aboutsummaryrefslogtreecommitdiff
path: root/lib/asan/tests/asan_interface_test.cc
blob: f5bfb8046b0afb6cb693b123b09d7060978cd27b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//===-- asan_interface_test.cc --------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#include <sanitizer/allocator_interface.h>
#include <sanitizer/asan_interface.h>

TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
  EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(0));
  const size_t sizes[] = { 1, 30, 1<<30 };
  for (size_t i = 0; i < 3; i++) {
    EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(sizes[i]));
  }
}

static const char* kGetAllocatedSizeErrorMsg =
  "attempting to call __sanitizer_get_allocated_size";

TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
  const size_t kArraySize = 100;
  char *array = Ident((char*)malloc(kArraySize));
  int *int_ptr = Ident(new int);

  // Allocated memory is owned by allocator. Allocated size should be
  // equal to requested size.
  EXPECT_EQ(true, __sanitizer_get_ownership(array));
  EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(array));
  EXPECT_EQ(true, __sanitizer_get_ownership(int_ptr));
  EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(int_ptr));

  // We cannot call GetAllocatedSize from the memory we didn't map,
  // and from the interior pointers (not returned by previous malloc).
  void *wild_addr = (void*)0x1;
  EXPECT_FALSE(__sanitizer_get_ownership(wild_addr));
  EXPECT_DEATH(__sanitizer_get_allocated_size(wild_addr),
               kGetAllocatedSizeErrorMsg);
  EXPECT_FALSE(__sanitizer_get_ownership(array + kArraySize / 2));
  EXPECT_DEATH(__sanitizer_get_allocated_size(array + kArraySize / 2),
               kGetAllocatedSizeErrorMsg);

  // NULL is not owned, but is a valid argument for
  // __sanitizer_get_allocated_size().
  EXPECT_FALSE(__sanitizer_get_ownership(NULL));
  EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL));

  // When memory is freed, it's not owned, and call to GetAllocatedSize
  // is forbidden.
  free(array);
  EXPECT_FALSE(__sanitizer_get_ownership(array));
  EXPECT_DEATH(__sanitizer_get_allocated_size(array),
               kGetAllocatedSizeErrorMsg);
  delete int_ptr;

  void *zero_alloc = Ident(malloc(0));
  if (zero_alloc != 0) {
    // If malloc(0) is not null, this pointer is owned and should have valid
    // allocated size.
    EXPECT_TRUE(__sanitizer_get_ownership(zero_alloc));
    // Allocated size is 0 or 1 depending on the allocator used.
    EXPECT_LT(__sanitizer_get_allocated_size(zero_alloc), 2U);
  }
  free(zero_alloc);
}

TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
  size_t before_malloc, after_malloc, after_free;
  char *array;
  const size_t kMallocSize = 100;
  before_malloc = __sanitizer_get_current_allocated_bytes();

  array = Ident((char*)malloc(kMallocSize));
  after_malloc = __sanitizer_get_current_allocated_bytes();
  EXPECT_EQ(before_malloc + kMallocSize, after_malloc);

  free(array);
  after_free = __sanitizer_get_current_allocated_bytes();
  EXPECT_EQ(before_malloc, after_free);
}

TEST(AddressSanitizerInterface, GetHeapSizeTest) {
  // ASan allocator does not keep huge chunks in free list, but unmaps them.
  // The chunk should be greater than the quarantine size,
  // otherwise it will be stuck in quarantine instead of being unmaped.
  static const size_t kLargeMallocSize = (1 << 28) + 1;  // 256M
  free(Ident(malloc(kLargeMallocSize)));  // Drain quarantine.
  size_t old_heap_size = __sanitizer_get_heap_size();
  for (int i = 0; i < 3; i++) {
    // fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
    free(Ident(malloc(kLargeMallocSize)));
    EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size());
  }
}

static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357};
static const size_t kManyThreadsIterations = 250;
static const size_t kManyThreadsNumThreads =
  (SANITIZER_WORDSIZE == 32) ? 40 : 200;

static void *ManyThreadsWithStatsWorker(void *arg) {
  (void)arg;
  for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
    for (size_t size_index = 0; size_index < 4; size_index++) {
      free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
    }
  }
  // Just one large allocation.
  free(Ident(malloc(1 << 20)));
  return 0;
}

TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
  size_t before_test, after_test, i;
  pthread_t threads[kManyThreadsNumThreads];
  before_test = __sanitizer_get_current_allocated_bytes();
  for (i = 0; i < kManyThreadsNumThreads; i++) {
    PTHREAD_CREATE(&threads[i], 0,
                   (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
  }
  for (i = 0; i < kManyThreadsNumThreads; i++) {
    PTHREAD_JOIN(threads[i], 0);
  }
  after_test = __sanitizer_get_current_allocated_bytes();
  // ASan stats also reflect memory usage of internal ASan RTL structs,
  // so we can't check for equality here.
  EXPECT_LT(after_test, before_test + (1UL<<20));
}

static void DoDoubleFree() {
  int *x = Ident(new int);
  delete Ident(x);
  delete Ident(x);
}

static void MyDeathCallback() {
  fprintf(stderr, "MyDeathCallback\n");
  fflush(0);  // On Windows, stderr doesn't flush on crash.
}

