1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
//===- InstCombineMulDivRem.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
// srem, urem, frem.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
/// simplifyValueKnownNonZero - The specific integer value is used in a context
/// where it is known to be non-zero. If this allows us to simplify the
/// computation, do so and return the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
if (!V->hasOneUse()) return 0;
bool MadeChange = false;
// ((1 << A) >>u B) --> (1 << (A-B))
// Because V cannot be zero, we know that B is less than A.
Value *A = 0, *B = 0, *PowerOf2 = 0;
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
m_Value(B))) &&
// The "1" can be any value known to be a power of 2.
isPowerOfTwo(PowerOf2, IC.getTargetData())) {
A = IC.Builder->CreateSub(A, B);
return IC.Builder->CreateShl(PowerOf2, A);
}
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
if (I->isLogicalShift() &&
isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
I->setOperand(0, V2);
MadeChange = true;
}
if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
I->setIsExact();
MadeChange = true;
}
if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
I->setHasNoUnsignedWrap();
MadeChange = true;
}
}
// TODO: Lots more we could do here:
// If V is a phi node, we can call this on each of its operands.
// "select cond, X, 0" can simplify to "X".
return MadeChange ? V : 0;
}
/// MultiplyOverflows - True if the multiply can not be expressed in an int
/// this size.
static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
uint32_t W = C1->getBitWidth();
APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
if (sign) {
LHSExt = LHSExt.sext(W * 2);
RHSExt = RHSExt.sext(W * 2);
} else {
LHSExt = LHSExt.zext(W * 2);
RHSExt = RHSExt.zext(W * 2);
}
APInt MulExt = LHSExt * RHSExt;
if (!sign)
return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
return MulExt.slt(Min) || MulExt.sgt(Max);
}
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyMulInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
return BinaryOperator::CreateNeg(Op0, I.getName());
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
// ((X << C1)*C2) == (X * (C2 << C1))
if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
if (SI->getOpcode() == Instruction::Shl)
if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
return BinaryOperator::CreateMul(SI->getOperand(0),
ConstantExpr::getShl(CI, ShOp));
const APInt &Val = CI->getValue();
if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
return Shl;
}
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
{ Value *X; ConstantInt *C1;
if (Op0->hasOneUse() &&
match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
Value *Add = Builder->CreateMul(X, CI);
return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
}
}
// (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
// (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
// The "* (2**n)" thus becomes a potential shifting opportunity.
{
const APInt & Val = CI->getValue();
const APInt &PosVal = Val.abs();
if (Val.isNegative() && PosVal.isPowerOf2()) {
Value *X = 0, *Y = 0;
if (Op0->hasOneUse()) {
ConstantInt *C1;
Value *Sub = 0;
if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
Sub = Builder->CreateSub(X, Y, "suba");
else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
if (Sub)
return
BinaryOperator::CreateMul(Sub,
ConstantInt::get(Y->getType(), PosVal));
}
}
}
}
// Simplify mul instructions with a constant RHS.
if (isa<Constant>(Op1)) {
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
if (Value *Op1v = dyn_castNegVal(Op1))
return BinaryOperator::CreateMul(Op0v, Op1v);
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
Value *Op1C = Op1;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
if (!BO ||
(BO->getOpcode() != Instruction::UDiv &&
BO->getOpcode() != Instruction::SDiv)) {
Op1C = Op0;
BO = dyn_cast<BinaryOperator>(Op1);
}
Value *Neg = dyn_castNegVal(Op1C);
if (BO && BO->hasOneUse() &&
(BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
(BO->getOpcode() == Instruction::UDiv ||
BO->getOpcode() == Instruction::SDiv)) {
Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
// If the division is exact, X % Y is zero, so we end up with X or -X.
if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
if (SDiv->isExact()) {
if (Op1BO == Op1C)
return ReplaceInstUsesWith(I, Op0BO);
return BinaryOperator::CreateNeg(Op0BO);
}
Value *Rem;
if (BO->getOpcode() == Instruction::UDiv)
Rem = Builder->CreateURem(Op0BO, Op1BO);
else
Rem = Builder->CreateSRem(Op0BO, Op1BO);
Rem->takeName(BO);
if (Op1BO == Op1C)
return BinaryOperator::CreateSub(Op0BO, Rem);
return BinaryOperator::CreateSub(Rem, Op0BO);
}
}
/// i1 mul -> i1 and.
if (I.getType()->isIntegerTy(1))
return BinaryOperator::CreateAnd(Op0, Op1);
// X*(1 << Y) --> X << Y
// (1 << Y)*X --> X << Y
{
Value *Y;
if (match(Op0, m_Shl(m_One(), m_Value(Y))))
return BinaryOperator::CreateShl(Op1, Y);
if (match(Op1, m_Shl(m_One(), m_Value(Y))))
return BinaryOperator::CreateShl(Op0, Y);
}
// If one of the operands of the multiply is a cast from a boolean value, then
// we know the bool is either zero or one, so this is a 'masking' multiply.
