aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopDistribute.cpp
blob: 3624bba10345073d03af1bcae5dd18a11f3872f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Loop Distribution Pass.  Its main focus is to
// distribute loops that cannot be vectorized due to dependence cycles.  It
// tries to isolate the offending dependences into a new loop allowing
// vectorization of the remaining parts.
//
// For dependence analysis, the pass uses the LoopVectorizer's
// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
// memory operations, special care is taken to preserve the lexical order of
// these operations.
//
// Similarly to the Vectorizer, the pass also supports loop versioning to
// run-time disambiguate potentially overlapping arrays.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDistribute.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include <list>

#define LDIST_NAME "loop-distribute"
#define DEBUG_TYPE LDIST_NAME

using namespace llvm;

static cl::opt<bool>
    LDistVerify("loop-distribute-verify", cl::Hidden,
                cl::desc("Turn on DominatorTree and LoopInfo verification "
                         "after Loop Distribution"),
                cl::init(false));

static cl::opt<bool> DistributeNonIfConvertible(
    "loop-distribute-non-if-convertible", cl::Hidden,
    cl::desc("Whether to distribute into a loop that may not be "
             "if-convertible by the loop vectorizer"),
    cl::init(false));

static cl::opt<unsigned> DistributeSCEVCheckThreshold(
    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed for Loop "
             "Distribution"));

static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
    cl::Hidden,
    cl::desc(
        "The maximum number of SCEV checks allowed for Loop "
        "Distribution for loop marked with #pragma loop distribute(enable)"));

static cl::opt<bool> EnableLoopDistribute(
    "enable-loop-distribute", cl::Hidden,
    cl::desc("Enable the new, experimental LoopDistribution Pass"),
    cl::init(false));

STATISTIC(NumLoopsDistributed, "Number of loops distributed");

namespace {
/// \brief Maintains the set of instructions of the loop for a partition before
/// cloning.  After cloning, it hosts the new loop.
class InstPartition {
  typedef SmallPtrSet<Instruction *, 8> InstructionSet;

public:
  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
      : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
    Set.insert(I);
  }

  /// \brief Returns whether this partition contains a dependence cycle.
  bool hasDepCycle() const { return DepCycle; }

  /// \brief Adds an instruction to this partition.
  void add(Instruction *I) { Set.insert(I); }

  /// \brief Collection accessors.
  InstructionSet::iterator begin() { return Set.begin(); }
  InstructionSet::iterator end() { return Set.end(); }
  InstructionSet::const_iterator begin() const { return Set.begin(); }
  InstructionSet::const_iterator end() const { return Set.end(); }
  bool empty() const { return Set.empty(); }

  /// \brief Moves this partition into \p Other.  This partition becomes empty
  /// after this.
  void moveTo(InstPartition &Other) {
    Other.Set.insert(Set.begin(), Set.end());
    Set.clear();
    Other.DepCycle |= DepCycle;
  }

  /// \brief Populates the partition with a transitive closure of all the
  /// instructions that the seeded instructions dependent on.
  void populateUsedSet() {
    // FIXME: We currently don't use control-dependence but simply include all
    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
    // up.
    for (auto *B : OrigLoop->getBlocks())
      Set.insert(B->getTerminator());

    // Follow the use-def chains to form a transitive closure of all the
    // instructions that the originally seeded instructions depend on.
    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
    while (!Worklist.empty()) {
      Instruction *I = Worklist.pop_back_val();
      // Insert instructions from the loop that we depend on.
      for (Value *V : I->operand_values()) {
        auto *I = dyn_cast<Instruction>(V);
        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
          Worklist.push_back(I);
      }
    }
  }

  /// \brief Clones the original loop.
  ///
  /// Updates LoopInfo and DominatorTree using the information that block \p
  /// LoopDomBB dominates the loop.
  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
                               unsigned Index, LoopInfo *LI,
                               DominatorTree *DT) {
    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
                                          VMap, Twine(".ldist") + Twine(Index),
                                          LI, DT, ClonedLoopBlocks);
    return ClonedLoop;
  }

