aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
blob: dc9abdd7f47a4f8dee781398aeec723ea46b6120 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Return true if the value is cheaper to scalarize than it is to leave as a
/// vector operation. IsConstantExtractIndex indicates whether we are extracting
/// one known element from a vector constant.
///
/// FIXME: It's possible to create more instructions than previously existed.
static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
  // If we can pick a scalar constant value out of a vector, that is free.
  if (auto *C = dyn_cast<Constant>(V))
    return IsConstantExtractIndex || C->getSplatValue();

  // An insertelement to the same constant index as our extract will simplify
  // to the scalar inserted element. An insertelement to a different constant
  // index is irrelevant to our extract.
  if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
    return IsConstantExtractIndex;

  if (match(V, m_OneUse(m_Load(m_Value()))))
    return true;

  Value *V0, *V1;
  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
        cheapToScalarize(V1, IsConstantExtractIndex))
      return true;

  CmpInst::Predicate UnusedPred;
  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
        cheapToScalarize(V1, IsConstantExtractIndex))
      return true;

  return false;
}

// If we have a PHI node with a vector type that is only used to feed
// itself and be an operand of extractelement at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type.
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
  SmallVector<Instruction *, 2> Extracts;
  // The users we want the PHI to have are:
  // 1) The EI ExtractElement (we already know this)
  // 2) Possibly more ExtractElements with the same index.
  // 3) Another operand, which will feed back into the PHI.
  Instruction *PHIUser = nullptr;
  for (auto U : PN->users()) {
    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
      if (EI.getIndexOperand() == EU->getIndexOperand())
        Extracts.push_back(EU);
      else
        return nullptr;
    } else if (!PHIUser) {
      PHIUser = cast<Instruction>(U);
    } else {
      return nullptr;
    }
  }

  if (!PHIUser)
    return nullptr;

  // Verify that this PHI user has one use, which is the PHI itself,
  // and that it is a binary operation which is cheap to scalarize.
  // otherwise return nullptr.
  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
    return nullptr;

  // Create a scalar PHI node that will replace the vector PHI node
  // just before the current PHI node.
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
  // Scalarize each PHI operand.
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
    Value *PHIInVal = PN->getIncomingValue(i);
    BasicBlock *inBB = PN->getIncomingBlock(i);
    Value *Elt = EI.getIndexOperand();
    // If the operand is the PHI induction variable:
    if (PHIInVal == PHIUser) {
      // Scalarize the binary operation. Its first operand is the
      // scalar PHI, and the second operand is extracted from the other
      // vector operand.
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
      Value *Op = InsertNewInstWith(
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
                                     B0->getOperand(opId)->getName() + ".Elt"),
          *B0);
      Value *newPHIUser = InsertNewInstWith(
          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
                                                scalarPHI, Op, B0), *B0);
      scalarPHI->addIncoming(newPHIUser, inBB);
    } else {
      // Scalarize PHI input:
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
      // Insert the new instruction into the predecessor basic block.
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
      BasicBlock::iterator InsertPos;
      if (pos && !isa<PHINode>(pos)) {
        InsertPos = ++pos->getIterator();
      } else {
        InsertPos = inBB->getFirstInsertionPt();
      }

      InsertNewInstWith(newEI, *InsertPos);

      scalarPHI->addIncoming(newEI, inBB);
    }
  }

  for (auto E : Extracts)
    replaceInstUsesWith(*E, scalarPHI);

  return &EI;
}

static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
                                      InstCombiner::BuilderTy &Builder,
                                      bool IsBigEndian) {
  Value *X;
  uint64_t ExtIndexC;
  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
      !X->getType()->isVectorTy() ||
      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
    return nullptr;

  // If this extractelement is using a bitcast from a vector of the same number
  // of elements, see if we can find the source element from the source vector:
  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
  Type *SrcTy = X->getType();
  Type *DestTy = Ext.getType();
  unsigned NumSrcElts = SrcTy->getVectorNumElements();
  unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
  if (NumSrcElts == NumElts)
    if (Value *Elt = findScalarElement(X, ExtIndexC))
      return new BitCastInst(Elt, DestTy);

  // If the source elements are wider than the destination, try to shift and
  // truncate a subset of scalar bits of an insert op.
  if (NumSrcElts < NumElts) {
    Value *Scalar;
    uint64_t InsIndexC;
    if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
                                  m_ConstantInt(InsIndexC))))
      return nullptr;

    // The extract must be from the subset of vector elements that we inserted
    // into. Example: if we inserted element 1 of a <2 x i64> and we are
    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
    // of elements 4-7 of the bitcasted vector.
    unsigned NarrowingRatio = NumElts / NumSrcElts;
    if (ExtIndexC / NarrowingRatio != InsIndexC)
      return nullptr;

    // We are extracting part of the original scalar. How that scalar is
    // inserted into the vector depends on the endian-ness. Example:
    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
    //                                       +--+--+--+--+--+--+--+--+
    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
    // extelt <4 x i16> V', 3:               |                 |S2|S3|
    //                                       +--+--+--+--+--+--+--+--+
    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
    // In this example, we must right-shift little-endian. Big-endian is just a
    // truncate.
    unsigned Chunk = ExtIndexC % NarrowingRatio;
    if (IsBigEndian)
      Chunk = NarrowingRatio - 1 - Chunk;

    // Bail out if this is an FP vector to FP vector sequence. That would take
    // more instructions than we started with unless there is no shift, and it
    // may not be handled as well in the backend.
    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
    bool NeedDestBitcast = DestTy->isFloatingPointTy();
    if (NeedSrcBitcast && NeedDestBitcast)
      return nullptr;

    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
    unsigned ShAmt = Chunk * DestWidth;

    // TODO: This limitation is more strict than necessary. We could sum the
    // number of new instructions and subtract the number eliminated to know if
    // we can proceed.
    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
      if (NeedSrcBitcast || NeedDestBitcast)
        return nullptr;

    if (NeedSrcBitcast) {
      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
    }

    if (ShAmt) {
      // Bail out if we could end with more instructions than we started with.
      if (!Ext.getVectorOperand()->hasOneUse())
        return nullptr;
      Scalar = Builder.CreateLShr(Scalar, ShAmt);
    }

    if (NeedDestBitcast) {
      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
    }
    return new TruncInst(Scalar, DestTy);
  }

  return nullptr;
}

Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
  Value *SrcVec = EI.getVectorOperand();
  Value *Index = EI.getIndexOperand();
  if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
                                            SQ.getWithInstruction(&EI)))
    return replaceInstUsesWith(EI, V);

  // If extracting a specified index from the vector, see if we can recursively
  // find a previously computed scalar that was inserted into the vector.
  auto *IndexC = dyn_cast<ConstantInt>(Index);
  if (IndexC) {
    unsigned NumElts = EI.getVectorOperandType()->getNumElements();

    // InstSimplify should handle cases where the index is invalid.
    if (!IndexC->getValue().ule(NumElts))
      return nullptr;

