aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopUnrollPass.cpp
blob: ccafd100ef0f4d036a9da98c5c3718eee14e1e0c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller.  It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <climits>

using namespace llvm;

#define DEBUG_TYPE "loop-unroll"

static cl::opt<unsigned>
UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
  cl::desc("The cut-off point for automatic loop unrolling"));

static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
    "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
    cl::desc("Don't allow loop unrolling to simulate more than this number of"
             "iterations when checking full unroll profitability"));

static cl::opt<unsigned> UnrollMinPercentOfOptimized(
    "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
    cl::desc("If complete unrolling could trigger further optimizations, and, "
             "by that, remove the given percent of instructions, perform the "
             "complete unroll even if it's beyond the threshold"));

static cl::opt<unsigned> UnrollAbsoluteThreshold(
    "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
    cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
             " even if we can remove big portion of instructions later."));

static cl::opt<unsigned>
UnrollCount("unroll-count", cl::init(0), cl::Hidden,
  cl::desc("Use this unroll count for all loops including those with "
           "unroll_count pragma values, for testing purposes"));

static cl::opt<bool>
UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
  cl::desc("Allows loops to be partially unrolled until "
           "-unroll-threshold loop size is reached."));

static cl::opt<bool>
UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
  cl::desc("Unroll loops with run-time trip counts"));

static cl::opt<unsigned>
PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
  cl::desc("Unrolled size limit for loops with an unroll(full) or "
           "unroll_count pragma."));

namespace {
  class LoopUnroll : public LoopPass {
  public:
    static char ID; // Pass ID, replacement for typeid
    LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
      CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
      CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
      CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
      CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
      CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
      CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;

      UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
      UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
      UserPercentOfOptimized =
          (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
      UserAllowPartial = (P != -1) ||
                         (UnrollAllowPartial.getNumOccurrences() > 0);
      UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
      UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);

      initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
    }

    /// A magic value for use with the Threshold parameter to indicate
    /// that the loop unroll should be performed regardless of how much
    /// code expansion would result.
    static const unsigned NoThreshold = UINT_MAX;

    // Threshold to use when optsize is specified (and there is no
    // explicit -unroll-threshold).
    static const unsigned OptSizeUnrollThreshold = 50;

    // Default unroll count for loops with run-time trip count if
    // -unroll-count is not set
    static const unsigned UnrollRuntimeCount = 8;

    unsigned CurrentCount;
    unsigned CurrentThreshold;
    unsigned CurrentAbsoluteThreshold;
    unsigned CurrentMinPercentOfOptimized;
    bool     CurrentAllowPartial;
    bool     CurrentRuntime;
    bool     UserCount;            // CurrentCount is user-specified.
    bool     UserThreshold;        // CurrentThreshold is user-specified.
    bool UserAbsoluteThreshold;    // CurrentAbsoluteThreshold is
                                   // user-specified.
    bool UserPercentOfOptimized;   // CurrentMinPercentOfOptimized is
                                   // user-specified.
    bool     UserAllowPartial;     // CurrentAllowPartial is user-specified.
    bool     UserRuntime;          // CurrentRuntime is user-specified.

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG...
    ///
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<LoopInfoWrapperPass>();
      AU.addPreserved<LoopInfoWrapperPass>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addPreservedID(LCSSAID);
      AU.addRequired<ScalarEvolution>();
      AU.addPreserved<ScalarEvolution>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
      // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
      // If loop unroll does not preserve dom info then LCSSA pass on next
      // loop will receive invalid dom info.
      // For now, recreate dom info, if loop is unrolled.
      AU.addPreserved<DominatorTreeWrapperPass>();
    }