  /// \brief The cloned loop.  If this partition is mapped to the original loop,
  /// this is null.
  const Loop *getClonedLoop() const { return ClonedLoop; }

  /// \brief Returns the loop where this partition ends up after distribution.
  /// If this partition is mapped to the original loop then use the block from
  /// the loop.
  const Loop *getDistributedLoop() const {
    return ClonedLoop ? ClonedLoop : OrigLoop;
  }

  /// \brief The VMap that is populated by cloning and then used in
  /// remapinstruction to remap the cloned instructions.
  ValueToValueMapTy &getVMap() { return VMap; }

  /// \brief Remaps the cloned instructions using VMap.
  void remapInstructions() {
    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
  }

  /// \brief Based on the set of instructions selected for this partition,
  /// removes the unnecessary ones.
  void removeUnusedInsts() {
    SmallVector<Instruction *, 8> Unused;

    for (auto *Block : OrigLoop->getBlocks())
      for (auto &Inst : *Block)
        if (!Set.count(&Inst)) {
          Instruction *NewInst = &Inst;
          if (!VMap.empty())
            NewInst = cast<Instruction>(VMap[NewInst]);

          assert(!isa<BranchInst>(NewInst) &&
                 "Branches are marked used early on");
          Unused.push_back(NewInst);
        }

    // Delete the instructions backwards, as it has a reduced likelihood of
    // having to update as many def-use and use-def chains.
    for (auto *Inst : reverse(Unused)) {
      if (!Inst->use_empty())
        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
      Inst->eraseFromParent();
    }
  }

  void print() const {
    if (DepCycle)
      dbgs() << "  (cycle)\n";
    for (auto *I : Set)
      // Prefix with the block name.
      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
  }

  void printBlocks() const {
    for (auto *BB : getDistributedLoop()->getBlocks())
      dbgs() << *BB;
  }

private:
  /// \brief Instructions from OrigLoop selected for this partition.
  InstructionSet Set;

  /// \brief Whether this partition contains a dependence cycle.
  bool DepCycle;

  /// \brief The original loop.
  Loop *OrigLoop;

  /// \brief The cloned loop.  If this partition is mapped to the original loop,
  /// this is null.
  Loop *ClonedLoop;

  /// \brief The blocks of ClonedLoop including the preheader.  If this
  /// partition is mapped to the original loop, this is empty.
  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;

  /// \brief These gets populated once the set of instructions have been
  /// finalized. If this partition is mapped to the original loop, these are not
  /// set.
  ValueToValueMapTy VMap;
};

/// \brief Holds the set of Partitions.  It populates them, merges them and then
/// clones the loops.
class InstPartitionContainer {
  typedef DenseMap<Instruction *, int> InstToPartitionIdT;

public:
  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
      : L(L), LI(LI), DT(DT) {}

  /// \brief Returns the number of partitions.
  unsigned getSize() const { return PartitionContainer.size(); }

  /// \brief Adds \p Inst into the current partition if that is marked to
  /// contain cycles.  Otherwise start a new partition for it.
  void addToCyclicPartition(Instruction *Inst) {
    // If the current partition is non-cyclic.  Start a new one.
    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
    else
      PartitionContainer.back().add(Inst);
  }

  /// \brief Adds \p Inst into a partition that is not marked to contain
  /// dependence cycles.
  ///
  //  Initially we isolate memory instructions into as many partitions as
  //  possible, then later we may merge them back together.
  void addToNewNonCyclicPartition(Instruction *Inst) {
    PartitionContainer.emplace_back(Inst, L);
  }

  /// \brief Merges adjacent non-cyclic partitions.
  ///
  /// The idea is that we currently only want to isolate the non-vectorizable
  /// partition.  We could later allow more distribution among these partition
  /// too.
  void mergeAdjacentNonCyclic() {
    mergeAdjacentPartitionsIf(
        [](const InstPartition *P) { return !P->hasDepCycle(); });
  }

  /// \brief If a partition contains only conditional stores, we won't vectorize
  /// it.  Try to merge it with a previous cyclic partition.
  void mergeNonIfConvertible() {
    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
      if (Partition->hasDepCycle())
        return true;

