aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
blob: 5df55f01b83ff0365095c0c54fb8046376928a7b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains logic for simplifying instructions based on information
// about how they are used.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
                                   const APInt &Demanded) {
  assert(I && "No instruction?");
  assert(OpNo < I->getNumOperands() && "Operand index too large");

  // The operand must be a constant integer or splat integer.
  Value *Op = I->getOperand(OpNo);
  const APInt *C;
  if (!match(Op, m_APInt(C)))
    return false;

  // If there are no bits set that aren't demanded, nothing to do.
  if (C->isSubsetOf(Demanded))
    return false;

  // This instruction is producing bits that are not demanded. Shrink the RHS.
  I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));

  return true;
}



/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
/// the instruction has any properties that allow us to simplify its operands.
bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
  KnownBits Known(BitWidth);
  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));

  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
                                     0, &Inst);
  if (!V) return false;
  if (V == &Inst) return true;
  replaceInstUsesWith(Inst, V);
  return true;
}

/// This form of SimplifyDemandedBits simplifies the specified instruction
/// operand if possible, updating it in place. It returns true if it made any
/// change and false otherwise.
bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
                                        const APInt &DemandedMask,
                                        KnownBits &Known,
                                        unsigned Depth) {
  Use &U = I->getOperandUse(OpNo);
  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
                                          Depth, I);
  if (!NewVal) return false;
  U = NewVal;
  return true;
}


/// This function attempts to replace V with a simpler value based on the
/// demanded bits. When this function is called, it is known that only the bits
/// set in DemandedMask of the result of V are ever used downstream.
/// Consequently, depending on the mask and V, it may be possible to replace V
/// with a constant or one of its operands. In such cases, this function does
/// the replacement and returns true. In all other cases, it returns false after
/// analyzing the expression and setting KnownOne and known to be one in the
/// expression. Known.Zero contains all the bits that are known to be zero in
/// the expression. These are provided to potentially allow the caller (which
/// might recursively be SimplifyDemandedBits itself) to simplify the
/// expression.
/// Known.One and Known.Zero always follow the invariant that:
///   Known.One & Known.Zero == 0.
/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
/// be the same.
///
/// This returns null if it did not change anything and it permits no
/// simplification.  This returns V itself if it did some simplification of V's
/// operands based on the information about what bits are demanded. This returns
/// some other non-null value if it found out that V is equal to another value
/// in the context where the specified bits are demanded, but not for all users.
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
                                             KnownBits &Known, unsigned Depth,
                                             Instruction *CxtI) {
  assert(V != nullptr && "Null pointer of Value???");
  assert(Depth <= 6 && "Limit Search Depth");
  uint32_t BitWidth = DemandedMask.getBitWidth();
  Type *VTy = V->getType();
  assert(
      (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
      Known.getBitWidth() == BitWidth &&
      "Value *V, DemandedMask and Known must have same BitWidth");

  if (isa<Constant>(V)) {
    computeKnownBits(V, Known, Depth, CxtI);
    return nullptr;
  }

  Known.resetAll();
  if (DemandedMask == 0)     // Not demanding any bits from V.
    return UndefValue::get(VTy);

  if (Depth == 6)        // Limit search depth.
    return nullptr;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    computeKnownBits(V, Known, Depth, CxtI);
    return nullptr;        // Only analyze instructions.
  }

  // If there are multiple uses of this value and we aren't at the root, then
  // we can't do any simplifications of the operands, because DemandedMask
  // only reflects the bits demanded by *one* of the users.
  if (Depth != 0 && !I->hasOneUse())
    return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);

  KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);

  // If this is the root being simplified, allow it to have multiple uses,
  // just set the DemandedMask to all bits so that we can try to simplify the
  // operands.  This allows visitTruncInst (for example) to simplify the
  // operand of a trunc without duplicating all the logic below.
  if (Depth == 0 && !V->hasOneUse())
    DemandedMask.setAllBits();

  switch (I->getOpcode()) {
  default:
    computeKnownBits(I, Known, Depth, CxtI);
    break;
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
                             Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
    // Output known-1 bits are only known if set in both the LHS & RHS.
    APInt IKnownOne = RHSKnown.One & LHSKnown.One;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
      return Constant::getIntegerValue(VTy, IKnownOne);

    // If all of the demanded bits are known 1 on one side, return the other.
    // These bits cannot contribute to the result of the 'and'.
    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
      return I->getOperand(1);

    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
      return I;

    Known.Zero = std::move(IKnownZero);
    Known.One  = std::move(IKnownOne);
    break;
  }
  case Instruction::Or: {
    // If either the LHS or the RHS are One, the result is One.
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
                             Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
    // Output known-1 are known. to be set if s.et in either the LHS | RHS.
    APInt IKnownOne = RHSKnown.One | LHSKnown.One;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
      return Constant::getIntegerValue(VTy, IKnownOne);

    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'or'.
    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
      return I->getOperand(1);

    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return I;

    Known.Zero = std::move(IKnownZero);
    Known.One  = std::move(IKnownOne);
    break;
  }
  case Instruction::Xor: {
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
                       (RHSKnown.One & LHSKnown.One);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
                       (RHSKnown.One & LHSKnown.Zero);

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
      return Constant::getIntegerValue(VTy, IKnownOne);

    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'xor'.
    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
      return I->getOperand(1);

    // If all of the demanded bits are known to be zero on one side or the
    // other, turn this into an *inclusive* or.
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
      Instruction *Or =
        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
                                 I->getName());
      return InsertNewInstWith(Or, *I);
    }

    // If all of the demanded bits on one side are known, and all of the set
    // bits on that side are also known to be set on the other side, turn this
    // into an AND, as we know the bits will be cleared.
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
        RHSKnown.One.isSubsetOf(LHSKnown.One)) {
      Constant *AndC = Constant::getIntegerValue(VTy,
                                                 ~RHSKnown.One & DemandedMask);
      Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
      return InsertNewInstWith(And, *I);
    }