TEST(AddressSanitizerInterface, DeathCallbackTest) {
  __asan_set_death_callback(MyDeathCallback);
  EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
  __asan_set_death_callback(NULL);
}

static const char* kUseAfterPoisonErrorMessage = "use-after-poison";

#define GOOD_ACCESS(ptr, offset)  \
    EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset))

#define BAD_ACCESS(ptr, offset) \
    EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset))

TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
  char *array = Ident((char*)malloc(120));
  // poison array[40..80)
  __asan_poison_memory_region(array + 40, 40);
  GOOD_ACCESS(array, 39);
  GOOD_ACCESS(array, 80);
  BAD_ACCESS(array, 40);
  BAD_ACCESS(array, 60);
  BAD_ACCESS(array, 79);
  char value;
  EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage);
  __asan_unpoison_memory_region(array + 40, 40);
  // access previously poisoned memory.
  GOOD_ACCESS(array, 40);
  GOOD_ACCESS(array, 79);
  free(array);
}

TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
  char *array = Ident((char*)malloc(120));
  // Poison [0..40) and [80..120)
  __asan_poison_memory_region(array, 40);
  __asan_poison_memory_region(array + 80, 40);
  BAD_ACCESS(array, 20);
  GOOD_ACCESS(array, 60);
  BAD_ACCESS(array, 100);
  // Poison whole array - [0..120)
  __asan_poison_memory_region(array, 120);
  BAD_ACCESS(array, 60);
  // Unpoison [24..96)
  __asan_unpoison_memory_region(array + 24, 72);
  BAD_ACCESS(array, 23);
  GOOD_ACCESS(array, 24);
  GOOD_ACCESS(array, 60);
  GOOD_ACCESS(array, 95);
  BAD_ACCESS(array, 96);
  free(array);
}

TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
  // Vector of capacity 20
  char *vec = Ident((char*)malloc(20));
  __asan_poison_memory_region(vec, 20);
  for (size_t i = 0; i < 7; i++) {
    // Simulate push_back.
    __asan_unpoison_memory_region(vec + i, 1);
    GOOD_ACCESS(vec, i);
    BAD_ACCESS(vec, i + 1);
  }
  for (size_t i = 7; i > 0; i--) {
    // Simulate pop_back.
    __asan_poison_memory_region(vec + i - 1, 1);
    BAD_ACCESS(vec, i - 1);
    if (i > 1) GOOD_ACCESS(vec, i - 2);
  }
  free(vec);
}

// Make sure that each aligned block of size "2^granularity" doesn't have
// "true" value before "false" value.
static void MakeShadowValid(bool *shadow, int length, int granularity) {
  bool can_be_poisoned = true;
  for (int i = length - 1; i >= 0; i--) {
    if (!shadow[i])
      can_be_poisoned = false;
    if (!can_be_poisoned)
      shadow[i] = false;
    if (i % (1 << granularity) == 0) {
      can_be_poisoned = true;
    }
  }
}

TEST(AddressSanitizerInterface, PoisoningStressTest) {
  const size_t kSize = 24;
  bool expected[kSize];
  char *arr = Ident((char*)malloc(kSize));
  for (size_t l1 = 0; l1 < kSize; l1++) {
    for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
      for (size_t l2 = 0; l2 < kSize; l2++) {
        for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
          // Poison [l1, l1+s1), [l2, l2+s2) and check result.
          __asan_unpoison_memory_region(arr, kSize);
          __asan_poison_memory_region(arr + l1, s1);
          __asan_poison_memory_region(arr + l2, s2);
          memset(expected, false, kSize);
          memset(expected + l1, true, s1);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          memset(expected + l2, true, s2);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          for (size_t i = 0; i < kSize; i++) {
            ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
          }
          // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
          __asan_poison_memory_region(arr, kSize);
          __asan_unpoison_memory_region(arr + l1, s1);
          __asan_unpoison_memory_region(arr + l2, s2);
          memset(expected, true, kSize);
          memset(expected + l1, false, s1);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          memset(expected + l2, false, s2);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          for (size_t i = 0; i < kSize; i++) {
            ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
          }
        }
      }
    }
  }
  free(arr);
}

TEST(AddressSanitizerInterface, GlobalRedzones) {
  GOOD_ACCESS(glob1, 1 - 1);
  GOOD_ACCESS(glob2, 2 - 1);
  GOOD_ACCESS(glob3, 3 - 1);
  GOOD_ACCESS(glob4, 4 - 1);
  GOOD_ACCESS(glob5, 5 - 1);
  GOOD_ACCESS(glob6, 6 - 1);
  GOOD_ACCESS(glob7, 7 - 1);
  GOOD_ACCESS(glob8, 8 - 1);
  GOOD_ACCESS(glob9, 9 - 1);
  GOOD_ACCESS(glob10, 10 - 1);
  GOOD_ACCESS(glob11, 11 - 1);
  GOOD_ACCESS(glob12, 12 - 1);
  GOOD_ACCESS(glob13, 13 - 1);
  GOOD_ACCESS(glob14, 14 - 1);
  GOOD_ACCESS(glob15, 15 - 1);
  GOOD_ACCESS(glob16, 16 - 1);
  GOOD_ACCESS(glob17, 17 - 1);
  GOOD_ACCESS(glob1000, 1000 - 1);
  GOOD_ACCESS(glob10000, 10000 - 1);
  GOOD_ACCESS(glob100000, 100000 - 1);