    // Fill in the UnrollingPreferences parameter with values from the
    // TargetTransformationInfo.
    void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
                                 TargetTransformInfo::UnrollingPreferences &UP) {
      UP.Threshold = CurrentThreshold;
      UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
      UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
      UP.OptSizeThreshold = OptSizeUnrollThreshold;
      UP.PartialThreshold = CurrentThreshold;
      UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
      UP.Count = CurrentCount;
      UP.MaxCount = UINT_MAX;
      UP.Partial = CurrentAllowPartial;
      UP.Runtime = CurrentRuntime;
      UP.AllowExpensiveTripCount = false;
      TTI.getUnrollingPreferences(L, UP);
    }

    // Select and return an unroll count based on parameters from
    // user, unroll preferences, unroll pragmas, or a heuristic.
    // SetExplicitly is set to true if the unroll count is is set by
    // the user or a pragma rather than selected heuristically.
    unsigned
    selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
                      unsigned PragmaCount,
                      const TargetTransformInfo::UnrollingPreferences &UP,
                      bool &SetExplicitly);

    // Select threshold values used to limit unrolling based on a
    // total unrolled size.  Parameters Threshold and PartialThreshold
    // are set to the maximum unrolled size for fully and partially
    // unrolled loops respectively.
    void selectThresholds(const Loop *L, bool HasPragma,
                          const TargetTransformInfo::UnrollingPreferences &UP,
                          unsigned &Threshold, unsigned &PartialThreshold,
                          unsigned &AbsoluteThreshold,
                          unsigned &PercentOfOptimizedForCompleteUnroll) {
      // Determine the current unrolling threshold.  While this is
      // normally set from UnrollThreshold, it is overridden to a
      // smaller value if the current function is marked as
      // optimize-for-size, and the unroll threshold was not user
      // specified.
      Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
      PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
      AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold
                                                : UP.AbsoluteThreshold;
      PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized
                                                ? CurrentMinPercentOfOptimized
                                                : UP.MinPercentOfOptimized;

      if (!UserThreshold &&
          L->getHeader()->getParent()->hasFnAttribute(
              Attribute::OptimizeForSize)) {
        Threshold = UP.OptSizeThreshold;
        PartialThreshold = UP.PartialOptSizeThreshold;
      }
      if (HasPragma) {
        // If the loop has an unrolling pragma, we want to be more
        // aggressive with unrolling limits.  Set thresholds to at
        // least the PragmaTheshold value which is larger than the
        // default limits.
        if (Threshold != NoThreshold)
          Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
        if (PartialThreshold != NoThreshold)
          PartialThreshold =
              std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
      }
    }
    bool canUnrollCompletely(Loop *L, unsigned Threshold,
                             unsigned AbsoluteThreshold, uint64_t UnrolledSize,
                             unsigned NumberOfOptimizedInstructions,
                             unsigned PercentOfOptimizedForCompleteUnroll);
  };
}

char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)

Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
                                 int Runtime) {
  return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
}

Pass *llvm::createSimpleLoopUnrollPass() {
  return llvm::createLoopUnrollPass(-1, -1, 0, 0);
}

namespace {
/// \brief SCEV expressions visitor used for finding expressions that would
/// become constants if the loop L is unrolled.
struct FindConstantPointers {
  /// \brief Shows whether the expression is ConstAddress+Constant or not.
  bool IndexIsConstant;

  /// \brief Used for filtering out SCEV expressions with two or more AddRec
  /// subexpressions.
  ///
  /// Used to filter out complicated SCEV expressions, having several AddRec
  /// sub-expressions. We don't handle them, because unrolling one loop
  /// would help to replace only one of these inductions with a constant, and
  /// consequently, the expression would remain non-constant.
  bool HaveSeenAR;

  /// \brief If the SCEV expression becomes ConstAddress+Constant, this value
  /// holds ConstAddress. Otherwise, it's nullptr.
  Value *BaseAddress;

  /// \brief The loop, which we try to completely unroll.
  const Loop *L;

  ScalarEvolution &SE;

  FindConstantPointers(const Loop *L, ScalarEvolution &SE)
      : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr),
        L(L), SE(SE) {}