    // If the RHS is a constant, see if we can simplify it.
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return I;

    // If our LHS is an 'and' and if it has one use, and if any of the bits we
    // are flipping are known to be set, then the xor is just resetting those
    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
    // simplifying both of them.
    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
          isa<ConstantInt>(I->getOperand(1)) &&
          isa<ConstantInt>(LHSInst->getOperand(1)) &&
          (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
        APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);

        Constant *AndC =
          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
        InsertNewInstWith(NewAnd, *I);

        Constant *XorC =
          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
        return InsertNewInstWith(NewXor, *I);
      }

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    Known.Zero = std::move(IKnownZero);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    Known.One  = std::move(IKnownOne);
    break;
  }
  case Instruction::Select:
    // If this is a select as part of a min/max pattern, don't simplify any
    // further in case we break the structure.
    Value *LHS, *RHS;
    if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
      return nullptr;

    if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    // If the operands are constants, see if we can simplify them.
    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
        ShrinkDemandedConstant(I, 2, DemandedMask))
      return I;

    // Only known if known in both the LHS and RHS.
    Known.One = RHSKnown.One & LHSKnown.One;
    Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
    break;
  case Instruction::ZExt:
  case Instruction::Trunc: {
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();

    APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
    KnownBits InputKnown(SrcBitWidth);
    if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
      return I;
    Known = Known.zextOrTrunc(BitWidth);
    // Any top bits are known to be zero.
    if (BitWidth > SrcBitWidth)
      Known.Zero.setBitsFrom(SrcBitWidth);
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    break;
  }
  case Instruction::BitCast:
    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
      return nullptr;  // vector->int or fp->int?

    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
      if (VectorType *SrcVTy =
            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
          // Don't touch a bitcast between vectors of different element counts.
          return nullptr;
      } else
        // Don't touch a scalar-to-vector bitcast.
        return nullptr;
    } else if (I->getOperand(0)->getType()->isVectorTy())
      // Don't touch a vector-to-scalar bitcast.
      return nullptr;

    if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
      return I;
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    break;
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();

    APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);

    // If any of the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    if (DemandedMask.getActiveBits() > SrcBitWidth)
      InputDemandedBits.setBit(SrcBitWidth-1);

    KnownBits InputKnown(SrcBitWidth);
    if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
      return I;

    // If the input sign bit is known zero, or if the NewBits are not demanded
    // convert this into a zero extension.
    if (InputKnown.isNonNegative() ||
        DemandedMask.getActiveBits() <= SrcBitWidth) {
      // Convert to ZExt cast.
      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
      return InsertNewInstWith(NewCast, *I);
     }

    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    Known = InputKnown.sext(BitWidth);
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    break;
  }
  case Instruction::Add:
  case Instruction::Sub: {
    /// If the high-bits of an ADD/SUB are not demanded, then we do not care
    /// about the high bits of the operands.
    unsigned NLZ = DemandedMask.countLeadingZeros();
    if (NLZ > 0) {
      // Right fill the mask of bits for this ADD/SUB to demand the most
      // significant bit and all those below it.
      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
      if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
          SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
          ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
          SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
        // Disable the nsw and nuw flags here: We can no longer guarantee that
        // we won't wrap after simplification. Removing the nsw/nuw flags is
        // legal here because the top bit is not demanded.
        BinaryOperator &BinOP = *cast<BinaryOperator>(I);
        BinOP.setHasNoSignedWrap(false);
        BinOP.setHasNoUnsignedWrap(false);
        return I;
      }

      // If we are known to be adding/subtracting zeros to every bit below
      // the highest demanded bit, we just return the other side.
      if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
        return I->getOperand(0);
      // We can't do this with the LHS for subtraction.
      if (I->getOpcode() == Instruction::Add &&
          DemandedFromOps.isSubsetOf(LHSKnown.Zero))
        return I->getOperand(1);
    }

    // Otherwise just hand the add/sub off to computeKnownBits to fill in
    // the known zeros and ones.
    computeKnownBits(V, Known, Depth, CxtI);
    break;
  }
  case Instruction::Shl: {
    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      const APInt *ShrAmt;
      if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
        Instruction *Shr = cast<Instruction>(I->getOperand(0));
        if (Value *R = simplifyShrShlDemandedBits(
                Shr, *ShrAmt, I, *SA, DemandedMask, Known))
          return R;
      }

      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));

      // If the shift is NUW/NSW, then it does demand the high bits.
      ShlOperator *IOp = cast<ShlOperator>(I);
      if (IOp->hasNoSignedWrap())
        DemandedMaskIn.setHighBits(ShiftAmt+1);
      else if (IOp->hasNoUnsignedWrap())
        DemandedMaskIn.setHighBits(ShiftAmt);

      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
        return I;
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
      Known.Zero <<= ShiftAmt;
      Known.One  <<= ShiftAmt;
      // low bits known zero.
      if (ShiftAmt)
        Known.Zero.setLowBits(ShiftAmt);
    }
    break;
  }
  case Instruction::LShr: {
    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);

      // Unsigned shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));

      // If the shift is exact, then it does demand the low bits (and knows that
      // they are zero).
      if (cast<LShrOperator>(I)->isExact())
        DemandedMaskIn.setLowBits(ShiftAmt);

      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
        return I;
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
      Known.Zero.lshrInPlace(ShiftAmt);
      Known.One.lshrInPlace(ShiftAmt);
      if (ShiftAmt)
        Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
    }
    break;
  }
  case Instruction::AShr: {
    // If this is an arithmetic shift right and only the low-bit is set, we can
    // always convert this into a logical shr, even if the shift amount is
    // variable.  The low bit of the shift cannot be an input sign bit unless
    // the shift amount is >= the size of the datatype, which is undefined.
    if (DemandedMask == 1) {
      // Perform the logical shift right.
      Instruction *NewVal = BinaryOperator::CreateLShr(
                        I->getOperand(0), I->getOperand(1), I->getName());
      return InsertNewInstWith(NewVal, *I);
    }

