aboutsummaryrefslogtreecommitdiff
path: root/lib/builtins/arm/comparesf2.S
blob: e8095650e4fbe83e50aa9bdb2f23589679da817a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the following soft-fp_t comparison routines:
//
//   __eqsf2   __gesf2   __unordsf2
//   __lesf2   __gtsf2
//   __ltsf2
//   __nesf2
//
// The semantics of the routines grouped in each column are identical, so there
// is a single implementation for each, with multiple names.
//
// The routines behave as follows:
//
//   __lesf2(a,b) returns -1 if a < b
//                         0 if a == b
//                         1 if a > b
//                         1 if either a or b is NaN
//
//   __gesf2(a,b) returns -1 if a < b
//                         0 if a == b
//                         1 if a > b
//                        -1 if either a or b is NaN
//
//   __unordsf2(a,b) returns 0 if both a and b are numbers
//                           1 if either a or b is NaN
//
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//

#include "../assembly.h"
.syntax unified
#if __ARM_ARCH_ISA_THUMB == 2
.thumb
#endif

@ int __eqsf2(float a, float b)

    .p2align 2
DEFINE_COMPILERRT_FUNCTION(__eqsf2)
#if defined(COMPILER_RT_ARMHF_TARGET)
    vmov r0, s0
    vmov r1, s1
#endif
    // Make copies of a and b with the sign bit shifted off the top.  These will
    // be used to detect zeros and NaNs.
#if __ARM_ARCH_ISA_THUMB == 1
    push    {r6, lr}
    lsls    r2,         r0, #1
    lsls    r3,         r1, #1
#else
    mov     r2,         r0, lsl #1
    mov     r3,         r1, lsl #1
#endif

    // We do the comparison in three stages (ignoring NaN values for the time
    // being).  First, we orr the absolute values of a and b; this sets the Z
    // flag if both a and b are zero (of either sign).  The shift of r3 doesn't
    // effect this at all, but it *does* make sure that the C flag is clear for
    // the subsequent operations.
#if __ARM_ARCH_ISA_THUMB == 1
    lsrs    r6,     r3, #1
    orrs    r6,     r2, r6
#else
    orrs    r12,    r2, r3, lsr #1
#endif
    // Next, we check if a and b have the same or different signs.  If they have
    // opposite signs, this eor will set the N flag.
#if __ARM_ARCH_ISA_THUMB == 1
    beq     1f
    movs    r6,     r0
    eors    r6,     r1
1:
#else
    it ne
    eorsne  r12,    r0, r1
#endif

    // If a and b are equal (either both zeros or bit identical; again, we're
    // ignoring NaNs for now), this subtract will zero out r0.  If they have the
    // same sign, the flags are updated as they would be for a comparison of the
    // absolute values of a and b.
#if __ARM_ARCH_ISA_THUMB == 1
    bmi     1f
    subs    r0,     r2, r3
1:
#else
    it pl
    subspl  r0,     r2, r3
#endif

    // If a is smaller in magnitude than b and both have the same sign, place
    // the negation of the sign of b in r0.  Thus, if both are negative and
    // a > b, this sets r0 to 0; if both are positive and a < b, this sets
    // r0 to -1.
    //
    // This is also done if a and b have opposite signs and are not both zero,
    // because in that case the subtract was not performed and the C flag is
    // still clear from the shift argument in orrs; if a is positive and b
    // negative, this places 0 in r0; if a is negative and b positive, -1 is
    // placed in r0.
#if __ARM_ARCH_ISA_THUMB == 1
    bhs     1f
    // Here if a and b have the same sign and absA < absB, the result is thus
    // b < 0 ? 1 : -1. Same if a and b have the opposite sign (ignoring Nan).
    movs    r0,         #1
    lsrs    r1,         #31
    bne     LOCAL_LABEL(CHECK_NAN)
    negs    r0,         r0
    b       LOCAL_LABEL(CHECK_NAN)
1:
#else
    it lo
    mvnlo   r0,         r1, asr #31
#endif

    // If a is greater in magnitude than b and both have the same sign, place
    // the sign of b in r0.  Thus, if both are negative and a < b, -1 is placed
    // in r0, which is the desired result.  Conversely, if both are positive
    // and a > b, zero is placed in r0.
#if __ARM_ARCH_ISA_THUMB == 1
    bls     1f
    // Here both have the same sign and absA > absB.
    movs    r0,         #1
    lsrs    r1,         #31
    beq     LOCAL_LABEL(CHECK_NAN)
    negs    r0, r0
1:
#else
    it hi
    movhi   r0,         r1, asr #31
#endif

