// Return true if an FMA operation is faster than a pair of fmul and fadd
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;

    /// Return true if it's profitable to narrow
    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    /// from i32 to i8 but not from i32 to i16.
    bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;

    /// Given an intrinsic, checks if on the target the intrinsic will need to map
    /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    /// true and stores the intrinsic information into the IntrinsicInfo that was
    /// passed to the function.
    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    /// Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;

    /// Targets can use this to indicate that they only support *some*
    /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    /// be legal.
    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
    /// replace a VAND with a constant pool entry.
    bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
                                EVT VT) const override;

    /// If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    bool ShouldShrinkFPConstant(EVT VT) const override {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }

    /// Return true if we believe it is correct and profitable to reduce the
    /// load node to a smaller type.
    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;

    /// Return true if the specified scalar FP type is computed in an SSE
    /// register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
             (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// \brief Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    bool convertSelectOfConstantsToMath(EVT VT) const override;

    /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    /// with this index.
    bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                 unsigned Index) const override;

    bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
                                      unsigned AddrSpace) const override {
      // If we can replace more than 2 scalar stores, there will be a reduction
      // in instructions even after we add a vector constant load.
      return NumElem > 2;
    }

    /// Intel processors have a unified instruction and data cache
    const char * getClearCacheBuiltinName() const override {
      return nullptr; // nothing to do, move along.
    }

    unsigned getRegisterByName(const char* RegName, EVT VT,
                               SelectionDAG &DAG) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    unsigned
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    unsigned
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    virtual bool needsFixedCatchObjects() const override;

    /// This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo) const override;

    /// If the target has a standard location for the stack protector cookie,
    /// returns the address of that location. Otherwise, returns nullptr.
    Value *getIRStackGuard(IRBuilder<> &IRB) const override;

    bool useLoadStackGuardNode() const override;
    bool useStackGuardXorFP() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;
    Value *getSSPStackGuardCheck(const Module &M) const override;
    SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
                                const SDLoc &DL) const override;


    /// Return true if the target stores SafeStack pointer at a fixed offset in
    /// some non-standard address space, and populates the address space and
    /// offset as appropriate.
    Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;

    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
                      SelectionDAG &DAG) const;

    bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;

    /// \brief Customize the preferred legalization strategy for certain types.
    LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;

    bool isIntDivCheap(EVT VT, AttributeList Attr) const override;

    bool supportSwiftError() const override;

    StringRef getStackProbeSymbolName(MachineFunction &MF) const override;

    unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

    /// \brief Lower interleaved load(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedLoad(LoadInst *LI,
                              ArrayRef<ShuffleVectorInst *> Shuffles,
                              ArrayRef<unsigned> Indices,
                              unsigned Factor) const override;

    /// \brief Lower interleaved store(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                               unsigned Factor) const override;


    void finalizeLowering(MachineFunction &MF) const override;

  protected:
    std::pair<const TargetRegisterClass *, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI,
                            MVT VT) const override;

  private:
    /// Keep a reference to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget &Subtarget;

    /// Select between SSE or x87 floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    /// A list of legal FP immediates.
    std::vector<APFloat> LegalFPImmediates;

    /// Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            uint32_t *RegMask) const;
    SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA, MachineFrameInfo &MFI,
                             unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const;

    // Call lowering helpers.

    /// Check whether the call is eligible for tail call optimization. Targets
    /// that want to do tail call optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
                                           CallingConv::ID CalleeCC,
                                           bool isVarArg,
                                           bool isCalleeStructRet,
                                           bool isCallerStructRet,
                                           Type *RetTy,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                           SelectionDAG& DAG) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                    SDValue Chain, bool IsTailCall,
                                    bool Is64Bit, int FPDiff,
                                    const SDLoc &dl) const;

    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;

    unsigned getAddressSpace(void) const;

    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
                                               bool isSigned,
                                               bool isReplace) const;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;

    unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(const GlobalValue *GV, const SDLoc &dl,
                               int64_t Offset, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCall(CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    bool supportSplitCSR(MachineFunction *MF) const override {
      return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
          MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
    }
    void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;

    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;

    EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
                            ISD::NodeType ExtendKind) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

    LoadInst *
    lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;

    bool needsCmpXchgNb(Type *MemType) const;

    void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
                                MachineBasicBlock *DispatchBB, int FI) const;

    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *
    EmitVAARG64WithCustomInserter(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *
    EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
                                             MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
                                                 MachineInstr &MI2,
                                                 MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
                                         MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
                                     MachineBasicBlock *MBB) const;

    MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
                                             MachineBasicBlock *MBB) const;

    /// Emit nodes that will be selected as "test Op0,Op0", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitTest(SDValue Op0, unsigned X86CC, const SDLoc &dl,
                     SelectionDAG &DAG) const;

    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
                    SelectionDAG &DAG) const;

    /// Convert a comparison if required by the subtarget.
    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;

    /// Check if replacement of SQRT with RSQRT should be disabled.
    bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;

    /// Use rsqrt* to speed up sqrt calculations.
    SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;

    /// Use rcp* to speed up fdiv calculations.
    SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;

    /// Reassociate floating point divisions into multiply by reciprocal.
    unsigned combineRepeatedFPDivisors() const override;
  };

  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  } // end namespace X86

  // Base class for all X86 non-masked store operations.
  class X86StoreSDNode : public MemSDNode {
  public:
    X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
                   SDVTList VTs, EVT MemVT,
                   MachineMemOperand *MMO)
      :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
    const SDValue &getValue() const { return getOperand(1); }
    const SDValue &getBasePtr() const { return getOperand(2); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES ||
        N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // Base class for all X86 masked store operations.
  // The class has the same order of operands as MaskedStoreSDNode for
  // convenience.
  class X86MaskedStoreSDNode : public MemSDNode {
  public:
    X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getBasePtr() const { return getOperand(1); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getValue()   const { return getOperand(3); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
        N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 Truncating Store with Signed saturation.
  class TruncSStoreSDNode : public X86StoreSDNode {
  public:
    TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
                        SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES;
    }
  };

  // X86 Truncating Store with Unsigned saturation.
  class TruncUSStoreSDNode : public X86StoreSDNode {
  public:
    TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
                      SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // X86 Truncating Masked Store with Signed saturation.
  class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncSStoreSDNode(unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES;
    }
  };

  // X86 Truncating Masked Store with Unsigned saturation.
  class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncUSStoreSDNode(unsigned Order,
                            const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                            MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 specific Gather/Scatter nodes.
  // The class has the same order of operands as MaskedGatherScatterSDNode for
  // convenience.
  class X86MaskedGatherScatterSDNode : public MemSDNode {
  public:
    X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
                                 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                                 MachineMemOperand *MMO)
        : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getBasePtr() const { return getOperand(3); }
    const SDValue &getIndex()   const { return getOperand(4); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getValue()   const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER ||
             N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
  public:
    X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                          EVT MemVT, MachineMemOperand *MMO)
        : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
                                       MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER;
    }
  };

  class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
  public:
    X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                           EVT MemVT, MachineMemOperand *MMO)
        : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
                                       MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  /// Generate unpacklo/unpackhi shuffle mask.
  template <typename T = int>
  void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
                               bool Unary) {
    assert(Mask.empty() && "Expected an empty shuffle mask vector");
    int NumElts = VT.getVectorNumElements();
    int NumEltsInLane = 128 / VT.getScalarSizeInBits();
    for (int i = 0; i < NumElts; ++i) {
      unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
      int Pos = (i % NumEltsInLane) / 2 + LaneStart;
      Pos += (Unary ? 0 : NumElts * (i % 2));
      Pos += (Lo ? 0 : NumEltsInLane / 2);
      Mask.push_back(Pos);
    }
  }

  /// Helper function to scale a shuffle or target shuffle mask, replacing each
  /// mask index with the scaled sequential indices for an equivalent narrowed
  /// mask. This is the reverse process to canWidenShuffleElements, but can
  /// always succeed.
  template <typename T>
  void scaleShuffleMask(int Scale, ArrayRef<T> Mask,
                        SmallVectorImpl<T> &ScaledMask) {
    assert(0 < Scale && "Unexpected scaling factor");
    int NumElts = Mask.size();
    ScaledMask.assign(static_cast<size_t>(NumElts * Scale), -1);

    for (int i = 0; i != NumElts; ++i) {
      int M = Mask[i];

      // Repeat sentinel values in every mask element.
      if (M < 0) {
        for (int s = 0; s != Scale; ++s)
          ScaledMask[(Scale * i) + s] = M;
        continue;
      }

      // Scale mask element and increment across each mask element.
      for (int s = 0; s != Scale; ++s)
        ScaledMask[(Scale * i) + s] = (Scale * M) + s;
    }
  }
} // end namespace llvm

#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H