    // If the sign bit is the only bit demanded by this ashr, then there is no
    // need to do it, the shift doesn't change the high bit.
    if (DemandedMask.isSignMask())
      return I->getOperand(0);

    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);

      // Signed shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
      // If any of the high bits are demanded, we should set the sign bit as
      // demanded.
      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
        DemandedMaskIn.setSignBit();

      // If the shift is exact, then it does demand the low bits (and knows that
      // they are zero).
      if (cast<AShrOperator>(I)->isExact())
        DemandedMaskIn.setLowBits(ShiftAmt);

      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
        return I;

      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
      // Compute the new bits that are at the top now.
      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
      Known.Zero.lshrInPlace(ShiftAmt);
      Known.One.lshrInPlace(ShiftAmt);

      // Handle the sign bits.
      APInt SignMask(APInt::getSignMask(BitWidth));
      // Adjust to where it is now in the mask.
      SignMask.lshrInPlace(ShiftAmt);

      // If the input sign bit is known to be zero, or if none of the top bits
      // are demanded, turn this into an unsigned shift right.
      if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] ||
          !DemandedMask.intersects(HighBits)) {
        BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
                                                          I->getOperand(1));
        LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
        return InsertNewInstWith(LShr, *I);
      } else if (Known.One.intersects(SignMask)) { // New bits are known one.
        Known.One |= HighBits;
      }
    }
    break;
  }
  case Instruction::SRem:
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // X % -1 demands all the bits because we don't want to introduce
      // INT_MIN % -1 (== undef) by accident.
      if (Rem->isAllOnesValue())
        break;
      APInt RA = Rem->getValue().abs();
      if (RA.isPowerOf2()) {
        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
          return I->getOperand(0);

        APInt LowBits = RA - 1;
        APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
        if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
          return I;

        // The low bits of LHS are unchanged by the srem.
        Known.Zero = LHSKnown.Zero & LowBits;
        Known.One = LHSKnown.One & LowBits;

        // If LHS is non-negative or has all low bits zero, then the upper bits
        // are all zero.
        if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
          Known.Zero |= ~LowBits;

        // If LHS is negative and not all low bits are zero, then the upper bits
        // are all one.
        if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
          Known.One |= ~LowBits;

        assert(!Known.hasConflict() && "Bits known to be one AND zero?");
        break;
      }
    }

    // The sign bit is the LHS's sign bit, except when the result of the
    // remainder is zero.
    if (DemandedMask.isSignBitSet()) {
      computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
      // If it's known zero, our sign bit is also zero.
      if (LHSKnown.isNonNegative())
        Known.makeNonNegative();
    }
    break;
  case Instruction::URem: {
    KnownBits Known2(BitWidth);
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
        SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
      return I;

    unsigned Leaders = Known2.countMinLeadingZeros();
    Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
    break;
  }
  case Instruction::Call:
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bswap: {
        // If the only bits demanded come from one byte of the bswap result,
        // just shift the input byte into position to eliminate the bswap.
        unsigned NLZ = DemandedMask.countLeadingZeros();
        unsigned NTZ = DemandedMask.countTrailingZeros();

        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
        // have 14 leading zeros, round to 8.
        NLZ &= ~7;
        NTZ &= ~7;
        // If we need exactly one byte, we can do this transformation.
        if (BitWidth-NLZ-NTZ == 8) {
          unsigned ResultBit = NTZ;
          unsigned InputBit = BitWidth-NTZ-8;

          // Replace this with either a left or right shift to get the byte into
          // the right place.
          Instruction *NewVal;
          if (InputBit > ResultBit)
            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
                    ConstantInt::get(I->getType(), InputBit-ResultBit));
          else
            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
                    ConstantInt::get(I->getType(), ResultBit-InputBit));
          NewVal->takeName(I);
          return InsertNewInstWith(NewVal, *I);
        }

        // TODO: Could compute known zero/one bits based on the input.
        break;
      }
      case Intrinsic::x86_mmx_pmovmskb:
      case Intrinsic::x86_sse_movmsk_ps:
      case Intrinsic::x86_sse2_movmsk_pd:
      case Intrinsic::x86_sse2_pmovmskb_128:
      case Intrinsic::x86_avx_movmsk_ps_256:
      case Intrinsic::x86_avx_movmsk_pd_256:
      case Intrinsic::x86_avx2_pmovmskb: {
        // MOVMSK copies the vector elements' sign bits to the low bits
        // and zeros the high bits.
        unsigned ArgWidth;
        if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
          ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
        } else {
          auto Arg = II->getArgOperand(0);
          auto ArgType = cast<VectorType>(Arg->getType());
          ArgWidth = ArgType->getNumElements();
        }

        // If we don't need any of low bits then return zero,
        // we know that DemandedMask is non-zero already.
        APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
        if (DemandedElts == 0)
          return ConstantInt::getNullValue(VTy);

        // We know that the upper bits are set to zero.
        Known.Zero.setBitsFrom(ArgWidth);
        return nullptr;
      }
      case Intrinsic::x86_sse42_crc32_64_64:
        Known.Zero.setBitsFrom(32);
        return nullptr;
      }
    }
    computeKnownBits(V, Known, Depth, CxtI);
    break;
  }

  // If the client is only demanding bits that we know, return the known
  // constant.
  if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
    return Constant::getIntegerValue(VTy, Known.One);
  return nullptr;
}

/// Helper routine of SimplifyDemandedUseBits. It computes Known
/// bits. It also tries to handle simplifications that can be done based on
/// DemandedMask, but without modifying the Instruction.
Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
                                                     const APInt &DemandedMask,
                                                     KnownBits &Known,
                                                     unsigned Depth,
                                                     Instruction *CxtI) {
  unsigned BitWidth = DemandedMask.getBitWidth();
  Type *ITy = I->getType();

  KnownBits LHSKnown(BitWidth);
  KnownBits RHSKnown(BitWidth);