  /// Examine the given expression S and figure out, if it can be a part of an
  /// expression, that could become a constant after the loop is unrolled.
  /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis
  /// results.
  /// \returns true if we need to examine subexpressions, and false otherwise.
  bool follow(const SCEV *S) {
    if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
      // We've reached the leaf node of SCEV, it's most probably just a
      // variable.
      // If it's the only one SCEV-subexpression, then it might be a base
      // address of an index expression.
      // If we've already recorded base address, then just give up on this SCEV
      // - it's too complicated.
      if (BaseAddress) {
        IndexIsConstant = false;
        return false;
      }
      BaseAddress = SC->getValue();
      return false;
    }
    if (isa<SCEVConstant>(S))
      return false;
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
      // If the current SCEV expression is AddRec, and its loop isn't the loop
      // we are about to unroll, then we won't get a constant address after
      // unrolling, and thus, won't be able to eliminate the load.
      if (AR->getLoop() != L) {
        IndexIsConstant = false;
        return false;
      }
      // We don't handle multiple AddRecs here, so give up in this case.
      if (HaveSeenAR) {
        IndexIsConstant = false;
        return false;
      }
      HaveSeenAR = true;
    }

    // Continue traversal.
    return true;
  }
  bool isDone() const { return !IndexIsConstant; }
};
} // End anonymous namespace.

namespace {
/// \brief A cache of SCEV results used to optimize repeated queries to SCEV on
/// the same set of instructions.
///
/// The primary cost this saves is the cost of checking the validity of a SCEV
/// every time it is looked up. However, in some cases we can provide a reduced
/// and especially useful model for an instruction based upon SCEV that is
/// non-trivial to compute but more useful to clients.
class SCEVCache {
public:
  /// \brief Struct to represent a GEP whose start and step are known fixed
  /// offsets from a base address due to SCEV's analysis.
  struct GEPDescriptor {
    Value *BaseAddr = nullptr;
    unsigned Start = 0;
    unsigned Step = 0;
  };

  Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP);

  SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {}

private:
  const Loop &L;
  ScalarEvolution &SE;

  SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors;
};
} // End anonymous namespace.

/// \brief Get a simplified descriptor for a GEP instruction.
///
/// Where possible, this produces a simplified descriptor for a GEP instruction
/// using SCEV analysis of the containing loop. If this isn't possible, it
/// returns an empty optional.
///
/// The model is a base address, an initial offset, and a per-iteration step.
/// This fits very common patterns of GEPs inside loops and is something we can
/// use to simulate the behavior of a particular iteration of a loop.
///
/// This is a cached interface. The first call may do non-trivial work to
/// compute the result, but all subsequent calls will return a fast answer
/// based on a cached result. This includes caching negative results.
Optional<SCEVCache::GEPDescriptor>
SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) {
  decltype(GEPDescriptors)::iterator It;
  bool Inserted;

  std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}});

  if (!Inserted) {
    if (!It->second.BaseAddr)
      return None;

    return It->second;
  }

  // We've inserted a new record into the cache, so compute the GEP descriptor
  // if possible.
  Value *V = cast<Value>(GEP);
  if (!SE.isSCEVable(V->getType()))
    return None;
  const SCEV *S = SE.getSCEV(V);

  // FIXME: It'd be nice if the worklist and set used by the
  // SCEVTraversal could be re-used between loop iterations, but the
  // interface doesn't support that. There is no way to clear the visited
  // sets between uses.
  FindConstantPointers Visitor(&L, SE);
  SCEVTraversal<FindConstantPointers> T(Visitor);

  // Try to find (BaseAddress+Step+Offset) tuple.
  // If succeeded, save it to the cache - it might help in folding
  // loads.
  T.visitAll(S);
  if (!Visitor.IndexIsConstant || !Visitor.BaseAddress)
    return None;

  const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress);
  if (BaseAddrSE->getType() != S->getType())
    return None;
  const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);

  if (!AR)
    return None;

  const SCEVConstant *StepSE =
      dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE));
  const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart());
  if (!StepSE || !StartSE)
    return None;

