aboutsummaryrefslogtreecommitdiff
path: root/lib/sanitizer_common/sanitizer_coverage_libcdep.cc
blob: f511c996d8c2a232ca656aa8717f77aba4c0c8c8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
//===-- sanitizer_coverage.cc ---------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Sanitizer Coverage.
// This file implements run-time support for a poor man's coverage tool.
//
// Compiler instrumentation:
// For every interesting basic block the compiler injects the following code:
// if (Guard < 0) {
//    __sanitizer_cov(&Guard);
// }
// At the module start up time __sanitizer_cov_module_init sets the guards
// to consecutive negative numbers (-1, -2, -3, ...).
// It's fine to call __sanitizer_cov more than once for a given block.
//
// Run-time:
//  - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC).
//    and atomically set Guard to -Guard.
//  - __sanitizer_cov_dump: dump the coverage data to disk.
//  For every module of the current process that has coverage data
//  this will create a file module_name.PID.sancov.
//
// The file format is simple: the first 8 bytes is the magic,
// one of 0xC0BFFFFFFFFFFF64 and 0xC0BFFFFFFFFFFF32. The last byte of the
// magic defines the size of the following offsets.
// The rest of the data is the offsets in the module.
//
// Eventually, this coverage implementation should be obsoleted by a more
// powerful general purpose Clang/LLVM coverage instrumentation.
// Consider this implementation as prototype.
//
// FIXME: support (or at least test with) dlclose.
//===----------------------------------------------------------------------===//

#include "sanitizer_allocator_internal.h"
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include "sanitizer_symbolizer.h"
#include "sanitizer_flags.h"

static const u64 kMagic64 = 0xC0BFFFFFFFFFFF64ULL;
static const u64 kMagic32 = 0xC0BFFFFFFFFFFF32ULL;

static atomic_uint32_t dump_once_guard;  // Ensure that CovDump runs only once.

static atomic_uintptr_t coverage_counter;

// pc_array is the array containing the covered PCs.
// To make the pc_array thread- and async-signal-safe it has to be large enough.
// 128M counters "ought to be enough for anybody" (4M on 32-bit).

// With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file.
// In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping()
// dump current memory layout to another file.

static bool cov_sandboxed = false;
static fd_t cov_fd = kInvalidFd;
static unsigned int cov_max_block_size = 0;
static bool coverage_enabled = false;
static const char *coverage_dir;

namespace __sanitizer {

class CoverageData {
 public:
  void Init();
  void Enable();
  void Disable();
  void ReInit();
  void BeforeFork();
  void AfterFork(int child_pid);
  void Extend(uptr npcs);
  void Add(uptr pc, u32 *guard);
  void IndirCall(uptr caller, uptr callee, uptr callee_cache[],
                 uptr cache_size);
  void DumpCallerCalleePairs();
  void DumpTrace();
  void DumpAsBitSet();
  void DumpCounters();
  void DumpOffsets();
  void DumpAll();

  ALWAYS_INLINE
  void TraceBasicBlock(s32 *id);

  void InitializeGuardArray(s32 *guards);
  void InitializeGuards(s32 *guards, uptr n, const char *module_name,
                        uptr caller_pc);
  void InitializeCounters(u8 *counters, uptr n);
  void ReinitializeGuards();
  uptr GetNumberOf8bitCounters();
  uptr Update8bitCounterBitsetAndClearCounters(u8 *bitset);

  uptr *data();
  uptr size();

 private:
  void DirectOpen();
  void UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end);

  // Maximal size pc array may ever grow.
  // We MmapNoReserve this space to ensure that the array is contiguous.
  static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64(
      1 << (SANITIZER_ANDROID ? 24 : (SANITIZER_WINDOWS ? 27 : 26)),
      1 << 27);
  // The amount file mapping for the pc array is grown by.
  static const uptr kPcArrayMmapSize = 64 * 1024;