  // Despite the fact that we can't simplify this instruction in all User's
  // context, we can at least compute the known bits, and we can
  // do simplifications that apply to *just* the one user if we know that
  // this instruction has a simpler value in that context.
  switch (I->getOpcode()) {
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
                     CxtI);

    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
    // Output known-1 bits are only known if set in both the LHS & RHS.
    APInt IKnownOne = RHSKnown.One & LHSKnown.One;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
      return Constant::getIntegerValue(ITy, IKnownOne);

    // If all of the demanded bits are known 1 on one side, return the other.
    // These bits cannot contribute to the result of the 'and' in this
    // context.
    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
      return I->getOperand(1);

    Known.Zero = std::move(IKnownZero);
    Known.One  = std::move(IKnownOne);
    break;
  }
  case Instruction::Or: {
    // We can simplify (X|Y) -> X or Y in the user's context if we know that
    // only bits from X or Y are demanded.

    // If either the LHS or the RHS are One, the result is One.
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
                     CxtI);

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    APInt IKnownOne = RHSKnown.One | LHSKnown.One;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
      return Constant::getIntegerValue(ITy, IKnownOne);

    // If all of the demanded bits are known zero on one side, return the
    // other.  These bits cannot contribute to the result of the 'or' in this
    // context.
    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
      return I->getOperand(1);

    Known.Zero = std::move(IKnownZero);
    Known.One  = std::move(IKnownOne);
    break;
  }
  case Instruction::Xor: {
    // We can simplify (X^Y) -> X or Y in the user's context if we know that
    // only bits from X or Y are demanded.

    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
                     CxtI);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
                       (RHSKnown.One & LHSKnown.One);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
                       (RHSKnown.One & LHSKnown.Zero);

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
      return Constant::getIntegerValue(ITy, IKnownOne);

    // If all of the demanded bits are known zero on one side, return the
    // other.
    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
      return I->getOperand(1);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    Known.Zero = std::move(IKnownZero);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    Known.One  = std::move(IKnownOne);
    break;
  }
  default:
    // Compute the Known bits to simplify things downstream.
    computeKnownBits(I, Known, Depth, CxtI);

    // If this user is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
      return Constant::getIntegerValue(ITy, Known.One);

    break;
  }

  return nullptr;
}


/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
/// of "C2-C1".
///
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
/// ..., bn}, without considering the specific value X is holding.
/// This transformation is legal iff one of following conditions is hold:
///  1) All the bit in S are 0, in this case E1 == E2.
///  2) We don't care those bits in S, per the input DemandedMask.
///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
///     rest bits.
///
/// Currently we only test condition 2).
///
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
/// not successful.
Value *
InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
                                         Instruction *Shl, const APInt &ShlOp1,
                                         const APInt &DemandedMask,
                                         KnownBits &Known) {
  if (!ShlOp1 || !ShrOp1)
    return nullptr; // No-op.

  Value *VarX = Shr->getOperand(0);
  Type *Ty = VarX->getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();
  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
    return nullptr; // Undef.

  unsigned ShlAmt = ShlOp1.getZExtValue();
  unsigned ShrAmt = ShrOp1.getZExtValue();

  Known.One.clearAllBits();
  Known.Zero.setLowBits(ShlAmt - 1);
  Known.Zero &= DemandedMask;

  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
  APInt BitMask2(APInt::getAllOnesValue(BitWidth));

  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
                      (BitMask1.ashr(ShrAmt) << ShlAmt);

  if (ShrAmt <= ShlAmt) {
    BitMask2 <<= (ShlAmt - ShrAmt);
  } else {
    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
                        BitMask2.ashr(ShrAmt - ShlAmt);
  }

  // Check if condition-2 (see the comment to this function) is satified.
  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
    if (ShrAmt == ShlAmt)
      return VarX;

    if (!Shr->hasOneUse())
      return nullptr;

    BinaryOperator *New;
    if (ShrAmt < ShlAmt) {
      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
      New = BinaryOperator::CreateShl(VarX, Amt);
      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
    } else {
      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
                     BinaryOperator::CreateAShr(VarX, Amt);
      if (cast<BinaryOperator>(Shr)->isExact())
        New->setIsExact(true);
    }

    return InsertNewInstWith(New, *Shl);
  }

  return nullptr;
}

/// The specified value produces a vector with any number of elements.
/// DemandedElts contains the set of elements that are actually used by the
/// caller. This method analyzes which elements of the operand are undef and
/// returns that information in UndefElts.
///
/// If the information about demanded elements can be used to simplify the
/// operation, the operation is simplified, then the resultant value is
/// returned.  This returns null if no change was made.
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
                                                APInt &UndefElts,
                                                unsigned Depth) {
  unsigned VWidth = V->getType()->getVectorNumElements();
  APInt EltMask(APInt::getAllOnesValue(VWidth));
  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");

  if (isa<UndefValue>(V)) {
    // If the entire vector is undefined, just return this info.
    UndefElts = EltMask;
    return nullptr;
  }

  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
    UndefElts = EltMask;
    return UndefValue::get(V->getType());
  }

  UndefElts = 0;

  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
  if (Constant *C = dyn_cast<Constant>(V)) {
    // Check if this is identity. If so, return 0 since we are not simplifying
    // anything.
    if (DemandedElts.isAllOnesValue())
      return nullptr;

    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    Constant *Undef = UndefValue::get(EltTy);

    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0; i != VWidth; ++i) {
      if (!DemandedElts[i]) {   // If not demanded, set to undef.
        Elts.push_back(Undef);
        UndefElts.setBit(i);
        continue;
      }

      Constant *Elt = C->getAggregateElement(i);
      if (!Elt) return nullptr;

      if (isa<UndefValue>(Elt)) {   // Already undef.
        Elts.push_back(Undef);
        UndefElts.setBit(i);
      } else {                               // Otherwise, defined.
        Elts.push_back(Elt);
      }
    }