      // Now, check if all stores are conditional in this partition.
      bool seenStore = false;

      for (auto *Inst : *Partition)
        if (isa<StoreInst>(Inst)) {
          seenStore = true;
          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
            return false;
        }
      return seenStore;
    });
  }

  /// \brief Merges the partitions according to various heuristics.
  void mergeBeforePopulating() {
    mergeAdjacentNonCyclic();
    if (!DistributeNonIfConvertible)
      mergeNonIfConvertible();
  }

  /// \brief Merges partitions in order to ensure that no loads are duplicated.
  ///
  /// We can't duplicate loads because that could potentially reorder them.
  /// LoopAccessAnalysis provides dependency information with the context that
  /// the order of memory operation is preserved.
  ///
  /// Return if any partitions were merged.
  bool mergeToAvoidDuplicatedLoads() {
    typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
    typedef EquivalenceClasses<InstPartition *> ToBeMergedT;

    LoadToPartitionT LoadToPartition;
    ToBeMergedT ToBeMerged;

    // Step through the partitions and create equivalence between partitions
    // that contain the same load.  Also put partitions in between them in the
    // same equivalence class to avoid reordering of memory operations.
    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
                                       E = PartitionContainer.end();
         I != E; ++I) {
      auto *PartI = &*I;

      // If a load occurs in two partitions PartI and PartJ, merge all
      // partitions (PartI, PartJ] into PartI.
      for (Instruction *Inst : *PartI)
        if (isa<LoadInst>(Inst)) {
          bool NewElt;
          LoadToPartitionT::iterator LoadToPart;

          std::tie(LoadToPart, NewElt) =
              LoadToPartition.insert(std::make_pair(Inst, PartI));
          if (!NewElt) {
            DEBUG(dbgs() << "Merging partitions due to this load in multiple "
                         << "partitions: " << PartI << ", "
                         << LoadToPart->second << "\n" << *Inst << "\n");

            auto PartJ = I;
            do {
              --PartJ;
              ToBeMerged.unionSets(PartI, &*PartJ);
            } while (&*PartJ != LoadToPart->second);
          }
        }
    }
    if (ToBeMerged.empty())
      return false;

    // Merge the member of an equivalence class into its class leader.  This
    // makes the members empty.
    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
         I != E; ++I) {
      if (!I->isLeader())
        continue;

      auto PartI = I->getData();
      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
                                   ToBeMerged.member_end())) {
        PartJ->moveTo(*PartI);
      }
    }

    // Remove the empty partitions.
    PartitionContainer.remove_if(
        [](const InstPartition &P) { return P.empty(); });

    return true;
  }

  /// \brief Sets up the mapping between instructions to partitions.  If the
  /// instruction is duplicated across multiple partitions, set the entry to -1.
  void setupPartitionIdOnInstructions() {
    int PartitionID = 0;
    for (const auto &Partition : PartitionContainer) {
      for (Instruction *Inst : Partition) {
        bool NewElt;
        InstToPartitionIdT::iterator Iter;

        std::tie(Iter, NewElt) =
            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
        if (!NewElt)
          Iter->second = -1;
      }
      ++PartitionID;
    }
  }

  /// \brief Populates the partition with everything that the seeding
  /// instructions require.
  void populateUsedSet() {
    for (auto &P : PartitionContainer)
      P.populateUsedSet();
  }

  /// \brief This performs the main chunk of the work of cloning the loops for
  /// the partitions.
  void cloneLoops() {
    BasicBlock *OrigPH = L->getLoopPreheader();
    // At this point the predecessor of the preheader is either the memcheck
    // block or the top part of the original preheader.
    BasicBlock *Pred = OrigPH->getSinglePredecessor();
    assert(Pred && "Preheader does not have a single predecessor");
    BasicBlock *ExitBlock = L->getExitBlock();
    assert(ExitBlock && "No single exit block");
    Loop *NewLoop;

    assert(!PartitionContainer.empty() && "at least two partitions expected");
    // We're cloning the preheader along with the loop so we already made sure
    // it was empty.
    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
           "preheader not empty");