  // pc_array is allocated with MmapNoReserveOrDie and so it uses only as
  // much RAM as it really needs.
  uptr *pc_array;
  // Index of the first available pc_array slot.
  atomic_uintptr_t pc_array_index;
  // Array size.
  atomic_uintptr_t pc_array_size;
  // Current file mapped size of the pc array.
  uptr pc_array_mapped_size;
  // Descriptor of the file mapped pc array.
  fd_t pc_fd;

  // Vector of coverage guard arrays, protected by mu.
  InternalMmapVectorNoCtor<s32*> guard_array_vec;

  struct NamedPcRange {
    const char *copied_module_name;
    uptr beg, end; // elements [beg,end) in pc_array.
  };

  // Vector of module and compilation unit pc ranges.
  InternalMmapVectorNoCtor<NamedPcRange> comp_unit_name_vec;
  InternalMmapVectorNoCtor<NamedPcRange> module_name_vec;

  struct CounterAndSize {
    u8 *counters;
    uptr n;
  };

  InternalMmapVectorNoCtor<CounterAndSize> counters_vec;
  uptr num_8bit_counters;

  // Caller-Callee (cc) array, size and current index.
  static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24);
  uptr **cc_array;
  atomic_uintptr_t cc_array_index;
  atomic_uintptr_t cc_array_size;

  // Tracing event array, size and current pointer.
  // We record all events (basic block entries) in a global buffer of u32
  // values. Each such value is the index in pc_array.
  // So far the tracing is highly experimental:
  //   - not thread-safe;
  //   - does not support long traces;
  //   - not tuned for performance.
  static const uptr kTrEventArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 30);
  u32 *tr_event_array;
  uptr tr_event_array_size;
  u32 *tr_event_pointer;
  static const uptr kTrPcArrayMaxSize    = FIRST_32_SECOND_64(1 << 22, 1 << 27);

  StaticSpinMutex mu;
};

static CoverageData coverage_data;

void CovUpdateMapping(const char *path, uptr caller_pc = 0);

void CoverageData::DirectOpen() {
  InternalScopedString path(kMaxPathLength);
  internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw",
                    coverage_dir, internal_getpid());
  pc_fd = OpenFile(path.data(), RdWr);
  if (pc_fd == kInvalidFd) {
    Report("Coverage: failed to open %s for reading/writing\n", path.data());
    Die();
  }

  pc_array_mapped_size = 0;
  CovUpdateMapping(coverage_dir);
}

void CoverageData::Init() {
  pc_fd = kInvalidFd;
}

void CoverageData::Enable() {
  if (pc_array)
    return;
  pc_array = reinterpret_cast<uptr *>(
      MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit"));
  atomic_store(&pc_array_index, 0, memory_order_relaxed);
  if (common_flags()->coverage_direct) {
    atomic_store(&pc_array_size, 0, memory_order_relaxed);
  } else {
    atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed);
  }

  cc_array = reinterpret_cast<uptr **>(MmapNoReserveOrDie(
      sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array"));
  atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed);
  atomic_store(&cc_array_index, 0, memory_order_relaxed);

  // Allocate tr_event_array with a guard page at the end.
  tr_event_array = reinterpret_cast<u32 *>(MmapNoReserveOrDie(
      sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity(),
      "CovInit::tr_event_array"));
  MprotectNoAccess(
      reinterpret_cast<uptr>(&tr_event_array[kTrEventArrayMaxSize]),
      GetMmapGranularity());
  tr_event_array_size = kTrEventArrayMaxSize;
  tr_event_pointer = tr_event_array;

  num_8bit_counters = 0;
}

void CoverageData::InitializeGuardArray(s32 *guards) {
  Enable();  // Make sure coverage is enabled at this point.
  s32 n = guards[0];
  for (s32 j = 1; j <= n; j++) {
    uptr idx = atomic_fetch_add(&pc_array_index, 1, memory_order_relaxed);
    guards[j] = -static_cast<s32>(idx + 1);
  }
}