    // This instruction only demands the single element from the input vector.
    // If the input vector has a single use, simplify it based on this use
    // property.
    if (SrcVec->hasOneUse() && NumElts != 1) {
      APInt UndefElts(NumElts, 0);
      APInt DemandedElts(NumElts, 0);
      DemandedElts.setBit(IndexC->getZExtValue());
      if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
                                                UndefElts)) {
        EI.setOperand(0, V);
        return &EI;
      }
    }

    if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
      return I;

    // If there's a vector PHI feeding a scalar use through this extractelement
    // instruction, try to scalarize the PHI.
    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
        return ScalarPHI;
  }

  BinaryOperator *BO;
  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
  }

  Value *X, *Y;
  CmpInst::Predicate Pred;
  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
      cheapToScalarize(SrcVec, IndexC)) {
    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
  }

  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
      // Extracting the inserted element?
      if (IE->getOperand(2) == Index)
        return replaceInstUsesWith(EI, IE->getOperand(1));
      // If the inserted and extracted elements are constants, they must not
      // be the same value, extract from the pre-inserted value instead.
      if (isa<Constant>(IE->getOperand(2)) && IndexC) {
        Worklist.AddValue(SrcVec);
        EI.setOperand(0, IE->getOperand(0));
        return &EI;
      }
    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
      // If this is extracting an element from a shufflevector, figure out where
      // it came from and extract from the appropriate input element instead.
      if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
        Value *Src;
        unsigned LHSWidth =
          SVI->getOperand(0)->getType()->getVectorNumElements();

        if (SrcIdx < 0)
          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
        if (SrcIdx < (int)LHSWidth)
          Src = SVI->getOperand(0);
        else {
          SrcIdx -= LHSWidth;
          Src = SVI->getOperand(1);
        }
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
        return ExtractElementInst::Create(Src,
                                          ConstantInt::get(Int32Ty,
                                                           SrcIdx, false));
      }
    } else if (auto *CI = dyn_cast<CastInst>(I)) {
      // Canonicalize extractelement(cast) -> cast(extractelement).
      // Bitcasts can change the number of vector elements, and they cost
      // nothing.
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
        Worklist.AddValue(EE);
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
      }
    }
  }
  return nullptr;
}

/// If V is a shuffle of values that ONLY returns elements from either LHS or
/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                         SmallVectorImpl<Constant*> &Mask) {
  assert(LHS->getType() == RHS->getType() &&
         "Invalid CollectSingleShuffleElements");
  unsigned NumElts = V->getType()->getVectorNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return true;
  }

  if (V == LHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
    return true;
  }

  if (V == RHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
                                      i+NumElts));
    return true;
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (!isa<ConstantInt>(IdxOp))
      return false;
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
      // We can handle this if the vector we are inserting into is
      // transitively ok.
      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
        // If so, update the mask to reflect the inserted undef.
        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
        return true;
      }
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
      if (isa<ConstantInt>(EI->getOperand(1))) {
        unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();

        // This must be extracting from either LHS or RHS.
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
          // We can handle this if the vector we are inserting into is
          // transitively ok.
          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
            // If so, update the mask to reflect the inserted value.
            if (EI->getOperand(0) == LHS) {
              Mask[InsertedIdx % NumElts] =
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx);
            } else {
              assert(EI->getOperand(0) == RHS);
              Mask[InsertedIdx % NumElts] =
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx + NumLHSElts);
            }
            return true;
          }
        }
      }
    }
  }

  return false;
}

/// If we have insertion into a vector that is wider than the vector that we
/// are extracting from, try to widen the source vector to allow a single
/// shufflevector to replace one or more insert/extract pairs.
static void replaceExtractElements(InsertElementInst *InsElt,
                                   ExtractElementInst *ExtElt,
                                   InstCombiner &IC) {
  VectorType *InsVecType = InsElt->getType();
  VectorType *ExtVecType = ExtElt->getVectorOperandType();
  unsigned NumInsElts = InsVecType->getVectorNumElements();
  unsigned NumExtElts = ExtVecType->getVectorNumElements();

  // The inserted-to vector must be wider than the extracted-from vector.
  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
      NumExtElts >= NumInsElts)
    return;

  // Create a shuffle mask to widen the extended-from vector using undefined
  // values. The mask selects all of the values of the original vector followed
  // by as many undefined values as needed to create a vector of the same length
  // as the inserted-to vector.
  SmallVector<Constant *, 16> ExtendMask;
  IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
  for (unsigned i = 0; i < NumExtElts; ++i)
    ExtendMask.push_back(ConstantInt::get(IntType, i));
  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
    ExtendMask.push_back(UndefValue::get(IntType));

  Value *ExtVecOp = ExtElt->getVectorOperand();
  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
                                   ? ExtVecOpInst->getParent()
                                   : ExtElt->getParent();

  // TODO: This restriction matches the basic block check below when creating
  // new extractelement instructions. If that limitation is removed, this one
  // could also be removed. But for now, we just bail out to ensure that we
  // will replace the extractelement instruction that is feeding our
  // insertelement instruction. This allows the insertelement to then be
  // replaced by a shufflevector. If the insertelement is not replaced, we can
  // induce infinite looping because there's an optimization for extractelement
  // that will delete our widening shuffle. This would trigger another attempt
  // here to create that shuffle, and we spin forever.
  if (InsertionBlock != InsElt->getParent())
    return;

  // TODO: This restriction matches the check in visitInsertElementInst() and
  // prevents an infinite loop caused by not turning the extract/insert pair
  // into a shuffle. We really should not need either check, but we're lacking
  // folds for shufflevectors because we're afraid to generate shuffle masks
  // that the backend can't handle.
  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
    return;

  auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
                                        ConstantVector::get(ExtendMask));

  // Insert the new shuffle after the vector operand of the extract is defined
  // (as long as it's not a PHI) or at the start of the basic block of the
  // extract, so any subsequent extracts in the same basic block can use it.
  // TODO: Insert before the earliest ExtractElementInst that is replaced.
  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
    WideVec->insertAfter(ExtVecOpInst);
  else
    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());

  // Replace extracts from the original narrow vector with extracts from the new
  // wide vector.
  for (User *U : ExtVecOp->users()) {
    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
    if (!OldExt || OldExt->getParent() != WideVec->getParent())
      continue;
    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
    NewExt->insertAfter(OldExt);
    IC.replaceInstUsesWith(*OldExt, NewExt);
  }
}

/// We are building a shuffle to create V, which is a sequence of insertelement,
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
/// not rely on the second vector source. Return a std::pair containing the
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
/// parameter as required.
///
/// Note: we intentionally don't try to fold earlier shuffles since they have
/// often been chosen carefully to be efficiently implementable on the target.
using ShuffleOps = std::pair<Value *, Value *>;

static ShuffleOps collectShuffleElements(Value *V,
                                         SmallVectorImpl<Constant *> &Mask,
                                         Value *PermittedRHS,
                                         InstCombiner &IC) {
  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
  unsigned NumElts = V->getType()->getVectorNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return std::make_pair(
        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
  }

  if (isa<ConstantAggregateZero>(V)) {
    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
    return std::make_pair(V, nullptr);
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
        unsigned ExtractedIdx =
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