  BAD_ACCESS(glob1, 1);
  BAD_ACCESS(glob2, 2);
  BAD_ACCESS(glob3, 3);
  BAD_ACCESS(glob4, 4);
  BAD_ACCESS(glob5, 5);
  BAD_ACCESS(glob6, 6);
  BAD_ACCESS(glob7, 7);
  BAD_ACCESS(glob8, 8);
  BAD_ACCESS(glob9, 9);
  BAD_ACCESS(glob10, 10);
  BAD_ACCESS(glob11, 11);
  BAD_ACCESS(glob12, 12);
  BAD_ACCESS(glob13, 13);
  BAD_ACCESS(glob14, 14);
  BAD_ACCESS(glob15, 15);
  BAD_ACCESS(glob16, 16);
  BAD_ACCESS(glob17, 17);
  BAD_ACCESS(glob1000, 1000);
  BAD_ACCESS(glob1000, 1100);  // Redzone is at least 101 bytes.
  BAD_ACCESS(glob10000, 10000);
  BAD_ACCESS(glob10000, 11000);  // Redzone is at least 1001 bytes.
  BAD_ACCESS(glob100000, 100000);
  BAD_ACCESS(glob100000, 110000);  // Redzone is at least 10001 bytes.
}

TEST(AddressSanitizerInterface, PoisonedRegion) {
  size_t rz = 16;
  for (size_t size = 1; size <= 64; size++) {
    char *p = new char[size];
    for (size_t beg = 0; beg < size + rz; beg++) {
      for (size_t end = beg; end < size + rz; end++) {
        void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg);
        if (beg == end) {
          EXPECT_FALSE(first_poisoned);
        } else if (beg < size && end <= size) {
          EXPECT_FALSE(first_poisoned);
        } else if (beg >= size) {
          EXPECT_EQ(p + beg, first_poisoned);
        } else {
          EXPECT_GT(end, size);
          EXPECT_EQ(p + size, first_poisoned);
        }
      }
    }
    delete [] p;
  }
}

// This is a performance benchmark for manual runs.
// asan's memset interceptor calls mem_is_zero for the entire shadow region.
// the profile should look like this:
//     89.10%   [.] __memset_sse2
//     10.50%   [.] __sanitizer::mem_is_zero
// I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles
// than memset itself.
TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) {
  size_t size = 1 << 20;
  char *x = new char[size];
  for (int i = 0; i < 100000; i++)
    Ident(memset)(x, 0, size);
  delete [] x;
}

// Same here, but we run memset with small sizes.
TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) {
  size_t size = 32;
  char *x = new char[size];
  for (int i = 0; i < 100000000; i++)
    Ident(memset)(x, 0, size);
  delete [] x;
}
static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";

TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
  char *array = Ident((char*)malloc(120));
  __asan_unpoison_memory_region(array, 120);
  // Try to unpoison not owned memory
  EXPECT_DEATH(__asan_unpoison_memory_region(array, 121),
               kInvalidUnpoisonMessage);
  EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120),
               kInvalidUnpoisonMessage);

  __asan_poison_memory_region(array, 120);
  // Try to poison not owned memory.
  EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage);
  EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120),
               kInvalidPoisonMessage);
  free(array);
}

#if !defined(_WIN32)  // FIXME: This should really be a lit test.
static void ErrorReportCallbackOneToZ(const char *report) {
  int report_len = strlen(report);
  ASSERT_EQ(6, write(2, "ABCDEF", 6));
  ASSERT_EQ(report_len, write(2, report, report_len));
  ASSERT_EQ(6, write(2, "ABCDEF", 6));
  _exit(1);
}

TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) {
  __asan_set_error_report_callback(ErrorReportCallbackOneToZ);
  EXPECT_DEATH(__asan_report_error(0, 0, 0, 0, true, 1),
               ASAN_PCRE_DOTALL "ABCDEF.*AddressSanitizer.*WRITE.*ABCDEF");
  __asan_set_error_report_callback(NULL);
}
#endif

TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
  std::vector<char *> pointers;
  std::vector<size_t> sizes;
  const size_t kNumMallocs = 1 << 9;
  for (size_t i = 0; i < kNumMallocs; i++) {
    size_t size = i * 100 + 1;
    pointers.push_back((char*)malloc(size));
    sizes.push_back(size);
  }
  for (size_t i = 0; i < 4000000; i++) {
    EXPECT_FALSE(__sanitizer_get_ownership(&pointers));
    EXPECT_FALSE(__sanitizer_get_ownership((void*)0x1234));
    size_t idx = i % kNumMallocs;
    EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx]));
    EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx]));
  }
  for (size_t i = 0, n = pointers.size(); i < n; i++)
    free(pointers[i]);
}