  // Check and skip caching if doing so would require lots of bits to
  // avoid overflow.
  APInt Start = StartSE->getValue()->getValue();
  APInt Step = StepSE->getValue()->getValue();
  if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32)
    return None;

  // We found a cacheable SCEV model for the GEP.
  It->second.BaseAddr = Visitor.BaseAddress;
  It->second.Start = Start.getLimitedValue();
  It->second.Step = Step.getLimitedValue();
  return It->second;
}

namespace {
// This class is used to get an estimate of the optimization effects that we
// could get from complete loop unrolling. It comes from the fact that some
// loads might be replaced with concrete constant values and that could trigger
// a chain of instruction simplifications.
//
// E.g. we might have:
//   int a[] = {0, 1, 0};
//   v = 0;
//   for (i = 0; i < 3; i ++)
//     v += b[i]*a[i];
// If we completely unroll the loop, we would get:
//   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
// Which then will be simplified to:
//   v = b[0]* 0 + b[1]* 1 + b[2]* 0
// And finally:
//   v = b[1]
class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
  typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
  friend class InstVisitor<UnrolledInstAnalyzer, bool>;

public:
  UnrolledInstAnalyzer(unsigned Iteration,
                       DenseMap<Value *, Constant *> &SimplifiedValues,
                       SCEVCache &SC)
      : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {}

  // Allow access to the initial visit method.
  using Base::visit;

private:
  /// \brief Number of currently simulated iteration.
  ///
  /// If an expression is ConstAddress+Constant, then the Constant is
  /// Start + Iteration*Step, where Start and Step could be obtained from
  /// SCEVGEPCache.
  unsigned Iteration;

  // While we walk the loop instructions, we we build up and maintain a mapping
  // of simplified values specific to this iteration.  The idea is to propagate
  // any special information we have about loads that can be replaced with
  // constants after complete unrolling, and account for likely simplifications
  // post-unrolling.
  DenseMap<Value *, Constant *> &SimplifiedValues;

  // We use a cache to wrap all our SCEV queries.
  SCEVCache &SC;

  /// Base case for the instruction visitor.
  bool visitInstruction(Instruction &I) { return false; };

  /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.

  /// Try to simplify binary operator I.
  ///
  /// TODO: Probaly it's worth to hoist the code for estimating the
  /// simplifications effects to a separate class, since we have a very similar
  /// code in InlineCost already.
  bool visitBinaryOperator(BinaryOperator &I) {
    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    if (!isa<Constant>(LHS))
      if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
        LHS = SimpleLHS;
    if (!isa<Constant>(RHS))
      if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
        RHS = SimpleRHS;
    Value *SimpleV = nullptr;
    const DataLayout &DL = I.getModule()->getDataLayout();
    if (auto FI = dyn_cast<FPMathOperator>(&I))
      SimpleV =
          SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
    else
      SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);

    if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
      SimplifiedValues[&I] = C;

    return SimpleV;
  }

  /// Try to fold load I.
  bool visitLoad(LoadInst &I) {
    Value *AddrOp = I.getPointerOperand();
    if (!isa<Constant>(AddrOp))
      if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp))
        AddrOp = SimplifiedAddrOp;

    auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp);
    if (!GEP)
      return false;
    auto OptionalGEPDesc = SC.getGEPDescriptor(GEP);
    if (!OptionalGEPDesc)
      return false;

    auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr);
    // We're only interested in loads that can be completely folded to a
    // constant.
    if (!GV || !GV->hasInitializer())
      return false;

    ConstantDataSequential *CDS =
        dyn_cast<ConstantDataSequential>(GV->getInitializer());
    if (!CDS)
      return false;