    // Create a loop for each partition except the last.  Clone the original
    // loop before PH along with adding a preheader for the cloned loop.  Then
    // update PH to point to the newly added preheader.
    BasicBlock *TopPH = OrigPH;
    unsigned Index = getSize() - 1;
    for (auto I = std::next(PartitionContainer.rbegin()),
              E = PartitionContainer.rend();
         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
      auto *Part = &*I;

      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);

      Part->getVMap()[ExitBlock] = TopPH;
      Part->remapInstructions();
    }
    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);

    // Now go in forward order and update the immediate dominator for the
    // preheaders with the exiting block of the previous loop.  Dominance
    // within the loop is updated in cloneLoopWithPreheader.
    for (auto Curr = PartitionContainer.cbegin(),
              Next = std::next(PartitionContainer.cbegin()),
              E = PartitionContainer.cend();
         Next != E; ++Curr, ++Next)
      DT->changeImmediateDominator(
          Next->getDistributedLoop()->getLoopPreheader(),
          Curr->getDistributedLoop()->getExitingBlock());
  }

  /// \brief Removes the dead instructions from the cloned loops.
  void removeUnusedInsts() {
    for (auto &Partition : PartitionContainer)
      Partition.removeUnusedInsts();
  }

  /// \brief For each memory pointer, it computes the partitionId the pointer is
  /// used in.
  ///
  /// This returns an array of int where the I-th entry corresponds to I-th
  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
  /// partitions its entry is set to -1.
  SmallVector<int, 8>
  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();

    unsigned N = RtPtrCheck->Pointers.size();
    SmallVector<int, 8> PtrToPartitions(N);
    for (unsigned I = 0; I < N; ++I) {
      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
      auto Instructions =
          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);

      int &Partition = PtrToPartitions[I];
      // First set it to uninitialized.
      Partition = -2;
      for (Instruction *Inst : Instructions) {
        // Note that this could be -1 if Inst is duplicated across multiple
        // partitions.
        int ThisPartition = this->InstToPartitionId[Inst];
        if (Partition == -2)
          Partition = ThisPartition;
        // -1 means belonging to multiple partitions.
        else if (Partition == -1)
          break;
        else if (Partition != (int)ThisPartition)
          Partition = -1;
      }
      assert(Partition != -2 && "Pointer not belonging to any partition");
    }

    return PtrToPartitions;
  }

  void print(raw_ostream &OS) const {
    unsigned Index = 0;
    for (const auto &P : PartitionContainer) {
      OS << "Partition " << Index++ << " (" << &P << "):\n";
      P.print();
    }
  }

  void dump() const { print(dbgs()); }

#ifndef NDEBUG
  friend raw_ostream &operator<<(raw_ostream &OS,
                                 const InstPartitionContainer &Partitions) {
    Partitions.print(OS);
    return OS;
  }
#endif

  void printBlocks() const {
    unsigned Index = 0;
    for (const auto &P : PartitionContainer) {
      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
      P.printBlocks();
    }
  }

private:
  typedef std::list<InstPartition> PartitionContainerT;

  /// \brief List of partitions.
  PartitionContainerT PartitionContainer;

  /// \brief Mapping from Instruction to partition Id.  If the instruction
  /// belongs to multiple partitions the entry contains -1.
  InstToPartitionIdT InstToPartitionId;

  Loop *L;
  LoopInfo *LI;
  DominatorTree *DT;

  /// \brief The control structure to merge adjacent partitions if both satisfy
  /// the \p Predicate.
  template <class UnaryPredicate>
  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
    InstPartition *PrevMatch = nullptr;
    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
      auto DoesMatch = Predicate(&*I);
      if (PrevMatch == nullptr && DoesMatch) {
        PrevMatch = &*I;
        ++I;
      } else if (PrevMatch != nullptr && DoesMatch) {
        I->moveTo(*PrevMatch);
        I = PartitionContainer.erase(I);
      } else {
        PrevMatch = nullptr;
        ++I;
      }
    }
  }
};