void CoverageData::Disable() {
  if (pc_array) {
    UnmapOrDie(pc_array, sizeof(uptr) * kPcArrayMaxSize);
    pc_array = nullptr;
  }
  if (cc_array) {
    UnmapOrDie(cc_array, sizeof(uptr *) * kCcArrayMaxSize);
    cc_array = nullptr;
  }
  if (tr_event_array) {
    UnmapOrDie(tr_event_array,
               sizeof(tr_event_array[0]) * kTrEventArrayMaxSize +
                   GetMmapGranularity());
    tr_event_array = nullptr;
    tr_event_pointer = nullptr;
  }
  if (pc_fd != kInvalidFd) {
    CloseFile(pc_fd);
    pc_fd = kInvalidFd;
  }
}

void CoverageData::ReinitializeGuards() {
  // Assuming single thread.
  atomic_store(&pc_array_index, 0, memory_order_relaxed);
  for (uptr i = 0; i < guard_array_vec.size(); i++)
    InitializeGuardArray(guard_array_vec[i]);
}

void CoverageData::ReInit() {
  Disable();
  if (coverage_enabled) {
    if (common_flags()->coverage_direct) {
      // In memory-mapped mode we must extend the new file to the known array
      // size.
      uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
      uptr npcs = size / sizeof(uptr);
      Enable();
      if (size) Extend(npcs);
      if (coverage_enabled) CovUpdateMapping(coverage_dir);
    } else {
      Enable();
    }
  }
  // Re-initialize the guards.
  // We are single-threaded now, no need to grab any lock.
  CHECK_EQ(atomic_load(&pc_array_index, memory_order_relaxed), 0);
  ReinitializeGuards();
}

void CoverageData::BeforeFork() {
  mu.Lock();
}

void CoverageData::AfterFork(int child_pid) {
  // We are single-threaded so it's OK to release the lock early.
  mu.Unlock();
  if (child_pid == 0) ReInit();
}

// Extend coverage PC array to fit additional npcs elements.
void CoverageData::Extend(uptr npcs) {
  if (!common_flags()->coverage_direct) return;
  SpinMutexLock l(&mu);

  uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
  size += npcs * sizeof(uptr);

  if (coverage_enabled && size > pc_array_mapped_size) {
    if (pc_fd == kInvalidFd) DirectOpen();
    CHECK_NE(pc_fd, kInvalidFd);

    uptr new_mapped_size = pc_array_mapped_size;
    while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize;
    CHECK_LE(new_mapped_size, sizeof(uptr) * kPcArrayMaxSize);

    // Extend the file and map the new space at the end of pc_array.
    uptr res = internal_ftruncate(pc_fd, new_mapped_size);
    int err;
    if (internal_iserror(res, &err)) {
      Printf("failed to extend raw coverage file: %d\n", err);
      Die();
    }

    uptr next_map_base = ((uptr)pc_array) + pc_array_mapped_size;
    void *p = MapWritableFileToMemory((void *)next_map_base,
                                      new_mapped_size - pc_array_mapped_size,
                                      pc_fd, pc_array_mapped_size);
    CHECK_EQ((uptr)p, next_map_base);
    pc_array_mapped_size = new_mapped_size;
  }

  atomic_store(&pc_array_size, size, memory_order_release);
}

void CoverageData::InitializeCounters(u8 *counters, uptr n) {
  if (!counters) return;
  CHECK_EQ(reinterpret_cast<uptr>(counters) % 16, 0);
  n = RoundUpTo(n, 16); // The compiler must ensure that counters is 16-aligned.
  SpinMutexLock l(&mu);
  counters_vec.push_back({counters, n});
  num_8bit_counters += n;
}

void CoverageData::UpdateModuleNameVec(uptr caller_pc, uptr range_beg,
                                       uptr range_end) {
  auto sym = Symbolizer::GetOrInit();
  if (!sym)
    return;
  const char *module_name = sym->GetModuleNameForPc(caller_pc);
  if (!module_name) return;
  if (module_name_vec.empty() ||
      module_name_vec.back().copied_module_name != module_name)
    module_name_vec.push_back({module_name, range_beg, range_end});
  else
    module_name_vec.back().end = range_end;
}