        // Either the extracted from or inserted into vector must be RHSVec,
        // otherwise we'd end up with a shuffle of three inputs.
        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
          Value *RHS = EI->getOperand(0);
          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
          assert(LR.second == nullptr || LR.second == RHS);

          if (LR.first->getType() != RHS->getType()) {
            // Although we are giving up for now, see if we can create extracts
            // that match the inserts for another round of combining.
            replaceExtractElements(IEI, EI, IC);

            // We tried our best, but we can't find anything compatible with RHS
            // further up the chain. Return a trivial shuffle.
            for (unsigned i = 0; i < NumElts; ++i)
              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
            return std::make_pair(V, nullptr);
          }

          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
          Mask[InsertedIdx % NumElts] =
            ConstantInt::get(Type::getInt32Ty(V->getContext()),
                             NumLHSElts+ExtractedIdx);
          return std::make_pair(LR.first, RHS);
        }

        if (VecOp == PermittedRHS) {
          // We've gone as far as we can: anything on the other side of the
          // extractelement will already have been converted into a shuffle.
          unsigned NumLHSElts =
              EI->getOperand(0)->getType()->getVectorNumElements();
          for (unsigned i = 0; i != NumElts; ++i)
            Mask.push_back(ConstantInt::get(
                Type::getInt32Ty(V->getContext()),
                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
          return std::make_pair(EI->getOperand(0), PermittedRHS);
        }

        // If this insertelement is a chain that comes from exactly these two
        // vectors, return the vector and the effective shuffle.
        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
                                         Mask))
          return std::make_pair(EI->getOperand(0), PermittedRHS);
      }
    }
  }

  // Otherwise, we can't do anything fancy. Return an identity vector.
  for (unsigned i = 0; i != NumElts; ++i)
    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
  return std::make_pair(V, nullptr);
}

/// Try to find redundant insertvalue instructions, like the following ones:
///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
/// Here the second instruction inserts values at the same indices, as the
/// first one, making the first one redundant.
/// It should be transformed to:
///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
  bool IsRedundant = false;
  ArrayRef<unsigned int> FirstIndices = I.getIndices();

  // If there is a chain of insertvalue instructions (each of them except the
  // last one has only one use and it's another insertvalue insn from this
  // chain), check if any of the 'children' uses the same indices as the first
  // instruction. In this case, the first one is redundant.
  Value *V = &I;
  unsigned Depth = 0;
  while (V->hasOneUse() && Depth < 10) {
    User *U = V->user_back();
    auto UserInsInst = dyn_cast<InsertValueInst>(U);
    if (!UserInsInst || U->getOperand(0) != V)
      break;
    if (UserInsInst->getIndices() == FirstIndices) {
      IsRedundant = true;
      break;
    }
    V = UserInsInst;
    Depth++;
  }

  if (IsRedundant)
    return replaceInstUsesWith(I, I.getOperand(0));
  return nullptr;
}

static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
  int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
  int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();

  // A vector select does not change the size of the operands.
  if (MaskSize != VecSize)
    return false;

  // Each mask element must be undefined or choose a vector element from one of
  // the source operands without crossing vector lanes.
  for (int i = 0; i != MaskSize; ++i) {
    int Elt = Shuf.getMaskValue(i);
    if (Elt != -1 && Elt != i && Elt != i + VecSize)
      return false;
  }

  return true;
}

/// Turn a chain of inserts that splats a value into an insert + shuffle:
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
/// shufflevector(insertelt(X, %k, 0), undef, zero)
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
  // We are interested in the last insert in a chain. So if this insert has a
  // single user and that user is an insert, bail.
  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
    return nullptr;

  auto *VecTy = cast<VectorType>(InsElt.getType());
  unsigned NumElements = VecTy->getNumElements();

  // Do not try to do this for a one-element vector, since that's a nop,
  // and will cause an inf-loop.
  if (NumElements == 1)
    return nullptr;

  Value *SplatVal = InsElt.getOperand(1);
  InsertElementInst *CurrIE = &InsElt;
  SmallVector<bool, 16> ElementPresent(NumElements, false);
  InsertElementInst *FirstIE = nullptr;

  // Walk the chain backwards, keeping track of which indices we inserted into,
  // until we hit something that isn't an insert of the splatted value.
  while (CurrIE) {
    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
    if (!Idx || CurrIE->getOperand(1) != SplatVal)
      return nullptr;

    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
    // Check none of the intermediate steps have any additional uses, except
    // for the root insertelement instruction, which can be re-used, if it
    // inserts at position 0.
    if (CurrIE != &InsElt &&
        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
      return nullptr;

    ElementPresent[Idx->getZExtValue()] = true;
    FirstIE = CurrIE;
    CurrIE = NextIE;
  }

  // If this is just a single insertelement (not a sequence), we are done.
  if (FirstIE == &InsElt)
    return nullptr;

  // If we are not inserting into an undef vector, make sure we've seen an
  // insert into every element.
  // TODO: If the base vector is not undef, it might be better to create a splat
  //       and then a select-shuffle (blend) with the base vector.
  if (!isa<UndefValue>(FirstIE->getOperand(0)))
    if (any_of(ElementPresent, [](bool Present) { return !Present; }))
      return nullptr;

  // Create the insert + shuffle.
  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
  UndefValue *UndefVec = UndefValue::get(VecTy);
  Constant *Zero = ConstantInt::get(Int32Ty, 0);
  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
    FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);

  // Splat from element 0, but replace absent elements with undef in the mask.
  SmallVector<Constant *, 16> Mask(NumElements, Zero);
  for (unsigned i = 0; i != NumElements; ++i)
    if (!ElementPresent[i])
      Mask[i] = UndefValue::get(Int32Ty);

  return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
}

/// Try to fold an insert element into an existing splat shuffle by changing
/// the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is a canonical splat shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !Shuf->isZeroEltSplat())
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if the splat shuffle's input is the same as this insert's scalar op.
  Value *X = InsElt.getOperand(1);
  Value *Op0 = Shuf->getOperand(0);
  if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
    return nullptr;

  // Replace the shuffle mask element at the index of this insert with a zero.
  // For example:
  // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
  //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
  Constant *Zero = ConstantInt::getNullValue(I32Ty);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);

  Constant *NewMask = ConstantVector::get(NewMaskVec);
  return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
}

/// If we have an insertelement instruction feeding into another insertelement
/// and the 2nd is inserting a constant into the vector, canonicalize that
/// constant insertion before the insertion of a variable:
///
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
///
/// This has the potential of eliminating the 2nd insertelement instruction
/// via constant folding of the scalar constant into a vector constant.
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
                                     InstCombiner::BuilderTy &Builder) {
  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
  if (!InsElt1 || !InsElt1->hasOneUse())
    return nullptr;