/// \brief For each memory instruction, this class maintains difference of the
/// number of unsafe dependences that start out from this instruction minus
/// those that end here.
///
/// By traversing the memory instructions in program order and accumulating this
/// number, we know whether any unsafe dependence crosses over a program point.
class MemoryInstructionDependences {
  typedef MemoryDepChecker::Dependence Dependence;

public:
  struct Entry {
    Instruction *Inst;
    unsigned NumUnsafeDependencesStartOrEnd;

    Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
  };

  typedef SmallVector<Entry, 8> AccessesType;

  AccessesType::const_iterator begin() const { return Accesses.begin(); }
  AccessesType::const_iterator end() const { return Accesses.end(); }

  MemoryInstructionDependences(
      const SmallVectorImpl<Instruction *> &Instructions,
      const SmallVectorImpl<Dependence> &Dependences) {
    Accesses.append(Instructions.begin(), Instructions.end());

    DEBUG(dbgs() << "Backward dependences:\n");
    for (auto &Dep : Dependences)
      if (Dep.isPossiblyBackward()) {
        // Note that the designations source and destination follow the program
        // order, i.e. source is always first.  (The direction is given by the
        // DepType.)
        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;

        DEBUG(Dep.print(dbgs(), 2, Instructions));
      }
  }

private:
  AccessesType Accesses;
};

/// \brief The actual class performing the per-loop work.
class LoopDistributeForLoop {
public:
  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
                        ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
      : L(L), F(F), LI(LI), LAI(nullptr), DT(DT), SE(SE), ORE(ORE) {
    setForced();
  }

  /// \brief Try to distribute an inner-most loop.
  bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
    assert(L->empty() && "Only process inner loops.");

    DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
                 << "\" checking " << *L << "\n");

    if (!L->getExitBlock())
      return fail("MultipleExitBlocks", "multiple exit blocks");
    if (!L->isLoopSimplifyForm())
      return fail("NotLoopSimplifyForm",
                  "loop is not in loop-simplify form");

    BasicBlock *PH = L->getLoopPreheader();

    // LAA will check that we only have a single exiting block.
    LAI = &GetLAA(*L);

    // Currently, we only distribute to isolate the part of the loop with
    // dependence cycles to enable partial vectorization.
    if (LAI->canVectorizeMemory())
      return fail("MemOpsCanBeVectorized",
                  "memory operations are safe for vectorization");

    auto *Dependences = LAI->getDepChecker().getDependences();
    if (!Dependences || Dependences->empty())
      return fail("NoUnsafeDeps", "no unsafe dependences to isolate");

    InstPartitionContainer Partitions(L, LI, DT);

    // First, go through each memory operation and assign them to consecutive
    // partitions (the order of partitions follows program order).  Put those
    // with unsafe dependences into "cyclic" partition otherwise put each store
    // in its own "non-cyclic" partition (we'll merge these later).
    //
    // Note that a memory operation (e.g. Load2 below) at a program point that
    // has an unsafe dependence (Store3->Load1) spanning over it must be
    // included in the same cyclic partition as the dependent operations.  This
    // is to preserve the original program order after distribution.  E.g.:
    //
    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
    //  Load1   -.                     1                       0->1
    //  Load2    | /Unsafe/            0                       1
    //  Store3  -'                    -1                       1->0
    //  Load4                          0                       0
    //
    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
    // we just keep assigning to the same cyclic partition until
    // NumUnsafeDependencesActive reaches 0.
    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
                                     *Dependences);

    int NumUnsafeDependencesActive = 0;
    for (auto &InstDep : MID) {
      Instruction *I = InstDep.Inst;
      // We update NumUnsafeDependencesActive post-instruction, catch the
      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
      if (NumUnsafeDependencesActive ||
          InstDep.NumUnsafeDependencesStartOrEnd > 0)
        Partitions.addToCyclicPartition(I);
      else
        Partitions.addToNewNonCyclicPartition(I);
      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
      assert(NumUnsafeDependencesActive >= 0 &&
             "Negative number of dependences active");
    }

    // Add partitions for values used outside.  These partitions can be out of
    // order from the original program order.  This is OK because if the
    // partition uses a load we will merge this partition with the original
    // partition of the load that we set up in the previous loop (see
    // mergeToAvoidDuplicatedLoads).
    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
    for (auto *Inst : DefsUsedOutside)
      Partitions.addToNewNonCyclicPartition(Inst);

    DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
    if (Partitions.getSize() < 2)
      return fail("CantIsolateUnsafeDeps",
                  "cannot isolate unsafe dependencies");

    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
    // should be able to vectorize these together.
    Partitions.mergeBeforePopulating();
    DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
    if (Partitions.getSize() < 2)
      return fail("CantIsolateUnsafeDeps",
                  "cannot isolate unsafe dependencies");

    // Now, populate the partitions with non-memory operations.
    Partitions.populateUsedSet();
    DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);

    // In order to preserve original lexical order for loads, keep them in the
    // partition that we set up in the MemoryInstructionDependences loop.
    if (Partitions.mergeToAvoidDuplicatedLoads()) {
      DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
                   << Partitions);
      if (Partitions.getSize() < 2)
        return fail("CantIsolateUnsafeDeps",
                    "cannot isolate unsafe dependencies");
    }

    // Don't distribute the loop if we need too many SCEV run-time checks.
    const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
    if (Pred.getComplexity() > (IsForced.getValueOr(false)
                                    ? PragmaDistributeSCEVCheckThreshold
                                    : DistributeSCEVCheckThreshold))
      return fail("TooManySCEVRuntimeChecks",
                  "too many SCEV run-time checks needed.\n");

    DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
    // We're done forming the partitions set up the reverse mapping from
    // instructions to partitions.
    Partitions.setupPartitionIdOnInstructions();

    // To keep things simple have an empty preheader before we version or clone
    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
    // rely on PH having a predecessor.)
    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
      SplitBlock(PH, PH->getTerminator(), DT, LI);

    // If we need run-time checks, version the loop now.
    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
    const auto &AllChecks = RtPtrChecking->getChecks();
    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
                                                  RtPtrChecking);

    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
      DEBUG(dbgs() << "\nPointers:\n");
      DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
      LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
      LVer.setAliasChecks(std::move(Checks));
      LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
      LVer.versionLoop(DefsUsedOutside);
      LVer.annotateLoopWithNoAlias();
    }

    // Create identical copies of the original loop for each partition and hook
    // them up sequentially.
    Partitions.cloneLoops();

    // Now, we remove the instruction from each loop that don't belong to that
    // partition.
    Partitions.removeUnusedInsts();
    DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
    DEBUG(Partitions.printBlocks());

    if (LDistVerify) {
      LI->verify(*DT);
      DT->verifyDomTree();
    }

    ++NumLoopsDistributed;
    // Report the success.
    ORE->emit(OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
                                 L->getHeader())
              << "distributed loop");
    return true;
  }

  /// \brief Provide diagnostics then \return with false.
  bool fail(StringRef RemarkName, StringRef Message) {
    LLVMContext &Ctx = F->getContext();
    bool Forced = isForced().getValueOr(false);

    DEBUG(dbgs() << "Skipping; " << Message << "\n");

    // With Rpass-missed report that distribution failed.
    ORE->emit(
        OptimizationRemarkMissed(LDIST_NAME, "NotDistributed", L->getStartLoc(),
                                 L->getHeader())
        << "loop not distributed: use -Rpass-analysis=loop-distribute for more "
           "info");

    // With Rpass-analysis report why.  This is on by default if distribution
    // was requested explicitly.
    ORE->emit(OptimizationRemarkAnalysis(
                  Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
                  RemarkName, L->getStartLoc(), L->getHeader())
              << "loop not distributed: " << Message);