    // If you've been keeping track, at this point r0 contains -1 if a < b and
    // 0 if a >= b.  All that remains to be done is to set it to 1 if a > b.
    // If a == b, then the Z flag is set, so we can get the correct final value
    // into r0 by simply or'ing with 1 if Z is clear.
    // For Thumb-1, r0 contains -1 if a < b, 0 if a > b and 0 if a == b.
#if __ARM_ARCH_ISA_THUMB != 1
    it ne
    orrne   r0,     r0, #1
#endif

    // Finally, we need to deal with NaNs.  If either argument is NaN, replace
    // the value in r0 with 1.
#if __ARM_ARCH_ISA_THUMB == 1
LOCAL_LABEL(CHECK_NAN):
    movs    r6,         #0xff
    lsls    r6,         #24
    cmp     r2,         r6
    bhi     1f
    cmp     r3,         r6
1:
    bls     2f
    movs    r0,         #1
2:
    pop     {r6, pc}
#else
    cmp     r2,         #0xff000000
    ite ls
    cmpls   r3,         #0xff000000
    movhi   r0,         #1
    JMP(lr)
#endif
END_COMPILERRT_FUNCTION(__eqsf2)

DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)

@ int __gtsf2(float a, float b)

    .p2align 2
DEFINE_COMPILERRT_FUNCTION(__gtsf2)
    // Identical to the preceding except in that we return -1 for NaN values.
    // Given that the two paths share so much code, one might be tempted to
    // unify them; however, the extra code needed to do so makes the code size
    // to performance tradeoff very hard to justify for such small functions.
#if defined(COMPILER_RT_ARMHF_TARGET)
    vmov r0, s0
    vmov r1, s1
#endif
#if __ARM_ARCH_ISA_THUMB == 1
    push    {r6, lr}
    lsls    r2,        r0, #1
    lsls    r3,        r1, #1
    lsrs    r6,        r3, #1
    orrs    r6,        r2, r6
    beq     1f
    movs    r6,        r0
    eors    r6,        r1
1:
    bmi     2f
    subs    r0,        r2, r3
2:
    bhs     3f
    movs    r0,        #1
    lsrs    r1,        #31
    bne     LOCAL_LABEL(CHECK_NAN_2)
    negs    r0, r0
    b       LOCAL_LABEL(CHECK_NAN_2)
3:
    bls     4f
    movs    r0,         #1
    lsrs    r1,         #31
    beq     LOCAL_LABEL(CHECK_NAN_2)
    negs    r0, r0
4:
LOCAL_LABEL(CHECK_NAN_2):
    movs    r6,         #0xff
    lsls    r6,         #24
    cmp     r2,         r6
    bhi     5f
    cmp     r3,         r6
5:
    bls     6f
    movs    r0,         #1
    negs    r0,         r0
6:
    pop     {r6, pc}
#else
    mov     r2,         r0, lsl #1
    mov     r3,         r1, lsl #1
    orrs    r12,    r2, r3, lsr #1
    it ne
    eorsne  r12,    r0, r1
    it pl
    subspl  r0,     r2, r3
    it lo
    mvnlo   r0,         r1, asr #31
    it hi
    movhi   r0,         r1, asr #31
    it ne
    orrne   r0,     r0, #1
    cmp     r2,         #0xff000000
    ite ls
    cmpls   r3,         #0xff000000
    movhi   r0,         #-1
    JMP(lr)
#endif
END_COMPILERRT_FUNCTION(__gtsf2)

DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)

@ int __unordsf2(float a, float b)

    .p2align 2
DEFINE_COMPILERRT_FUNCTION(__unordsf2)
#if defined(COMPILER_RT_ARMHF_TARGET)
    vmov    r0,         s0
    vmov    r1,         s1
#endif
    // Return 1 for NaN values, 0 otherwise.
    lsls    r2,         r0, #1
    lsls    r3,         r1, #1
    movs    r0,         #0
#if __ARM_ARCH_ISA_THUMB == 1
    movs    r1,         #0xff
    lsls    r1,         #24
    cmp     r2,         r1
    bhi     1f
    cmp     r3,         r1
1:
    bls     2f
    movs    r0,         #1
2:
#else
    cmp     r2,         #0xff000000
    ite ls
    cmpls   r3,         #0xff000000
    movhi   r0,         #1
#endif
    JMP(lr)
END_COMPILERRT_FUNCTION(__unordsf2)

#if defined(COMPILER_RT_ARMHF_TARGET)
DEFINE_COMPILERRT_FUNCTION(__aeabi_fcmpum):
	vmov s0, r0
	vmov s1, r1
	b SYMBOL_NAME(__unordsf2)
END_COMPILERRT_FUNCTION(__aeabi_fcmpum)
#else
DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)
#endif

NO_EXEC_STACK_DIRECTIVE