    // If we changed the constant, return it.
    Constant *NewCV = ConstantVector::get(Elts);
    return NewCV != C ? NewCV : nullptr;
  }

  // Limit search depth.
  if (Depth == 10)
    return nullptr;

  // If multiple users are using the root value, proceed with
  // simplification conservatively assuming that all elements
  // are needed.
  if (!V->hasOneUse()) {
    // Quit if we find multiple users of a non-root value though.
    // They'll be handled when it's their turn to be visited by
    // the main instcombine process.
    if (Depth != 0)
      // TODO: Just compute the UndefElts information recursively.
      return nullptr;

    // Conservatively assume that all elements are needed.
    DemandedElts = EltMask;
  }

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return nullptr;        // Only analyze instructions.

  bool MadeChange = false;
  APInt UndefElts2(VWidth, 0);
  APInt UndefElts3(VWidth, 0);
  Value *TmpV;
  switch (I->getOpcode()) {
  default: break;

  case Instruction::InsertElement: {
    // If this is a variable index, we don't know which element it overwrites.
    // demand exactly the same input as we produce.
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
    if (!Idx) {
      // Note that we can't propagate undef elt info, because we don't know
      // which elt is getting updated.
      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
                                        UndefElts2, Depth + 1);
      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
      break;
    }

    // If this is inserting an element that isn't demanded, remove this
    // insertelement.
    unsigned IdxNo = Idx->getZExtValue();
    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
      Worklist.Add(I);
      return I->getOperand(0);
    }

    // Otherwise, the element inserted overwrites whatever was there, so the
    // input demanded set is simpler than the output set.
    APInt DemandedElts2 = DemandedElts;
    DemandedElts2.clearBit(IdxNo);
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
                                      UndefElts, Depth + 1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }

    // The inserted element is defined.
    UndefElts.clearBit(IdxNo);
    break;
  }
  case Instruction::ShuffleVector: {
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    unsigned LHSVWidth =
      Shuffle->getOperand(0)->getType()->getVectorNumElements();
    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
    for (unsigned i = 0; i < VWidth; i++) {
      if (DemandedElts[i]) {
        unsigned MaskVal = Shuffle->getMaskValue(i);
        if (MaskVal != -1u) {
          assert(MaskVal < LHSVWidth * 2 &&
                 "shufflevector mask index out of range!");
          if (MaskVal < LHSVWidth)
            LeftDemanded.setBit(MaskVal);
          else
            RightDemanded.setBit(MaskVal - LHSVWidth);
        }
      }
    }

    APInt LHSUndefElts(LHSVWidth, 0);
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
                                      LHSUndefElts, Depth + 1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }

    APInt RHSUndefElts(LHSVWidth, 0);
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
                                      RHSUndefElts, Depth + 1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }

    bool NewUndefElts = false;
    unsigned LHSIdx = -1u, LHSValIdx = -1u;
    unsigned RHSIdx = -1u, RHSValIdx = -1u;
    bool LHSUniform = true;
    bool RHSUniform = true;
    for (unsigned i = 0; i < VWidth; i++) {
      unsigned MaskVal = Shuffle->getMaskValue(i);
      if (MaskVal == -1u) {
        UndefElts.setBit(i);
      } else if (!DemandedElts[i]) {
        NewUndefElts = true;
        UndefElts.setBit(i);
      } else if (MaskVal < LHSVWidth) {
        if (LHSUndefElts[MaskVal]) {
          NewUndefElts = true;
          UndefElts.setBit(i);
        } else {
          LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
          LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
          LHSUniform = LHSUniform && (MaskVal == i);
        }
      } else {
        if (RHSUndefElts[MaskVal - LHSVWidth]) {
          NewUndefElts = true;
          UndefElts.setBit(i);
        } else {
          RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
          RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
          RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
        }
      }
    }

    // Try to transform shuffle with constant vector and single element from
    // this constant vector to single insertelement instruction.
    // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
    // insertelement V, C[ci], ci-n
    if (LHSVWidth == Shuffle->getType()->getNumElements()) {
      Value *Op = nullptr;
      Constant *Value = nullptr;
      unsigned Idx = -1u;

      // Find constant vector with the single element in shuffle (LHS or RHS).
      if (LHSIdx < LHSVWidth && RHSUniform) {
        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
          Op = Shuffle->getOperand(1);
          Value = CV->getOperand(LHSValIdx);
          Idx = LHSIdx;
        }
      }
      if (RHSIdx < LHSVWidth && LHSUniform) {
        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
          Op = Shuffle->getOperand(0);
          Value = CV->getOperand(RHSValIdx);
          Idx = RHSIdx;
        }
      }
      // Found constant vector with single element - convert to insertelement.
      if (Op && Value) {
        Instruction *New = InsertElementInst::Create(
            Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
            Shuffle->getName());
        InsertNewInstWith(New, *Shuffle);
        return New;
      }
    }
    if (NewUndefElts) {
      // Add additional discovered undefs.
      SmallVector<Constant*, 16> Elts;
      for (unsigned i = 0; i < VWidth; ++i) {
        if (UndefElts[i])
          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
        else
          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
                                          Shuffle->getMaskValue(i)));
      }
      I->setOperand(2, ConstantVector::get(Elts));
      MadeChange = true;
    }
    break;
  }
  case Instruction::Select: {
    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
      for (unsigned i = 0; i < VWidth; i++) {
        Constant *CElt = CV->getAggregateElement(i);
        // Method isNullValue always returns false when called on a
        // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
        // to avoid propagating incorrect information.
        if (isa<ConstantExpr>(CElt))
          continue;
        if (CElt->isNullValue())
          LeftDemanded.clearBit(i);
        else
          RightDemanded.clearBit(i);
      }
    }

    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
                                      Depth + 1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }

    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
                                      UndefElts2, Depth + 1);
    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }

    // Output elements are undefined if both are undefined.
    UndefElts &= UndefElts2;
    break;
  }
  case Instruction::BitCast: {
    // Vector->vector casts only.
    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
    if (!VTy) break;
    unsigned InVWidth = VTy->getNumElements();
    APInt InputDemandedElts(InVWidth, 0);
    UndefElts2 = APInt(InVWidth, 0);
    unsigned Ratio;

    if (VWidth == InVWidth) {
      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
      // elements as are demanded of us.
      Ratio = 1;
      InputDemandedElts = DemandedElts;
    } else if ((VWidth % InVWidth) == 0) {
      // If the number of elements in the output is a multiple of the number of
      // elements in the input then an input element is live if any of the
      // corresponding output elements are live.
      Ratio = VWidth / InVWidth;
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
        if (DemandedElts[OutIdx])
          InputDemandedElts.setBit(OutIdx / Ratio);
    } else if ((InVWidth % VWidth) == 0) {
      // If the number of elements in the input is a multiple of the number of
      // elements in the output then an input element is live if the
      // corresponding output element is live.
      Ratio = InVWidth / VWidth;
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
        if (DemandedElts[InIdx / Ratio])
          InputDemandedElts.setBit(InIdx);
    } else {
      // Unsupported so far.
      break;
    }

    // div/rem demand all inputs, because they don't want divide by zero.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
                                      UndefElts2, Depth + 1);
    if (TmpV) {
      I->setOperand(0, TmpV);
      MadeChange = true;
    }

    if (VWidth == InVWidth) {
      UndefElts = UndefElts2;
    } else if ((VWidth % InVWidth) == 0) {
      // If the number of elements in the output is a multiple of the number of
      // elements in the input then an output element is undef if the
      // corresponding input element is undef.
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
        if (UndefElts2[OutIdx / Ratio])
          UndefElts.setBit(OutIdx);
    } else if ((InVWidth % VWidth) == 0) {
      // If the number of elements in the input is a multiple of the number of
      // elements in the output then an output element is undef if all of the
      // corresponding input elements are undef.
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
        APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
        if (SubUndef.countPopulation() == Ratio)
          UndefElts.setBit(OutIdx);
      }
    } else {
      llvm_unreachable("Unimp");
    }
    break;
  }
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // div/rem demand all inputs, because they don't want divide by zero.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
                                      Depth + 1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
                                      UndefElts2, Depth + 1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }

    // Output elements are undefined if both are undefined.  Consider things
    // like undef&0.  The result is known zero, not undef.
    UndefElts &= UndefElts2;
    break;
  case Instruction::FPTrunc:
  case Instruction::FPExt:
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
                                      Depth + 1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    break;

  case Instruction::Call: {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
    if (!II) break;
    switch (II->getIntrinsicID()) {
    default: break;

    case Intrinsic::x86_xop_vfrcz_ss:
    case Intrinsic::x86_xop_vfrcz_sd:
      // The instructions for these intrinsics are speced to zero upper bits not
      // pass them through like other scalar intrinsics. So we shouldn't just
      // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
      // Instead we should return a zero vector.
      if (!DemandedElts[0]) {
        Worklist.Add(II);
        return ConstantAggregateZero::get(II->getType());
      }

      // Only the lower element is used.
      DemandedElts = 1;
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
                                        UndefElts, Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }

      // Only the lower element is undefined. The high elements are zero.
      UndefElts = UndefElts[0];
      break;

    // Unary scalar-as-vector operations that work column-wise.
    case Intrinsic::x86_sse_rcp_ss:
    case Intrinsic::x86_sse_rsqrt_ss:
    case Intrinsic::x86_sse_sqrt_ss:
    case Intrinsic::x86_sse2_sqrt_sd:
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
                                        UndefElts, Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.Add(II);
        return II->getArgOperand(0);
      }
      // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
      // checks).
      break;

    // Binary scalar-as-vector operations that work column-wise. The high
    // elements come from operand 0. The low element is a function of both
    // operands.
    case Intrinsic::x86_sse_min_ss:
    case Intrinsic::x86_sse_max_ss:
    case Intrinsic::x86_sse_cmp_ss:
    case Intrinsic::x86_sse2_min_sd:
    case Intrinsic::x86_sse2_max_sd:
    case Intrinsic::x86_sse2_cmp_sd: {
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
                                        UndefElts, Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.Add(II);
        return II->getArgOperand(0);
      }

      // Only lower element is used for operand 1.
      DemandedElts = 1;
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
                                        UndefElts2, Depth + 1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }

      // Lower element is undefined if both lower elements are undefined.
      // Consider things like undef&0.  The result is known zero, not undef.
      if (!UndefElts2[0])
        UndefElts.clearBit(0);

      break;
    }

    // Binary scalar-as-vector operations that work column-wise. The high
    // elements come from operand 0 and the low element comes from operand 1.
    case Intrinsic::x86_sse41_round_ss:
    case Intrinsic::x86_sse41_round_sd: {
      // Don't use the low element of operand 0.
      APInt DemandedElts2 = DemandedElts;
      DemandedElts2.clearBit(0);
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
                                        UndefElts, Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.Add(II);
        return II->getArgOperand(0);
      }

      // Only lower element is used for operand 1.
      DemandedElts = 1;
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
                                        UndefElts2, Depth + 1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }

      // Take the high undef elements from operand 0 and take the lower element
      // from operand 1.
      UndefElts.clearBit(0);
      UndefElts |= UndefElts2[0];
      break;
    }