// X * Y (where Y is 0 or 1) -> X & (0-Y)
if (!I.getType()->isVectorTy()) {
// -2 is "-1 << 1" so it is all bits set except the low one.
APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
Value *BoolCast = 0, *OtherOp = 0;
if (MaskedValueIsZero(Op0, Negative2))
BoolCast = Op0, OtherOp = Op1;
else if (MaskedValueIsZero(Op1, Negative2))
BoolCast = Op1, OtherOp = Op0;
if (BoolCast) {
Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
BoolCast);
return BinaryOperator::CreateAnd(V, OtherOp);
}
}
return Changed ? &I : 0;
}
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Simplify mul instructions with a constant RHS.
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
// "In IEEE floating point, x*1 is not equivalent to x for nans. However,
// ANSI says we can drop signals, so we can do this anyway." (from GCC)
if (Op1F->isExactlyValue(1.0))
return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
} else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
// As above, vector X*splat(1.0) -> X in all defined cases.
if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
if (F->isExactlyValue(1.0))
return ReplaceInstUsesWith(I, Op0);
}
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
if (Value *Op1v = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFMul(Op0v, Op1v);
return Changed ? &I : 0;
}
/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
/// instruction.
bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
SelectInst *SI = cast<SelectInst>(I.getOperand(1));
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
int NonNullOperand = -1;
if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
if (ST->isNullValue())
NonNullOperand = 2;
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
if (ST->isNullValue())
NonNullOperand = 1;
if (NonNullOperand == -1)
return false;
Value *SelectCond = SI->getOperand(0);
// Change the div/rem to use 'Y' instead of the select.
I.setOperand(1, SI->getOperand(NonNullOperand));
// Okay, we know we replace the operand of the div/rem with 'Y' with no
// problem. However, the select, or the condition of the select may have
// multiple uses. Based on our knowledge that the operand must be non-zero,
// propagate the known value for the select into other uses of it, and
// propagate a known value of the condition into its other users.
// If the select and condition only have a single use, don't bother with this,
// early exit.
if (SI->use_empty() && SelectCond->hasOneUse())
return true;
// Scan the current block backward, looking for other uses of SI.
BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
while (BBI != BBFront) {
--BBI;
// If we found a call to a function, we can't assume it will return, so
// information from below it cannot be propagated above it.
if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
break;
// Replace uses of the select or its condition with the known values.
for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
I != E; ++I) {
if (*I == SI) {
*I = SI->getOperand(NonNullOperand);
Worklist.Add(BBI);
} else if (*I == SelectCond) {
*I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
ConstantInt::getFalse(BBI->getContext());
Worklist.Add(BBI);
}
}
// If we past the instruction, quit looking for it.
if (&*BBI == SI)
SI = 0;
if (&*BBI == SelectCond)
SelectCond = 0;
// If we ran out of things to eliminate, break out of the loop.
if (SelectCond == 0 && SI == 0)
break;
}
return true;
}
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
/// @brief Common integer divide transforms
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
I.setOperand(1, V);
return &I;
}
// Handle cases involving: [su]div X, (select Cond, Y, Z)
// This does not apply for fdiv.
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
// (X / C1) / C2 -> X / (C1*C2)
if (Instruction *LHS = dyn_cast<Instruction>(Op0))
if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
if (MultiplyOverflows(RHS, LHSRHS,
I.getOpcode()==Instruction::SDiv))
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
ConstantExpr::getMul(RHS, LHSRHS));
}
if (!RHS->isZero()) { // avoid X udiv 0
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
}
// See if we can fold away this div instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
Value *X = 0, *Z = 0;
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
bool isSigned = I.getOpcode() == Instruction::SDiv;
if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
(!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
return BinaryOperator::Create(I.getOpcode(), X, Op1);
}
return 0;
}
/// dyn_castZExtVal - Checks if V is a zext or constant that can
/// be truncated to Ty without losing bits.
static Value *dyn_castZExtVal(Value *V, Type *Ty) {
if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
if (Z->getSrcTy() == Ty)
return Z->getOperand(0);
} else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
return ConstantExpr::getTrunc(C, Ty);
}
return 0;
}
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
{
// X udiv 2^C -> X >> C
// Check to see if this is an unsigned division with an exact power of 2,
// if so, convert to a right shift.