void CoverageData::InitializeGuards(s32 *guards, uptr n,
                                    const char *comp_unit_name,
                                    uptr caller_pc) {
  // The array 'guards' has n+1 elements, we use the element zero
  // to store 'n'.
  CHECK_LT(n, 1 << 30);
  guards[0] = static_cast<s32>(n);
  InitializeGuardArray(guards);
  SpinMutexLock l(&mu);
  uptr range_end = atomic_load(&pc_array_index, memory_order_relaxed);
  uptr range_beg = range_end - n;
  comp_unit_name_vec.push_back({comp_unit_name, range_beg, range_end});
  guard_array_vec.push_back(guards);
  UpdateModuleNameVec(caller_pc, range_beg, range_end);
}

static const uptr kBundleCounterBits = 16;

// When coverage_order_pcs==true and SANITIZER_WORDSIZE==64
// we insert the global counter into the first 16 bits of the PC.
uptr BundlePcAndCounter(uptr pc, uptr counter) {
  if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
    return pc;
  static const uptr kMaxCounter = (1 << kBundleCounterBits) - 1;
  if (counter > kMaxCounter)
    counter = kMaxCounter;
  CHECK_EQ(0, pc >> (SANITIZER_WORDSIZE - kBundleCounterBits));
  return pc | (counter << (SANITIZER_WORDSIZE - kBundleCounterBits));
}

uptr UnbundlePc(uptr bundle) {
  if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
    return bundle;
  return (bundle << kBundleCounterBits) >> kBundleCounterBits;
}

uptr UnbundleCounter(uptr bundle) {
  if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
    return 0;
  return bundle >> (SANITIZER_WORDSIZE - kBundleCounterBits);
}

// If guard is negative, atomically set it to -guard and store the PC in
// pc_array.
void CoverageData::Add(uptr pc, u32 *guard) {
  atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard);
  s32 guard_value = atomic_load(atomic_guard, memory_order_relaxed);
  if (guard_value >= 0) return;

  atomic_store(atomic_guard, -guard_value, memory_order_relaxed);
  if (!pc_array) return;

  uptr idx = -guard_value - 1;
  if (idx >= atomic_load(&pc_array_index, memory_order_acquire))
    return;  // May happen after fork when pc_array_index becomes 0.
  CHECK_LT(idx * sizeof(uptr),
           atomic_load(&pc_array_size, memory_order_acquire));
  uptr counter = atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed);
  pc_array[idx] = BundlePcAndCounter(pc, counter);
}

// Registers a pair caller=>callee.
// When a given caller is seen for the first time, the callee_cache is added
// to the global array cc_array, callee_cache[0] is set to caller and
// callee_cache[1] is set to cache_size.
// Then we are trying to add callee to callee_cache [2,cache_size) if it is
// not there yet.
// If the cache is full we drop the callee (may want to fix this later).
void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[],
                             uptr cache_size) {
  if (!cc_array) return;
  atomic_uintptr_t *atomic_callee_cache =
      reinterpret_cast<atomic_uintptr_t *>(callee_cache);
  uptr zero = 0;
  if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller,
                                     memory_order_seq_cst)) {
    uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed);
    CHECK_LT(idx * sizeof(uptr),
             atomic_load(&cc_array_size, memory_order_acquire));
    callee_cache[1] = cache_size;
    cc_array[idx] = callee_cache;
  }
  CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller);
  for (uptr i = 2; i < cache_size; i++) {
    uptr was = 0;
    if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee,
                                       memory_order_seq_cst)) {
      atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed);
      return;
    }
    if (was == callee)  // Already have this callee.
      return;
  }
}