    // Three input scalar-as-vector operations that work column-wise. The high
    // elements come from operand 0 and the low element is a function of all
    // three inputs.
    case Intrinsic::x86_avx512_mask_add_ss_round:
    case Intrinsic::x86_avx512_mask_div_ss_round:
    case Intrinsic::x86_avx512_mask_mul_ss_round:
    case Intrinsic::x86_avx512_mask_sub_ss_round:
    case Intrinsic::x86_avx512_mask_max_ss_round:
    case Intrinsic::x86_avx512_mask_min_ss_round:
    case Intrinsic::x86_avx512_mask_add_sd_round:
    case Intrinsic::x86_avx512_mask_div_sd_round:
    case Intrinsic::x86_avx512_mask_mul_sd_round:
    case Intrinsic::x86_avx512_mask_sub_sd_round:
    case Intrinsic::x86_avx512_mask_max_sd_round:
    case Intrinsic::x86_avx512_mask_min_sd_round:
    case Intrinsic::x86_fma_vfmadd_ss:
    case Intrinsic::x86_fma_vfmsub_ss:
    case Intrinsic::x86_fma_vfnmadd_ss:
    case Intrinsic::x86_fma_vfnmsub_ss:
    case Intrinsic::x86_fma_vfmadd_sd:
    case Intrinsic::x86_fma_vfmsub_sd:
    case Intrinsic::x86_fma_vfnmadd_sd:
    case Intrinsic::x86_fma_vfnmsub_sd:
    case Intrinsic::x86_avx512_mask_vfmadd_ss:
    case Intrinsic::x86_avx512_mask_vfmadd_sd:
    case Intrinsic::x86_avx512_maskz_vfmadd_ss:
    case Intrinsic::x86_avx512_maskz_vfmadd_sd:
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
                                        UndefElts, Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.Add(II);
        return II->getArgOperand(0);
      }

      // Only lower element is used for operand 1 and 2.
      DemandedElts = 1;
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
                                        UndefElts2, Depth + 1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
                                        UndefElts3, Depth + 1);
      if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }

      // Lower element is undefined if all three lower elements are undefined.
      // Consider things like undef&0.  The result is known zero, not undef.
      if (!UndefElts2[0] || !UndefElts3[0])
        UndefElts.clearBit(0);

      break;

    case Intrinsic::x86_avx512_mask3_vfmadd_ss:
    case Intrinsic::x86_avx512_mask3_vfmadd_sd:
    case Intrinsic::x86_avx512_mask3_vfmsub_ss:
    case Intrinsic::x86_avx512_mask3_vfmsub_sd:
    case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
    case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
      // These intrinsics get the passthru bits from operand 2.
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
                                        UndefElts, Depth + 1);
      if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }

      // If lowest element of a scalar op isn't used then use Arg2.
      if (!DemandedElts[0]) {
        Worklist.Add(II);
        return II->getArgOperand(2);
      }

      // Only lower element is used for operand 0 and 1.
      DemandedElts = 1;
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
                                        UndefElts2, Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
                                        UndefElts3, Depth + 1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }

      // Lower element is undefined if all three lower elements are undefined.
      // Consider things like undef&0.  The result is known zero, not undef.
      if (!UndefElts2[0] || !UndefElts3[0])
        UndefElts.clearBit(0);

      break;

    case Intrinsic::x86_sse2_pmulu_dq:
    case Intrinsic::x86_sse41_pmuldq:
    case Intrinsic::x86_avx2_pmul_dq:
    case Intrinsic::x86_avx2_pmulu_dq:
    case Intrinsic::x86_avx512_pmul_dq_512:
    case Intrinsic::x86_avx512_pmulu_dq_512: {
      Value *Op0 = II->getArgOperand(0);
      Value *Op1 = II->getArgOperand(1);
      unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
      assert((VWidth * 2) == InnerVWidth && "Unexpected input size");

      APInt InnerDemandedElts(InnerVWidth, 0);
      for (unsigned i = 0; i != VWidth; ++i)
        if (DemandedElts[i])
          InnerDemandedElts.setBit(i * 2);

      UndefElts2 = APInt(InnerVWidth, 0);
      TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
                                        Depth + 1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }

      UndefElts3 = APInt(InnerVWidth, 0);
      TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
                                        Depth + 1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }

      break;
    }

    case Intrinsic::x86_sse2_packssdw_128:
    case Intrinsic::x86_sse2_packsswb_128:
    case Intrinsic::x86_sse2_packuswb_128:
    case Intrinsic::x86_sse41_packusdw:
    case Intrinsic::x86_avx2_packssdw:
    case Intrinsic::x86_avx2_packsswb:
    case Intrinsic::x86_avx2_packusdw:
    case Intrinsic::x86_avx2_packuswb:
    case Intrinsic::x86_avx512_packssdw_512:
    case Intrinsic::x86_avx512_packsswb_512:
    case Intrinsic::x86_avx512_packusdw_512:
    case Intrinsic::x86_avx512_packuswb_512: {
      auto *Ty0 = II->getArgOperand(0)->getType();
      unsigned InnerVWidth = Ty0->getVectorNumElements();
      assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");

      unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
      unsigned VWidthPerLane = VWidth / NumLanes;
      unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;

      // Per lane, pack the elements of the first input and then the second.
      // e.g.
      // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
      // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
      for (int OpNum = 0; OpNum != 2; ++OpNum) {
        APInt OpDemandedElts(InnerVWidth, 0);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          unsigned LaneIdx = Lane * VWidthPerLane;
          for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
            unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
            if (DemandedElts[Idx])
              OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
          }
        }

        // Demand elements from the operand.
        auto *Op = II->getArgOperand(OpNum);
        APInt OpUndefElts(InnerVWidth, 0);
        TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
                                          Depth + 1);
        if (TmpV) {
          II->setArgOperand(OpNum, TmpV);
          MadeChange = true;
        }

        // Pack the operand's UNDEF elements, one lane at a time.
        OpUndefElts = OpUndefElts.zext(VWidth);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
          LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
          LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
          UndefElts |= LaneElts;
        }
      }
      break;
    }