  Value *X, *Y;
  Constant *ScalarC;
  ConstantInt *IdxC1, *IdxC2;
  if (match(InsElt1->getOperand(0), m_Value(X)) &&
      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
  }

  return nullptr;
}

/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
/// --> shufflevector X, CVec', Mask'
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
  // Bail out if the parent has more than one use. In that case, we'd be
  // replacing the insertelt with a shuffle, and that's not a clear win.
  if (!Inst || !Inst->hasOneUse())
    return nullptr;
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
    // The shuffle must have a constant vector operand. The insertelt must have
    // a constant scalar being inserted at a constant position in the vector.
    Constant *ShufConstVec, *InsEltScalar;
    uint64_t InsEltIndex;
    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
      return nullptr;

    // Adding an element to an arbitrary shuffle could be expensive, but a
    // shuffle that selects elements from vectors without crossing lanes is
    // assumed cheap.
    // If we're just adding a constant into that shuffle, it will still be
    // cheap.
    if (!isShuffleEquivalentToSelect(*Shuf))
      return nullptr;

    // From the above 'select' check, we know that the mask has the same number
    // of elements as the vector input operands. We also know that each constant
    // input element is used in its lane and can not be used more than once by
    // the shuffle. Therefore, replace the constant in the shuffle's constant
    // vector with the insertelt constant. Replace the constant in the shuffle's
    // mask vector with the insertelt index plus the length of the vector
    // (because the constant vector operand of a shuffle is always the 2nd
    // operand).
    Constant *Mask = Shuf->getMask();
    unsigned NumElts = Mask->getType()->getVectorNumElements();
    SmallVector<Constant *, 16> NewShufElts(NumElts);
    SmallVector<Constant *, 16> NewMaskElts(NumElts);
    for (unsigned I = 0; I != NumElts; ++I) {
      if (I == InsEltIndex) {
        NewShufElts[I] = InsEltScalar;
        Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
        NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
      } else {
        // Copy over the existing values.
        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
        NewMaskElts[I] = Mask->getAggregateElement(I);
      }
    }

    // Create new operands for a shuffle that includes the constant of the
    // original insertelt. The old shuffle will be dead now.
    return new ShuffleVectorInst(Shuf->getOperand(0),
                                 ConstantVector::get(NewShufElts),
                                 ConstantVector::get(NewMaskElts));
  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
    // Transform sequences of insertelements ops with constant data/indexes into
    // a single shuffle op.
    unsigned NumElts = InsElt.getType()->getNumElements();

    uint64_t InsertIdx[2];
    Constant *Val[2];
    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
        !match(IEI->getOperand(1), m_Constant(Val[1])))
      return nullptr;
    SmallVector<Constant *, 16> Values(NumElts);
    SmallVector<Constant *, 16> Mask(NumElts);
    auto ValI = std::begin(Val);
    // Generate new constant vector and mask.
    // We have 2 values/masks from the insertelements instructions. Insert them
    // into new value/mask vectors.
    for (uint64_t I : InsertIdx) {
      if (!Values[I]) {
        assert(!Mask[I]);
        Values[I] = *ValI;
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
                                   NumElts + I);
      }
      ++ValI;
    }
    // Remaining values are filled with 'undef' values.
    for (unsigned I = 0; I < NumElts; ++I) {
      if (!Values[I]) {
        assert(!Mask[I]);
        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
      }
    }
    // Create new operands for a shuffle that includes the constant of the
    // original insertelt.
    return new ShuffleVectorInst(IEI->getOperand(0),
                                 ConstantVector::get(Values),
                                 ConstantVector::get(Mask));
  }
  return nullptr;
}

Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
  Value *VecOp    = IE.getOperand(0);
  Value *ScalarOp = IE.getOperand(1);
  Value *IdxOp    = IE.getOperand(2);

  if (auto *V = SimplifyInsertElementInst(
          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
    return replaceInstUsesWith(IE, V);

  // If the vector and scalar are both bitcast from the same element type, do
  // the insert in that source type followed by bitcast.
  Value *VecSrc, *ScalarSrc;
  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
      VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
    return new BitCastInst(NewInsElt, IE.getType());
  }

  // If the inserted element was extracted from some other vector and both
  // indexes are valid constants, try to turn this into a shuffle.
  uint64_t InsertedIdx, ExtractedIdx;
  Value *ExtVecOp;
  if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
      match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
                                       m_ConstantInt(ExtractedIdx))) &&
      ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
    // TODO: Looking at the user(s) to determine if this insert is a
    // fold-to-shuffle opportunity does not match the usual instcombine
    // constraints. We should decide if the transform is worthy based only
    // on this instruction and its operands, but that may not work currently.
    //
    // Here, we are trying to avoid creating shuffles before reaching
    // the end of a chain of extract-insert pairs. This is complicated because
    // we do not generally form arbitrary shuffle masks in instcombine
    // (because those may codegen poorly), but collectShuffleElements() does
    // exactly that.
    //
    // The rules for determining what is an acceptable target-independent
    // shuffle mask are fuzzy because they evolve based on the backend's
    // capabilities and real-world impact.
    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
      if (!Insert.hasOneUse())
        return true;
      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
      if (!InsertUser)
        return true;
      return false;
    };

    // Try to form a shuffle from a chain of extract-insert ops.
    if (isShuffleRootCandidate(IE)) {
      SmallVector<Constant*, 16> Mask;
      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);

      // The proposed shuffle may be trivial, in which case we shouldn't
      // perform the combine.
      if (LR.first != &IE && LR.second != &IE) {
        // We now have a shuffle of LHS, RHS, Mask.
        if (LR.second == nullptr)
          LR.second = UndefValue::get(LR.first->getType());
        return new ShuffleVectorInst(LR.first, LR.second,
                                     ConstantVector::get(Mask));
      }
    }
  }

  unsigned VWidth = VecOp->getType()->getVectorNumElements();
  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
    if (V != &IE)
      return replaceInstUsesWith(IE, V);
    return &IE;
  }

  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
    return Shuf;

  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
    return NewInsElt;

  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
    return Broadcast;

  if (Instruction *Splat = foldInsEltIntoSplat(IE))
    return Splat;

  return nullptr;
}

/// Return true if we can evaluate the specified expression tree if the vector
/// elements were shuffled in a different order.
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
                                unsigned Depth = 5) {
  // We can always reorder the elements of a constant.
  if (isa<Constant>(V))
    return true;

  // We won't reorder vector arguments. No IPO here.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Two users may expect different orders of the elements. Don't try it.
  if (!I->hasOneUse())
    return false;

  if (Depth == 0) return false;