const APInt *C;
if (match(Op1, m_Power2(C))) {
BinaryOperator *LShr =
BinaryOperator::CreateLShr(Op0,
ConstantInt::get(Op0->getType(),
C->logBase2()));
if (I.isExact()) LShr->setIsExact();
return LShr;
}
}
if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
// X udiv C, where C >= signbit
if (C->getValue().isNegative()) {
Value *IC = Builder->CreateICmpULT(Op0, C);
return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
ConstantInt::get(I.getType(), 1));
}
}
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
{ const APInt *CI; Value *N;
if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
if (*CI != 1)
N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
N = Builder->CreateZExt(N, Z->getDestTy());
if (I.isExact())
return BinaryOperator::CreateExactLShr(Op0, N);
return BinaryOperator::CreateLShr(Op0, N);
}
}
// udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
// where C1&C2 are powers of two.
{ Value *Cond; const APInt *C1, *C2;
if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
// Construct the "on true" case of the select
Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
I.isExact());
// Construct the "on false" case of the select
Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
I.isExact());
// construct the select instruction and return it.
return SelectInst::Create(Cond, TSI, FSI);
}
}
// (zext A) udiv (zext B) --> zext (A udiv B)
if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
I.isExact()),
I.getType());
return 0;
}
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifySDivInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
// sdiv X, -1 == -X
if (RHS->isAllOnesValue())
return BinaryOperator::CreateNeg(Op0);
// sdiv X, C --> ashr exact X, log2(C)
if (I.isExact() && RHS->getValue().isNonNegative() &&
RHS->getValue().isPowerOf2()) {
Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
RHS->getValue().exactLogBase2());
return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
}
// -X/C --> X/-C provided the negation doesn't overflow.
if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
return BinaryOperator::CreateSDiv(Sub->getOperand(1),
ConstantExpr::getNeg(RHS));
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
if (I.getType()->isIntegerTy()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
if (MaskedValueIsZero(Op0, Mask)) {
if (MaskedValueIsZero(Op1, Mask)) {
// X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
}
if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
// the sign bit set.
return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
}
}
}
return 0;
}
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
const APFloat &Op1F = Op1C->getValueAPF();
// If the divisor has an exact multiplicative inverse we can turn the fdiv
// into a cheaper fmul.
APFloat Reciprocal(Op1F.getSemantics());
if (Op1F.getExactInverse(&Reciprocal)) {
ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
return BinaryOperator::CreateFMul(Op0, RFP);
}
}
return 0;
}
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
/// @brief Common integer remainder transforms
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
I.setOperand(1, V);
return &I;
}
// Handle cases involving: rem X, (select Cond, Y, Z)
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
if (isa<ConstantInt>(Op1)) {
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
} else if (isa<PHINode>(Op0I)) {
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
// See if we can fold away this rem instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
}
}
return 0;
}
Instruction *InstCombiner::visitURem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyURemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *common = commonIRemTransforms(I))
return common;
// X urem C^2 -> X and C-1
{ const APInt *C;
if (match(Op1, m_Power2(C)))
return BinaryOperator::CreateAnd(Op0,
ConstantInt::get(I.getType(), *C-1));
}
// Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Constant *N1 = Constant::getAllOnesValue(I.getType());
Value *Add = Builder->CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
}
// urem X, (select Cond, 2^C1, 2^C2) -->
// select Cond, (and X, C1-1), (and X, C2-1)
// when C1&C2 are powers of two.
{ Value *Cond; const APInt *C1, *C2;
if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
return SelectInst::Create(Cond, TrueAnd, FalseAnd);
}
}
// (zext A) urem (zext B) --> zext (A urem B)
if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
I.getType());
return 0;
}
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifySRemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
if (Value *RHSNeg = dyn_castNegVal(Op1))
if (!isa<Constant>(RHSNeg) ||
(isa<ConstantInt>(RHSNeg) &&
cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
// X % -Y -> X % Y
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, RHSNeg);
return &I;
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
if (I.getType()->isIntegerTy()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
}
// If it's a constant vector, flip any negative values positive.
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
Constant *C = cast<Constant>(Op1);
unsigned VWidth = C->getType()->getVectorNumElements();
bool hasNegative = false;
bool hasMissing = false;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (Elt == 0) {
hasMissing = true;
break;
}
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
if (RHS->isNegative())
hasNegative = true;
}
if (hasNegative && !hasMissing) {
SmallVector<Constant *, 16> Elts(VWidth);
for (unsigned i = 0; i != VWidth; ++i) {
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
if (RHS->isNegative())
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
}
}
Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != C) { // Don't loop on -MININT
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, NewRHSV);
return &I;
}
}
}
return 0;
}
Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle cases involving: rem X, (select Cond, Y, Z)
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
return 0;
}
|