    // PSHUFB
    case Intrinsic::x86_ssse3_pshuf_b_128:
    case Intrinsic::x86_avx2_pshuf_b:
    case Intrinsic::x86_avx512_pshuf_b_512:
    // PERMILVAR
    case Intrinsic::x86_avx_vpermilvar_ps:
    case Intrinsic::x86_avx_vpermilvar_ps_256:
    case Intrinsic::x86_avx512_vpermilvar_ps_512:
    case Intrinsic::x86_avx_vpermilvar_pd:
    case Intrinsic::x86_avx_vpermilvar_pd_256:
    case Intrinsic::x86_avx512_vpermilvar_pd_512:
    // PERMV
    case Intrinsic::x86_avx2_permd:
    case Intrinsic::x86_avx2_permps: {
      Value *Op1 = II->getArgOperand(1);
      TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
                                        Depth + 1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
      break;
    }

    // SSE4A instructions leave the upper 64-bits of the 128-bit result
    // in an undefined state.
    case Intrinsic::x86_sse4a_extrq:
    case Intrinsic::x86_sse4a_extrqi:
    case Intrinsic::x86_sse4a_insertq:
    case Intrinsic::x86_sse4a_insertqi:
      UndefElts.setHighBits(VWidth / 2);
      break;
    case Intrinsic::amdgcn_buffer_load:
    case Intrinsic::amdgcn_buffer_load_format:
    case Intrinsic::amdgcn_image_sample:
    case Intrinsic::amdgcn_image_sample_cl:
    case Intrinsic::amdgcn_image_sample_d:
    case Intrinsic::amdgcn_image_sample_d_cl:
    case Intrinsic::amdgcn_image_sample_l:
    case Intrinsic::amdgcn_image_sample_b:
    case Intrinsic::amdgcn_image_sample_b_cl:
    case Intrinsic::amdgcn_image_sample_lz:
    case Intrinsic::amdgcn_image_sample_cd:
    case Intrinsic::amdgcn_image_sample_cd_cl:

    case Intrinsic::amdgcn_image_sample_c:
    case Intrinsic::amdgcn_image_sample_c_cl:
    case Intrinsic::amdgcn_image_sample_c_d:
    case Intrinsic::amdgcn_image_sample_c_d_cl:
    case Intrinsic::amdgcn_image_sample_c_l:
    case Intrinsic::amdgcn_image_sample_c_b:
    case Intrinsic::amdgcn_image_sample_c_b_cl:
    case Intrinsic::amdgcn_image_sample_c_lz:
    case Intrinsic::amdgcn_image_sample_c_cd:
    case Intrinsic::amdgcn_image_sample_c_cd_cl:

    case Intrinsic::amdgcn_image_sample_o:
    case Intrinsic::amdgcn_image_sample_cl_o:
    case Intrinsic::amdgcn_image_sample_d_o:
    case Intrinsic::amdgcn_image_sample_d_cl_o:
    case Intrinsic::amdgcn_image_sample_l_o:
    case Intrinsic::amdgcn_image_sample_b_o:
    case Intrinsic::amdgcn_image_sample_b_cl_o:
    case Intrinsic::amdgcn_image_sample_lz_o:
    case Intrinsic::amdgcn_image_sample_cd_o:
    case Intrinsic::amdgcn_image_sample_cd_cl_o:

    case Intrinsic::amdgcn_image_sample_c_o:
    case Intrinsic::amdgcn_image_sample_c_cl_o:
    case Intrinsic::amdgcn_image_sample_c_d_o:
    case Intrinsic::amdgcn_image_sample_c_d_cl_o:
    case Intrinsic::amdgcn_image_sample_c_l_o:
    case Intrinsic::amdgcn_image_sample_c_b_o:
    case Intrinsic::amdgcn_image_sample_c_b_cl_o:
    case Intrinsic::amdgcn_image_sample_c_lz_o:
    case Intrinsic::amdgcn_image_sample_c_cd_o:
    case Intrinsic::amdgcn_image_sample_c_cd_cl_o:

    case Intrinsic::amdgcn_image_getlod: {
      if (VWidth == 1 || !DemandedElts.isMask())
        return nullptr;

      // TODO: Handle 3 vectors when supported in code gen.
      unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
      if (NewNumElts == VWidth)
        return nullptr;

      Module *M = II->getParent()->getParent()->getParent();
      Type *EltTy = V->getType()->getVectorElementType();

      Type *NewTy = (NewNumElts == 1) ? EltTy :
        VectorType::get(EltTy, NewNumElts);

      auto IID = II->getIntrinsicID();

      bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
                      IID == Intrinsic::amdgcn_buffer_load_format;

      Function *NewIntrin = IsBuffer ?
        Intrinsic::getDeclaration(M, IID, NewTy) :
        // Samplers have 3 mangled types.
        Intrinsic::getDeclaration(M, IID,
                                  { NewTy, II->getArgOperand(0)->getType(),
                                      II->getArgOperand(1)->getType()});

      SmallVector<Value *, 5> Args;
      for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
        Args.push_back(II->getArgOperand(I));

      IRBuilderBase::InsertPointGuard Guard(*Builder);
      Builder->SetInsertPoint(II);

      CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
      NewCall->takeName(II);
      NewCall->copyMetadata(*II);

      if (!IsBuffer) {
        ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
        if (DMask) {
          unsigned DMaskVal = DMask->getZExtValue() & 0xf;

          unsigned PopCnt = 0;
          unsigned NewDMask = 0;
          for (unsigned I = 0; I < 4; ++I) {
            const unsigned Bit = 1 << I;
            if (!!(DMaskVal & Bit)) {
              if (++PopCnt > NewNumElts)
                break;

              NewDMask |= Bit;
            }
          }

          NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
        }
      }


      if (NewNumElts == 1) {
        return Builder->CreateInsertElement(UndefValue::get(V->getType()),
                                            NewCall, static_cast<uint64_t>(0));
      }

      SmallVector<uint32_t, 8> EltMask;
      for (unsigned I = 0; I < VWidth; ++I)
        EltMask.push_back(I);

      Value *Shuffle = Builder->CreateShuffleVector(
        NewCall, UndefValue::get(NewTy), EltMask);

      MadeChange = true;
      return Shuffle;
    }
    }
    break;
  }
  }
  return MadeChange ? I : nullptr;
}