  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::GetElementPtr: {
      // Bail out if we would create longer vector ops. We could allow creating
      // longer vector ops, but that may result in more expensive codegen. We
      // would also need to limit the transform to avoid undefined behavior for
      // integer div/rem.
      Type *ITy = I->getType();
      if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
        return false;
      for (Value *Operand : I->operands()) {
        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
          return false;
      }
      return true;
    }
    case Instruction::InsertElement: {
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
      if (!CI) return false;
      int ElementNumber = CI->getLimitedValue();

      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
      // can't put an element into multiple indices.
      bool SeenOnce = false;
      for (int i = 0, e = Mask.size(); i != e; ++i) {
        if (Mask[i] == ElementNumber) {
          if (SeenOnce)
            return false;
          SeenOnce = true;
        }
      }
      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
    }
  }
  return false;
}

/// Rebuild a new instruction just like 'I' but with the new operands given.
/// In the event of type mismatch, the type of the operands is correct.
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
  // We don't want to use the IRBuilder here because we want the replacement
  // instructions to appear next to 'I', not the builder's insertion point.
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      BinaryOperator *BO = cast<BinaryOperator>(I);
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
      BinaryOperator *New =
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
                                 NewOps[0], NewOps[1], "", BO);
      if (isa<OverflowingBinaryOperator>(BO)) {
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
      }
      if (isa<PossiblyExactOperator>(BO)) {
        New->setIsExact(BO->isExact());
      }
      if (isa<FPMathOperator>(BO))
        New->copyFastMathFlags(I);
      return New;
    }
    case Instruction::ICmp:
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::FCmp:
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt: {
      // It's possible that the mask has a different number of elements from
      // the original cast. We recompute the destination type to match the mask.
      Type *DestTy =
          VectorType::get(I->getType()->getScalarType(),
                          NewOps[0]->getType()->getVectorNumElements());
      assert(NewOps.size() == 1 && "cast with #ops != 1");
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
                              "", I);
    }
    case Instruction::GetElementPtr: {
      Value *Ptr = NewOps[0];
      ArrayRef<Value*> Idx = NewOps.slice(1);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
      return GEP;
    }
  }
  llvm_unreachable("failed to rebuild vector instructions");
}

static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
  // Mask.size() does not need to be equal to the number of vector elements.

  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
  Type *EltTy = V->getType()->getScalarType();
  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
  if (isa<UndefValue>(V))
    return UndefValue::get(VectorType::get(EltTy, Mask.size()));

  if (isa<ConstantAggregateZero>(V))
    return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));

  if (Constant *C = dyn_cast<Constant>(V)) {
    SmallVector<Constant *, 16> MaskValues;
    for (int i = 0, e = Mask.size(); i != e; ++i) {
      if (Mask[i] == -1)
        MaskValues.push_back(UndefValue::get(I32Ty));
      else
        MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
    }
    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
                                          ConstantVector::get(MaskValues));
  }

  Instruction *I = cast<Instruction>(V);
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::Select:
    case Instruction::GetElementPtr: {
      SmallVector<Value*, 8> NewOps;
      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        Value *V;
        // Recursively call evaluateInDifferentElementOrder on vector arguments
        // as well. E.g. GetElementPtr may have scalar operands even if the
        // return value is a vector, so we need to examine the operand type.
        if (I->getOperand(i)->getType()->isVectorTy())
          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
        else
          V = I->getOperand(i);
        NewOps.push_back(V);
        NeedsRebuild |= (V != I->getOperand(i));
      }
      if (NeedsRebuild) {
        return buildNew(I, NewOps);
      }
      return I;
    }
    case Instruction::InsertElement: {
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();

      // The insertelement was inserting at Element. Figure out which element
      // that becomes after shuffling. The answer is guaranteed to be unique
      // by CanEvaluateShuffled.
      bool Found = false;
      int Index = 0;
      for (int e = Mask.size(); Index != e; ++Index) {
        if (Mask[Index] == Element) {
          Found = true;
          break;
        }
      }

      // If element is not in Mask, no need to handle the operand 1 (element to
      // be inserted). Just evaluate values in operand 0 according to Mask.
      if (!Found)
        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);

      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
      return InsertElementInst::Create(V, I->getOperand(1),
                                       ConstantInt::get(I32Ty, Index), "", I);
    }
  }
  llvm_unreachable("failed to reorder elements of vector instruction!");
}

static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
                                  bool &isLHSID, bool &isRHSID) {
  isLHSID = isRHSID = true;

  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] < 0) continue;  // Ignore undef values.
    // Is this an identity shuffle of the LHS value?
    isLHSID &= (Mask[i] == (int)i);

    // Is this an identity shuffle of the RHS value?
    isRHSID &= (Mask[i]-e == i);
  }
}

// Returns true if the shuffle is extracting a contiguous range of values from
// LHS, for example:
//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
//   Shuffles to:  |EE|FF|GG|HH|
//                 +--+--+--+--+
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
                                       SmallVector<int, 16> &Mask) {
  unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
  unsigned MaskElems = Mask.size();
  unsigned BegIdx = Mask.front();
  unsigned EndIdx = Mask.back();
  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
    return false;
  for (unsigned I = 0; I != MaskElems; ++I)
    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
      return false;
  return true;
}

/// These are the ingredients in an alternate form binary operator as described
/// below.
struct BinopElts {
  BinaryOperator::BinaryOps Opcode;
  Value *Op0;
  Value *Op1;
  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
            Value *V0 = nullptr, Value *V1 = nullptr) :
      Opcode(Opc), Op0(V0), Op1(V1) {}
  operator bool() const { return Opcode != 0; }
};

/// Binops may be transformed into binops with different opcodes and operands.
/// Reverse the usual canonicalization to enable folds with the non-canonical
/// form of the binop. If a transform is possible, return the elements of the
/// new binop. If not, return invalid elements.
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
  Type *Ty = BO->getType();
  switch (BO->getOpcode()) {
    case Instruction::Shl: {
      // shl X, C --> mul X, (1 << C)
      Constant *C;
      if (match(BO1, m_Constant(C))) {
        Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
        return { Instruction::Mul, BO0, ShlOne };
      }
      break;
    }
    case Instruction::Or: {
      // or X, C --> add X, C (when X and C have no common bits set)
      const APInt *C;
      if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
        return { Instruction::Add, BO0, BO1 };
      break;
    }
    default:
      break;
  }
  return {};
}

static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");

  // Are we shuffling together some value and that same value after it has been
  // modified by a binop with a constant?
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *C;
  bool Op0IsBinop;
  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
    Op0IsBinop = true;
  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
    Op0IsBinop = false;
  else
    return nullptr;

  // The identity constant for a binop leaves a variable operand unchanged. For
  // a vector, this is a splat of something like 0, -1, or 1.
  // If there's no identity constant for this binop, we're done.
  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
  if (!IdC)
    return nullptr;

  // Shuffle identity constants into the lanes that return the original value.
  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
  // The existing binop constant vector remains in the same operand position.
  Constant *Mask = Shuf.getMask();
  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
                                ConstantExpr::getShuffleVector(IdC, C, Mask);

  bool MightCreatePoisonOrUB =
      Mask->containsUndefElement() &&
      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
  if (MightCreatePoisonOrUB)
    NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);