    // This calculation should never overflow because we bound Iteration quite
    // low and both the start and step are 32-bit integers. We use signed
    // integers so that UBSan will catch if a bug sneaks into the code.
    int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
    int64_t Index = ((int64_t)OptionalGEPDesc->Start +
                     (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) /
                    ElemSize;
    if (Index >= CDS->getNumElements()) {
      // FIXME: For now we conservatively ignore out of bound accesses, but
      // we're allowed to perform the optimization in this case.
      return false;
    }

    Constant *CV = CDS->getElementAsConstant(Index);
    assert(CV && "Constant expected.");
    SimplifiedValues[&I] = CV;

    return true;
  }
};
} // namespace


namespace {
struct EstimatedUnrollCost {
  /// \brief Count the number of optimized instructions.
  unsigned NumberOfOptimizedInstructions;

  /// \brief Count the total number of instructions.
  unsigned UnrolledLoopSize;
};
}

/// \brief Figure out if the loop is worth full unrolling.
///
/// Complete loop unrolling can make some loads constant, and we need to know
/// if that would expose any further optimization opportunities.  This routine
/// estimates this optimization.  It assigns computed number of instructions,
/// that potentially might be optimized away, to
/// NumberOfOptimizedInstructions, and total number of instructions to
/// UnrolledLoopSize (not counting blocks that won't be reached, if we were
/// able to compute the condition).
/// \returns false if we can't analyze the loop, or if we discovered that
/// unrolling won't give anything. Otherwise, returns true.
Optional<EstimatedUnrollCost>
analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
                      const TargetTransformInfo &TTI,
                      unsigned MaxUnrolledLoopSize) {
  // We want to be able to scale offsets by the trip count and add more offsets
  // to them without checking for overflows, and we already don't want to
  // analyze *massive* trip counts, so we force the max to be reasonably small.
  assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
         "The unroll iterations max is too large!");

  // Don't simulate loops with a big or unknown tripcount
  if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
      TripCount > UnrollMaxIterationsCountToAnalyze)
    return None;

  SmallSetVector<BasicBlock *, 16> BBWorklist;
  DenseMap<Value *, Constant *> SimplifiedValues;

  // Use a cache to access SCEV expressions so that we don't pay the cost on
  // each iteration. This cache is lazily self-populating.
  SCEVCache SC(*L, SE);

  unsigned NumberOfOptimizedInstructions = 0;
  unsigned UnrolledLoopSize = 0;

  // Simulate execution of each iteration of the loop counting instructions,
  // which would be simplified.
  // Since the same load will take different values on different iterations,
  // we literally have to go through all loop's iterations.
  for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
    SimplifiedValues.clear();
    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC);

    BBWorklist.clear();
    BBWorklist.insert(L->getHeader());
    // Note that we *must not* cache the size, this loop grows the worklist.
    for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
      BasicBlock *BB = BBWorklist[Idx];

      // Visit all instructions in the given basic block and try to simplify
      // it.  We don't change the actual IR, just count optimization
      // opportunities.
      for (Instruction &I : *BB) {
        UnrolledLoopSize += TTI.getUserCost(&I);

        // Visit the instruction to analyze its loop cost after unrolling,
        // and if the visitor returns true, then we can optimize this
        // instruction away.
        if (Analyzer.visit(I))
          NumberOfOptimizedInstructions += TTI.getUserCost(&I);

        // If unrolled body turns out to be too big, bail out.
        if (UnrolledLoopSize - NumberOfOptimizedInstructions >
            MaxUnrolledLoopSize)
          return None;
      }

      // Add BB's successors to the worklist.
      for (BasicBlock *Succ : successors(BB))
        if (L->contains(Succ))
          BBWorklist.insert(Succ);
    }

    // If we found no optimization opportunities on the first iteration, we
    // won't find them on later ones too.
    if (!NumberOfOptimizedInstructions)
      return None;
  }
  return {{NumberOfOptimizedInstructions, UnrolledLoopSize}};
}