    // Also issue a warning if distribution was requested explicitly but it
    // failed.
    if (Forced)
      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
          *F, L->getStartLoc(), "loop not distributed: failed "
                                "explicitly specified loop distribution"));

    return false;
  }

  /// \brief Return if distribution forced to be enabled/disabled for the loop.
  ///
  /// If the optional has a value, it indicates whether distribution was forced
  /// to be enabled (true) or disabled (false).  If the optional has no value
  /// distribution was not forced either way.
  const Optional<bool> &isForced() const { return IsForced; }

private:
  /// \brief Filter out checks between pointers from the same partition.
  ///
  /// \p PtrToPartition contains the partition number for pointers.  Partition
  /// number -1 means that the pointer is used in multiple partitions.  In this
  /// case we can't safely omit the check.
  SmallVector<RuntimePointerChecking::PointerCheck, 4>
  includeOnlyCrossPartitionChecks(
      const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
      const SmallVectorImpl<int> &PtrToPartition,
      const RuntimePointerChecking *RtPtrChecking) {
    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;

    copy_if(AllChecks, std::back_inserter(Checks),
            [&](const RuntimePointerChecking::PointerCheck &Check) {
              for (unsigned PtrIdx1 : Check.first->Members)
                for (unsigned PtrIdx2 : Check.second->Members)
                  // Only include this check if there is a pair of pointers
                  // that require checking and the pointers fall into
                  // separate partitions.
                  //
                  // (Note that we already know at this point that the two
                  // pointer groups need checking but it doesn't follow
                  // that each pair of pointers within the two groups need
                  // checking as well.
                  //
                  // In other words we don't want to include a check just
                  // because there is a pair of pointers between the two
                  // pointer groups that require checks and a different
                  // pair whose pointers fall into different partitions.)
                  if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
                      !RuntimePointerChecking::arePointersInSamePartition(
                          PtrToPartition, PtrIdx1, PtrIdx2))
                    return true;
              return false;
            });

    return Checks;
  }

  /// \brief Check whether the loop metadata is forcing distribution to be
  /// enabled/disabled.
  void setForced() {
    Optional<const MDOperand *> Value =
        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
    if (!Value)
      return;

    const MDOperand *Op = *Value;
    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
  }

  Loop *L;
  Function *F;

  // Analyses used.
  LoopInfo *LI;
  const LoopAccessInfo *LAI;
  DominatorTree *DT;
  ScalarEvolution *SE;
  OptimizationRemarkEmitter *ORE;

  /// \brief Indicates whether distribution is forced to be enabled/disabled for
  /// the loop.
  ///
  /// If the optional has a value, it indicates whether distribution was forced
  /// to be enabled (true) or disabled (false).  If the optional has no value
  /// distribution was not forced either way.
  Optional<bool> IsForced;
};

/// Shared implementation between new and old PMs.
static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
                    ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
                    std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
  // Build up a worklist of inner-loops to vectorize. This is necessary as the
  // act of distributing a loop creates new loops and can invalidate iterators
  // across the loops.
  SmallVector<Loop *, 8> Worklist;

  for (Loop *TopLevelLoop : *LI)
    for (Loop *L : depth_first(TopLevelLoop))
      // We only handle inner-most loops.
      if (L->empty())
        Worklist.push_back(L);

  // Now walk the identified inner loops.
  bool Changed = false;
  for (Loop *L : Worklist) {
    LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);

    // If distribution was forced for the specific loop to be
    // enabled/disabled, follow that.  Otherwise use the global flag.
    if (LDL.isForced().getValueOr(EnableLoopDistribute))
      Changed |= LDL.processLoop(GetLAA);
  }

  // Process each loop nest in the function.
  return Changed;
}

/// \brief The pass class.
class LoopDistributeLegacy : public FunctionPass {
public:
  LoopDistributeLegacy() : FunctionPass(ID) {
    // The default is set by the caller.
    initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };

    return runImpl(F, LI, DT, SE, ORE, GetLAA);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }

  static char ID;
};
} // anonymous namespace

PreservedAnalyses LoopDistributePass::run(Function &F,
                                          FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  // We don't directly need these analyses but they're required for loop
  // analyses so provide them below.
  auto &AA = AM.getResult<AAManager>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);

  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
  std::function<const LoopAccessInfo &(Loop &)> GetLAA =
      [&](Loop &L) -> const LoopAccessInfo & {
    LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
    return LAM.getResult<LoopAccessAnalysis>(L, AR);
  };

  bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<LoopAnalysis>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char LoopDistributeLegacy::ID;
static const char ldist_name[] = "Loop Distribution";

INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)

namespace llvm {
FunctionPass *createLoopDistributePass() { return new LoopDistributeLegacy(); }
}