  // shuf (bop X, C), X, M --> bop X, C'
  // shuf X, (bop X, C), M --> bop X, C'
  Value *X = Op0IsBinop ? Op1 : Op0;
  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
  NewBO->copyIRFlags(BO);

  // An undef shuffle mask element may propagate as an undef constant element in
  // the new binop. That would produce poison where the original code might not.
  // If we already made a safe constant, then there's no danger.
  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// If we have an insert of a scalar to a non-zero element of an undefined
/// vector and then shuffle that value, that's the same as inserting to the zero
/// element and shuffling. Splatting from the zero element is recognized as the
/// canonical form of splat.
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
                                            InstCombiner::BuilderTy &Builder) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *Mask = Shuf.getMask();
  Value *X;
  uint64_t IndexC;

  // Match a shuffle that is a splat to a non-zero element.
  if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
                                           m_ConstantInt(IndexC)))) ||
      !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
    return nullptr;

  // Insert into element 0 of an undef vector.
  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
  Constant *Zero = Builder.getInt32(0);
  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);

  // Splat from element 0. Any mask element that is undefined remains undefined.
  // For example:
  // shuf (inselt undef, X, 2), undef, <2,2,undef>
  //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
  unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    if (isa<UndefValue>(Mask->getAggregateElement(i)))
      NewMask[i] = Mask->getAggregateElement(i);

  return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
}

/// Try to fold shuffles that are the equivalent of a vector select.
static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
                                      InstCombiner::BuilderTy &Builder,
                                      const DataLayout &DL) {
  if (!Shuf.isSelect())
    return nullptr;

  // Canonicalize to choose from operand 0 first.
  unsigned NumElts = Shuf.getType()->getVectorNumElements();
  if (Shuf.getMaskValue(0) >= (int)NumElts) {
    // TODO: Can we assert that both operands of a shuffle-select are not undef
    // (otherwise, it would have been folded by instsimplify?
    Shuf.commute();
    return &Shuf;
  }

  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
    return I;

  BinaryOperator *B0, *B1;
  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
      !match(Shuf.getOperand(1), m_BinOp(B1)))
    return nullptr;

  Value *X, *Y;
  Constant *C0, *C1;
  bool ConstantsAreOp1;
  if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
      match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
    ConstantsAreOp1 = true;
  else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
           match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
    ConstantsAreOp1 = false;
  else
    return nullptr;

  // We need matching binops to fold the lanes together.
  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
  bool DropNSW = false;
  if (ConstantsAreOp1 && Opc0 != Opc1) {
    // TODO: We drop "nsw" if shift is converted into multiply because it may
    // not be correct when the shift amount is BitWidth - 1. We could examine
    // each vector element to determine if it is safe to keep that flag.
    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
      DropNSW = true;
    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
      Opc0 = AltB0.Opcode;
      C0 = cast<Constant>(AltB0.Op1);
    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
      Opc1 = AltB1.Opcode;
      C1 = cast<Constant>(AltB1.Op1);
    }
  }

  if (Opc0 != Opc1)
    return nullptr;

  // The opcodes must be the same. Use a new name to make that clear.
  BinaryOperator::BinaryOps BOpc = Opc0;

  // Select the constant elements needed for the single binop.
  Constant *Mask = Shuf.getMask();
  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);

  // We are moving a binop after a shuffle. When a shuffle has an undefined
  // mask element, the result is undefined, but it is not poison or undefined
  // behavior. That is not necessarily true for div/rem/shift.
  bool MightCreatePoisonOrUB =
      Mask->containsUndefElement() &&
      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
  if (MightCreatePoisonOrUB)
    NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);

  Value *V;
  if (X == Y) {
    // Remove a binop and the shuffle by rearranging the constant:
    // shuffle (op V, C0), (op V, C1), M --> op V, C'
    // shuffle (op C0, V), (op C1, V), M --> op C', V
    V = X;
  } else {
    // If there are 2 different variable operands, we must create a new shuffle
    // (select) first, so check uses to ensure that we don't end up with more
    // instructions than we started with.
    if (!B0->hasOneUse() && !B1->hasOneUse())
      return nullptr;

    // If we use the original shuffle mask and op1 is *variable*, we would be
    // putting an undef into operand 1 of div/rem/shift. This is either UB or
    // poison. We do not have to guard against UB when *constants* are op1
    // because safe constants guarantee that we do not overflow sdiv/srem (and
    // there's no danger for other opcodes).
    // TODO: To allow this case, create a new shuffle mask with no undefs.
    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
      return nullptr;

    // Note: In general, we do not create new shuffles in InstCombine because we
    // do not know if a target can lower an arbitrary shuffle optimally. In this
    // case, the shuffle uses the existing mask, so there is no additional risk.

    // Select the variable vectors first, then perform the binop:
    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
    V = Builder.CreateShuffleVector(X, Y, Mask);
  }

  Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
                                         BinaryOperator::Create(BOpc, NewC, V);

  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
  // 1. If we changed an opcode, poison conditions might have changed.
  // 2. If the shuffle had undef mask elements, the new binop might have undefs
  //    where the original code did not. But if we already made a safe constant,
  //    then there's no danger.
  NewBO->copyIRFlags(B0);
  NewBO->andIRFlags(B1);
  if (DropNSW)
    NewBO->setHasNoSignedWrap(false);
  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
/// narrowing (concatenating with undef and extracting back to the original
/// length). This allows replacing the wide select with a narrow select.
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
                                       InstCombiner::BuilderTy &Builder) {
  // This must be a narrowing identity shuffle. It extracts the 1st N elements
  // of the 1st vector operand of a shuffle.
  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
    return nullptr;

  // The vector being shuffled must be a vector select that we can eliminate.
  // TODO: The one-use requirement could be eased if X and/or Y are constants.
  Value *Cond, *X, *Y;
  if (!match(Shuf.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
    return nullptr;

  // We need a narrow condition value. It must be extended with undef elements
  // and have the same number of elements as this shuffle.
  unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
  Value *NarrowCond;
  if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
                                            m_Constant()))) ||
      NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
    return nullptr;

  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
  Value *Undef = UndefValue::get(X->getType());
  Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
  Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
}

/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
    return nullptr;

  Value *X, *Y;
  Constant *Mask;
  if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
    return nullptr;

  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
  // then combining may result in worse codegen.
  if (!Op0->hasOneUse())
    return nullptr;

  // We are extracting a subvector from a shuffle. Remove excess elements from
  // the 1st shuffle mask to eliminate the extract.
  //
  // This transform is conservatively limited to identity extracts because we do
  // not allow arbitrary shuffle mask creation as a target-independent transform
  // (because we can't guarantee that will lower efficiently).
  //
  // If the extracting shuffle has an undef mask element, it transfers to the
  // new shuffle mask. Otherwise, copy the original mask element. Example:
  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
  //   shuf X, Y, <C0, undef, C2, undef>
  unsigned NumElts = Shuf.getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMask(NumElts);
  assert(NumElts < Mask->getType()->getVectorNumElements() &&
         "Identity with extract must have less elements than its inputs");