/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
                                    bool &NotDuplicatable,
                                    const TargetTransformInfo &TTI,
                                    AssumptionCache *AC) {
  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(L, AC, EphValues);

  CodeMetrics Metrics;
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    Metrics.analyzeBasicBlock(*I, TTI, EphValues);
  NumCalls = Metrics.NumInlineCandidates;
  NotDuplicatable = Metrics.notDuplicatable;

  unsigned LoopSize = Metrics.NumInsts;

  // Don't allow an estimate of size zero.  This would allows unrolling of loops
  // with huge iteration counts, which is a compile time problem even if it's
  // not a problem for code quality. Also, the code using this size may assume
  // that each loop has at least three instructions (likely a conditional
  // branch, a comparison feeding that branch, and some kind of loop increment
  // feeding that comparison instruction).
  LoopSize = std::max(LoopSize, 3u);

  return LoopSize;
}

// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
// returned.
static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
  if (MDNode *LoopID = L->getLoopID())
    return GetUnrollMetadata(LoopID, Name);
  return nullptr;
}

// Returns true if the loop has an unroll(full) pragma.
static bool HasUnrollFullPragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}

// Returns true if the loop has an unroll(disable) pragma.
static bool HasUnrollDisablePragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
}

// Returns true if the loop has an runtime unroll(disable) pragma.
static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}

// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma.  Otherwise return 0.
static unsigned UnrollCountPragmaValue(const Loop *L) {
  MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
  if (MD) {
    assert(MD->getNumOperands() == 2 &&
           "Unroll count hint metadata should have two operands.");
    unsigned Count =
        mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
    assert(Count >= 1 && "Unroll count must be positive.");
    return Count;
  }
  return 0;
}

// Remove existing unroll metadata and add unroll disable metadata to
// indicate the loop has already been unrolled.  This prevents a loop
// from being unrolled more than is directed by a pragma if the loop
// unrolling pass is run more than once (which it generally is).
static void SetLoopAlreadyUnrolled(Loop *L) {
  MDNode *LoopID = L->getLoopID();
  if (!LoopID) return;

  // First remove any existing loop unrolling metadata.
  SmallVector<Metadata *, 4> MDs;
  // Reserve first location for self reference to the LoopID metadata node.
  MDs.push_back(nullptr);
  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    bool IsUnrollMetadata = false;
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (MD) {
      const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
      IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
    }
    if (!IsUnrollMetadata)
      MDs.push_back(LoopID->getOperand(i));
  }

  // Add unroll(disable) metadata to disable future unrolling.
  LLVMContext &Context = L->getHeader()->getContext();
  SmallVector<Metadata *, 1> DisableOperands;
  DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
  MDNode *DisableNode = MDNode::get(Context, DisableOperands);
  MDs.push_back(DisableNode);

  MDNode *NewLoopID = MDNode::get(Context, MDs);
  // Set operand 0 to refer to the loop id itself.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  L->setLoopID(NewLoopID);
}

bool LoopUnroll::canUnrollCompletely(
    Loop *L, unsigned Threshold, unsigned AbsoluteThreshold,
    uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions,
    unsigned PercentOfOptimizedForCompleteUnroll) {

  if (Threshold == NoThreshold) {
    DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
    return true;
  }

  if (UnrolledSize <= Threshold) {
    DEBUG(dbgs() << "  Can fully unroll, because unrolled size: "
                 << UnrolledSize << "<" << Threshold << "\n");
    return true;
  }

  assert(UnrolledSize && "UnrolledSize can't be 0 at this point.");
  unsigned PercentOfOptimizedInstructions =
      (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize;

  if (UnrolledSize <= AbsoluteThreshold &&
      PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) {
    DEBUG(dbgs() << "  Can fully unroll, because unrolling will help removing "
                 << PercentOfOptimizedInstructions
                 << "% instructions (threshold: "
                 << PercentOfOptimizedForCompleteUnroll << "%)\n");
    DEBUG(dbgs() << "  Unrolled size (" << UnrolledSize
                 << ") is less than the threshold (" << AbsoluteThreshold
                 << ").\n");
    return true;
  }