  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
    Constant *MaskElt = Mask->getAggregateElement(i);
    NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
  }
  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}

/// Try to replace a shuffle with an insertelement.
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
  SmallVector<int, 16> Mask = Shuf.getShuffleMask();

  // The shuffle must not change vector sizes.
  // TODO: This restriction could be removed if the insert has only one use
  //       (because the transform would require a new length-changing shuffle).
  int NumElts = Mask.size();
  if (NumElts != (int)(V0->getType()->getVectorNumElements()))
    return nullptr;

  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
    // We need an insertelement with a constant index.
    if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
                                   m_ConstantInt(IndexC))))
      return false;

    // Test the shuffle mask to see if it splices the inserted scalar into the
    // operand 1 vector of the shuffle.
    int NewInsIndex = -1;
    for (int i = 0; i != NumElts; ++i) {
      // Ignore undef mask elements.
      if (Mask[i] == -1)
        continue;

      // The shuffle takes elements of operand 1 without lane changes.
      if (Mask[i] == NumElts + i)
        continue;

      // The shuffle must choose the inserted scalar exactly once.
      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
        return false;

      // The shuffle is placing the inserted scalar into element i.
      NewInsIndex = i;
    }

    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");

    // Index is updated to the potentially translated insertion lane.
    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
    return true;
  };

  // If the shuffle is unnecessary, insert the scalar operand directly into
  // operand 1 of the shuffle. Example:
  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
  Value *Scalar;
  ConstantInt *IndexC;
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  // Try again after commuting shuffle. Example:
  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
  std::swap(V0, V1);
  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  return nullptr;
}

static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
  // Match the operands as identity with padding (also known as concatenation
  // with undef) shuffles of the same source type. The backend is expected to
  // recreate these concatenations from a shuffle of narrow operands.
  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
    return nullptr;

  // We limit this transform to power-of-2 types because we expect that the
  // backend can convert the simplified IR patterns to identical nodes as the
  // original IR.
  // TODO: If we can verify the same behavior for arbitrary types, the
  //       power-of-2 checks can be removed.
  Value *X = Shuffle0->getOperand(0);
  Value *Y = Shuffle1->getOperand(0);
  if (X->getType() != Y->getType() ||
      !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
      !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
      !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
      isa<UndefValue>(X) || isa<UndefValue>(Y))
    return nullptr;
  assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
         isa<UndefValue>(Shuffle1->getOperand(1)) &&
         "Unexpected operand for identity shuffle");

  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
  // operands directly by adjusting the shuffle mask to account for the narrower
  // types:
  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
  int NarrowElts = X->getType()->getVectorNumElements();
  int WideElts = Shuffle0->getType()->getVectorNumElements();
  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");

  Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
  SmallVector<int, 16> Mask = Shuf.getShuffleMask();
  SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
  for (int i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] == -1)
      continue;

    // If this shuffle is choosing an undef element from 1 of the sources, that
    // element is undef.
    if (Mask[i] < WideElts) {
      if (Shuffle0->getMaskValue(Mask[i]) == -1)
        continue;
    } else {
      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
        continue;
    }

    // If this shuffle is choosing from the 1st narrow op, the mask element is
    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
    // element is offset down to adjust for the narrow vector widths.
    if (Mask[i] < WideElts) {
      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
      NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
    } else {
      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
      NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
    }
  }
  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}

Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  Value *LHS = SVI.getOperand(0);
  Value *RHS = SVI.getOperand(1);
  if (auto *V = SimplifyShuffleVectorInst(
          LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
    return replaceInstUsesWith(SVI, V);

  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
  unsigned VWidth = SVI.getType()->getVectorNumElements();
  unsigned LHSWidth = LHS->getType()->getVectorNumElements();
  SmallVector<int, 16> Mask = SVI.getShuffleMask();
  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
  if (LHS == RHS || isa<UndefValue>(LHS)) {
    // Remap any references to RHS to use LHS.
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
      if (Mask[i] < 0) {
        Elts.push_back(UndefValue::get(Int32Ty));
        continue;
      }

      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
        Mask[i] = -1;     // Turn into undef.
        Elts.push_back(UndefValue::get(Int32Ty));
      } else {
        Mask[i] = Mask[i] % e;  // Force to LHS.
        Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
      }
    }
    SVI.setOperand(0, SVI.getOperand(1));
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
    SVI.setOperand(2, ConstantVector::get(Elts));
    return &SVI;
  }

  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
    return I;

  if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
    return I;

  if (Instruction *I = narrowVectorSelect(SVI, Builder))
    return I;

  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
    if (V != &SVI)
      return replaceInstUsesWith(SVI, V);
    return &SVI;
  }

  if (Instruction *I = foldIdentityExtractShuffle(SVI))
    return I;

  // These transforms have the potential to lose undef knowledge, so they are
  // intentionally placed after SimplifyDemandedVectorElts().
  if (Instruction *I = foldShuffleWithInsert(SVI))
    return I;
  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
    return I;

  if (VWidth == LHSWidth) {
    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
    bool isLHSID, isRHSID;
    recognizeIdentityMask(Mask, isLHSID, isRHSID);

    // Eliminate identity shuffles.
    if (isLHSID) return replaceInstUsesWith(SVI, LHS);
    if (isRHSID) return replaceInstUsesWith(SVI, RHS);
  }

  if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
    return replaceInstUsesWith(SVI, V);
  }

  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
  // a non-vector type. We can instead bitcast the original vector followed by
  // an extract of the desired element:
  //
  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
  //   %1 = bitcast <4 x i8> %sroa to i32
  // Becomes:
  //   %bc = bitcast <16 x i8> %in to <4 x i32>
  //   %ext = extractelement <4 x i32> %bc, i32 0
  //
  // If the shuffle is extracting a contiguous range of values from the input
  // vector then each use which is a bitcast of the extracted size can be
  // replaced. This will work if the vector types are compatible, and the begin
  // index is aligned to a value in the casted vector type. If the begin index
  // isn't aligned then we can shuffle the original vector (keeping the same
  // vector type) before extracting.
  //
  // This code will bail out if the target type is fundamentally incompatible
  // with vectors of the source type.
  //
  // Example of <16 x i8>, target type i32:
  // Index range [4,8):         v-----------v Will work.
  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
  //     <4 x i32>: |           |           |           |           |
  //                +-----------+-----------+-----------+-----------+
  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
  // Target type i40:           ^--------------^ Won't work, bail.
  bool MadeChange = false;
  if (isShuffleExtractingFromLHS(SVI, Mask)) {
    Value *V = LHS;
    unsigned MaskElems = Mask.size();
    VectorType *SrcTy = cast<VectorType>(V->getType());
    unsigned VecBitWidth = SrcTy->getBitWidth();
    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
    unsigned SrcNumElems = SrcTy->getNumElements();
    SmallVector<BitCastInst *, 8> BCs;
    DenseMap<Type *, Value *> NewBCs;
    for (User *U : SVI.users())
      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
        if (!BC->use_empty())
          // Only visit bitcasts that weren't previously handled.
          BCs.push_back(BC);
    for (BitCastInst *BC : BCs) {
      unsigned BegIdx = Mask.front();
      Type *TgtTy = BC->getDestTy();
      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
      if (!TgtElemBitWidth)
        continue;
      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
      if (!VecBitWidthsEqual)
        continue;
      if (!VectorType::isValidElementType(TgtTy))
        continue;
      VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
      if (!BegIsAligned) {
        // Shuffle the input so [0,NumElements) contains the output, and
        // [NumElems,SrcNumElems) is undef.
        SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
                                                UndefValue::get(Int32Ty));
        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
          ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
                                        ConstantVector::get(ShuffleMask),
                                        SVI.getName() + ".extract");
        BegIdx = 0;
      }
      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
      assert(SrcElemsPerTgtElem);
      BegIdx /= SrcElemsPerTgtElem;
      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
      auto *NewBC =
          BCAlreadyExists
              ? NewBCs[CastSrcTy]
              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
      if (!BCAlreadyExists)
        NewBCs[CastSrcTy] = NewBC;
      auto *Ext = Builder.CreateExtractElement(
          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
      // The shufflevector isn't being replaced: the bitcast that used it
      // is. InstCombine will visit the newly-created instructions.
      replaceInstUsesWith(*BC, Ext);
      MadeChange = true;
    }
  }

  // If the LHS is a shufflevector itself, see if we can combine it with this
  // one without producing an unusual shuffle.
  // Cases that might be simplified:
  // 1.
  // x1=shuffle(v1,v2,mask1)
  //  x=shuffle(x1,undef,mask)
  //        ==>
  //  x=shuffle(v1,undef,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
  // 2.
  // x1=shuffle(v1,undef,mask1)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == mask1.size()
  //        ==>
  //  x=shuffle(v1,x2,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
  // 3.
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v2.size() == mask2.size()
  //        ==>
  //  x=shuffle(x1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
  // 4.
  // x1=shuffle(v1,undef,mask1)
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == v2.size()
  //        ==>
  //  x=shuffle(v1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
  //
  // Here we are really conservative:
  // we are absolutely afraid of producing a shuffle mask not in the input
  // program, because the code gen may not be smart enough to turn a merged
  // shuffle into two specific shuffles: it may produce worse code.  As such,
  // we only merge two shuffles if the result is either a splat or one of the
  // input shuffle masks.  In this case, merging the shuffles just removes
  // one instruction, which we know is safe.  This is good for things like
  // turning: (splat(splat)) -> splat, or
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
  if (LHSShuffle)
    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
      LHSShuffle = nullptr;
  if (RHSShuffle)
    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
      RHSShuffle = nullptr;
  if (!LHSShuffle && !RHSShuffle)
    return MadeChange ? &SVI : nullptr;

  Value* LHSOp0 = nullptr;
  Value* LHSOp1 = nullptr;
  Value* RHSOp0 = nullptr;
  unsigned LHSOp0Width = 0;
  unsigned RHSOp0Width = 0;
  if (LHSShuffle) {
    LHSOp0 = LHSShuffle->getOperand(0);
    LHSOp1 = LHSShuffle->getOperand(1);
    LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
  }
  if (RHSShuffle) {
    RHSOp0 = RHSShuffle->getOperand(0);
    RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
  }
  Value* newLHS = LHS;
  Value* newRHS = RHS;
  if (LHSShuffle) {
    // case 1
    if (isa<UndefValue>(RHS)) {
      newLHS = LHSOp0;
      newRHS = LHSOp1;
    }
    // case 2 or 4
    else if (LHSOp0Width == LHSWidth) {
      newLHS = LHSOp0;
    }
  }
  // case 3 or 4
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
    newRHS = RHSOp0;
  }
  // case 4
  if (LHSOp0 == RHSOp0) {
    newLHS = LHSOp0;
    newRHS = nullptr;
  }

  if (newLHS == LHS && newRHS == RHS)
    return MadeChange ? &SVI : nullptr;

  SmallVector<int, 16> LHSMask;
  SmallVector<int, 16> RHSMask;
  if (newLHS != LHS)
    LHSMask = LHSShuffle->getShuffleMask();
  if (RHSShuffle && newRHS != RHS)
    RHSMask = RHSShuffle->getShuffleMask();

  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
  SmallVector<int, 16> newMask;
  bool isSplat = true;
  int SplatElt = -1;
  // Create a new mask for the new ShuffleVectorInst so that the new
  // ShuffleVectorInst is equivalent to the original one.
  for (unsigned i = 0; i < VWidth; ++i) {
    int eltMask;
    if (Mask[i] < 0) {
      // This element is an undef value.
      eltMask = -1;
    } else if (Mask[i] < (int)LHSWidth) {
      // This element is from left hand side vector operand.
      //
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
      // new mask value for the element.
      if (newLHS != LHS) {
        eltMask = LHSMask[Mask[i]];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
          eltMask = -1;
      } else
        eltMask = Mask[i];
    } else {
      // This element is from right hand side vector operand
      //
      // If the value selected is an undef value, explicitly specify it
      // with a -1 mask value. (case 1)
      if (isa<UndefValue>(RHS))
        eltMask = -1;
      // If RHS is going to be replaced (case 3 or 4), calculate the
      // new mask value for the element.
      else if (newRHS != RHS) {
        eltMask = RHSMask[Mask[i]-LHSWidth];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)RHSOp0Width) {
          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
                 && "should have been check above");
          eltMask = -1;
        }
      } else
        eltMask = Mask[i]-LHSWidth;

      // If LHS's width is changed, shift the mask value accordingly.
      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
      // If newRHS == newLHS, we want to remap any references from newRHS to
      // newLHS so that we can properly identify splats that may occur due to
      // obfuscation across the two vectors.
      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
        eltMask += newLHSWidth;
    }

    // Check if this could still be a splat.
    if (eltMask >= 0) {
      if (SplatElt >= 0 && SplatElt != eltMask)
        isSplat = false;
      SplatElt = eltMask;
    }

    newMask.push_back(eltMask);
  }

  // If the result mask is equal to one of the original shuffle masks,
  // or is a splat, do the replacement.
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
      if (newMask[i] < 0) {
        Elts.push_back(UndefValue::get(Int32Ty));
      } else {
        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
      }
    }
    if (!newRHS)
      newRHS = UndefValue::get(newLHS->getType());
    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
  }

  // If the result mask is an identity, replace uses of this instruction with
  // corresponding argument.
  bool isLHSID, isRHSID;
  recognizeIdentityMask(newMask, isLHSID, isRHSID);
  if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
  if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);

  return MadeChange ? &SVI : nullptr;
}