  DEBUG(dbgs() << "  Too large to fully unroll:\n");
  DEBUG(dbgs() << "    Unrolled size: " << UnrolledSize << "\n");
  DEBUG(dbgs() << "    Estimated number of optimized instructions: "
               << NumberOfOptimizedInstructions << "\n");
  DEBUG(dbgs() << "    Absolute threshold: " << AbsoluteThreshold << "\n");
  DEBUG(dbgs() << "    Minimum percent of removed instructions: "
               << PercentOfOptimizedForCompleteUnroll << "\n");
  DEBUG(dbgs() << "    Threshold for small loops: " << Threshold << "\n");
  return false;
}

unsigned LoopUnroll::selectUnrollCount(
    const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
    unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
    bool &SetExplicitly) {
  SetExplicitly = true;

  // User-specified count (either as a command-line option or
  // constructor parameter) has highest precedence.
  unsigned Count = UserCount ? CurrentCount : 0;

  // If there is no user-specified count, unroll pragmas have the next
  // highest precendence.
  if (Count == 0) {
    if (PragmaCount) {
      Count = PragmaCount;
    } else if (PragmaFullUnroll) {
      Count = TripCount;
    }
  }

  if (Count == 0)
    Count = UP.Count;

  if (Count == 0) {
    SetExplicitly = false;
    if (TripCount == 0)
      // Runtime trip count.
      Count = UnrollRuntimeCount;
    else
      // Conservative heuristic: if we know the trip count, see if we can
      // completely unroll (subject to the threshold, checked below); otherwise
      // try to find greatest modulo of the trip count which is still under
      // threshold value.
      Count = TripCount;
  }
  if (TripCount && Count > TripCount)
    return TripCount;
  return Count;
}

bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipOptnoneFunction(L))
    return false;

  Function &F = *L->getHeader()->getParent();

  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
  const TargetTransformInfo &TTI =
      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);

  BasicBlock *Header = L->getHeader();
  DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
        << "] Loop %" << Header->getName() << "\n");

  if (HasUnrollDisablePragma(L)) {
    return false;
  }
  bool PragmaFullUnroll = HasUnrollFullPragma(L);
  unsigned PragmaCount = UnrollCountPragmaValue(L);
  bool HasPragma = PragmaFullUnroll || PragmaCount > 0;

  TargetTransformInfo::UnrollingPreferences UP;
  getUnrollingPreferences(L, TTI, UP);

  // Find trip count and trip multiple if count is not available
  unsigned TripCount = 0;
  unsigned TripMultiple = 1;
  // If there are multiple exiting blocks but one of them is the latch, use the
  // latch for the trip count estimation. Otherwise insist on a single exiting
  // block for the trip count estimation.
  BasicBlock *ExitingBlock = L->getLoopLatch();
  if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
    ExitingBlock = L->getExitingBlock();
  if (ExitingBlock) {
    TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
    TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
  }

  // Select an initial unroll count.  This may be reduced later based
  // on size thresholds.
  bool CountSetExplicitly;
  unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
                                     PragmaCount, UP, CountSetExplicitly);

  unsigned NumInlineCandidates;
  bool notDuplicatable;
  unsigned LoopSize =
      ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
  DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");

  // When computing the unrolled size, note that the conditional branch on the
  // backedge and the comparison feeding it are not replicated like the rest of
  // the loop body (which is why 2 is subtracted).
  uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
  if (notDuplicatable) {
    DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
                 << " instructions.\n");
    return false;
  }
  if (NumInlineCandidates != 0) {
    DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
    return false;
  }

  unsigned Threshold, PartialThreshold;
  unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll;
  selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
                   AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll);

  // Given Count, TripCount and thresholds determine the type of
  // unrolling which is to be performed.
  enum { Full = 0, Partial = 1, Runtime = 2 };
  int Unrolling;
  if (TripCount && Count == TripCount) {
    Unrolling = Partial;
    // If the loop is really small, we don't need to run an expensive analysis.
    if (canUnrollCompletely(
            L, Threshold, AbsoluteThreshold,
            UnrolledSize, 0, 100)) {
      Unrolling = Full;
    } else {
      // The loop isn't that small, but we still can fully unroll it if that
      // helps to remove a significant number of instructions.
      // To check that, run additional analysis on the loop.
      if (Optional<EstimatedUnrollCost> Cost =
              analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold))
        if (canUnrollCompletely(L, Threshold, AbsoluteThreshold,
                                Cost->UnrolledLoopSize,
                                Cost->NumberOfOptimizedInstructions,
                                PercentOfOptimizedForCompleteUnroll)) {
          Unrolling = Full;
        }
    }
  } else if (TripCount && Count < TripCount) {
    Unrolling = Partial;
  } else {
    Unrolling = Runtime;
  }

  // Reduce count based on the type of unrolling and the threshold values.
  unsigned OriginalCount = Count;
  bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
  if (HasRuntimeUnrollDisablePragma(L)) {
    AllowRuntime = false;
  }
  if (Unrolling == Partial) {
    bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
    if (!AllowPartial && !CountSetExplicitly) {
      DEBUG(dbgs() << "  will not try to unroll partially because "
                   << "-unroll-allow-partial not given\n");
      return false;
    }
    if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
      // Reduce unroll count to be modulo of TripCount for partial unrolling.
      Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
      while (Count != 0 && TripCount % Count != 0)
        Count--;
    }
  } else if (Unrolling == Runtime) {
    if (!AllowRuntime && !CountSetExplicitly) {
      DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
                   << "-unroll-runtime not given\n");
      return false;
    }
    // Reduce unroll count to be the largest power-of-two factor of
    // the original count which satisfies the threshold limit.
    while (Count != 0 && UnrolledSize > PartialThreshold) {
      Count >>= 1;
      UnrolledSize = (LoopSize-2) * Count + 2;
    }
    if (Count > UP.MaxCount)
      Count = UP.MaxCount;
    DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
  }

  if (HasPragma) {
    if (PragmaCount != 0)
      // If loop has an unroll count pragma mark loop as unrolled to prevent
      // unrolling beyond that requested by the pragma.
      SetLoopAlreadyUnrolled(L);

    // Emit optimization remarks if we are unable to unroll the loop
    // as directed by a pragma.
    DebugLoc LoopLoc = L->getStartLoc();
    Function *F = Header->getParent();
    LLVMContext &Ctx = F->getContext();
    if (PragmaFullUnroll && PragmaCount == 0) {
      if (TripCount && Count != TripCount) {
        emitOptimizationRemarkMissed(
            Ctx, DEBUG_TYPE, *F, LoopLoc,
            "Unable to fully unroll loop as directed by unroll(full) pragma "
            "because unrolled size is too large.");
      } else if (!TripCount) {
        emitOptimizationRemarkMissed(
            Ctx, DEBUG_TYPE, *F, LoopLoc,
            "Unable to fully unroll loop as directed by unroll(full) pragma "
            "because loop has a runtime trip count.");
      }
    } else if (PragmaCount > 0 && Count != OriginalCount) {
      emitOptimizationRemarkMissed(
          Ctx, DEBUG_TYPE, *F, LoopLoc,
          "Unable to unroll loop the number of times directed by "
          "unroll_count pragma because unrolled size is too large.");
    }
  }

  if (Unrolling != Full && Count < 2) {
    // Partial unrolling by 1 is a nop.  For full unrolling, a factor
    // of 1 makes sense because loop control can be eliminated.
    return false;
  }

  // Unroll the loop.
  if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
                  TripMultiple, LI, this, &LPM, &AC))
    return false;

  return true;
}