uptr CoverageData::GetNumberOf8bitCounters() {
  return num_8bit_counters;
}

// Map every 8bit counter to a 8-bit bitset and clear the counter.
uptr CoverageData::Update8bitCounterBitsetAndClearCounters(u8 *bitset) {
  uptr num_new_bits = 0;
  uptr cur = 0;
  // For better speed we map 8 counters to 8 bytes of bitset at once.
  static const uptr kBatchSize = 8;
  CHECK_EQ(reinterpret_cast<uptr>(bitset) % kBatchSize, 0);
  for (uptr i = 0, len = counters_vec.size(); i < len; i++) {
    u8 *c = counters_vec[i].counters;
    uptr n = counters_vec[i].n;
    CHECK_EQ(n % 16, 0);
    CHECK_EQ(cur % kBatchSize, 0);
    CHECK_EQ(reinterpret_cast<uptr>(c) % kBatchSize, 0);
    if (!bitset) {
      internal_bzero_aligned16(c, n);
      cur += n;
      continue;
    }
    for (uptr j = 0; j < n; j += kBatchSize, cur += kBatchSize) {
      CHECK_LT(cur, num_8bit_counters);
      u64 *pc64 = reinterpret_cast<u64*>(c + j);
      u64 *pb64 = reinterpret_cast<u64*>(bitset + cur);
      u64 c64 = *pc64;
      u64 old_bits_64 = *pb64;
      u64 new_bits_64 = old_bits_64;
      if (c64) {
        *pc64 = 0;
        for (uptr k = 0; k < kBatchSize; k++) {
          u64 x = (c64 >> (8 * k)) & 0xff;
          if (x) {
            u64 bit = 0;
            /**/ if (x >= 128) bit = 128;
            else if (x >= 32) bit = 64;
            else if (x >= 16) bit = 32;
            else if (x >= 8) bit = 16;
            else if (x >= 4) bit = 8;
            else if (x >= 3) bit = 4;
            else if (x >= 2) bit = 2;
            else if (x >= 1) bit = 1;
            u64 mask = bit << (8 * k);
            if (!(new_bits_64 & mask)) {
              num_new_bits++;
              new_bits_64 |= mask;
            }
          }
        }
        *pb64 = new_bits_64;
      }
    }
  }
  CHECK_EQ(cur, num_8bit_counters);
  return num_new_bits;
}

uptr *CoverageData::data() {
  return pc_array;
}

uptr CoverageData::size() {
  return atomic_load(&pc_array_index, memory_order_relaxed);
}

// Block layout for packed file format: header, followed by module name (no
// trailing zero), followed by data blob.
struct CovHeader {
  int pid;
  unsigned int module_name_length;
  unsigned int data_length;
};

static void CovWritePacked(int pid, const char *module, const void *blob,
                           unsigned int blob_size) {
  if (cov_fd == kInvalidFd) return;
  unsigned module_name_length = internal_strlen(module);
  CovHeader header = {pid, module_name_length, blob_size};

  if (cov_max_block_size == 0) {
    // Writing to a file. Just go ahead.
    WriteToFile(cov_fd, &header, sizeof(header));
    WriteToFile(cov_fd, module, module_name_length);
    WriteToFile(cov_fd, blob, blob_size);
  } else {
    // Writing to a socket. We want to split the data into appropriately sized
    // blocks.
    InternalScopedBuffer<char> block(cov_max_block_size);
    CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data());
    uptr header_size_with_module = sizeof(header) + module_name_length;
    CHECK_LT(header_size_with_module, cov_max_block_size);
    unsigned int max_payload_size =
        cov_max_block_size - header_size_with_module;
    char *block_pos = block.data();
    internal_memcpy(block_pos, &header, sizeof(header));
    block_pos += sizeof(header);
    internal_memcpy(block_pos, module, module_name_length);
    block_pos += module_name_length;
    char *block_data_begin = block_pos;
    const char *blob_pos = (const char *)blob;
    while (blob_size > 0) {
      unsigned int payload_size = Min(blob_size, max_payload_size);
      blob_size -= payload_size;
      internal_memcpy(block_data_begin, blob_pos, payload_size);
      blob_pos += payload_size;
      ((CovHeader *)block.data())->data_length = payload_size;
      WriteToFile(cov_fd, block.data(), header_size_with_module + payload_size);
    }
  }
}

// If packed = false: <name>.<pid>.<sancov> (name = module name).
// If packed = true and name == 0: <pid>.<sancov>.<packed>.
// If packed = true and name != 0: <name>.<sancov>.<packed> (name is
// user-supplied).
static fd_t CovOpenFile(InternalScopedString *path, bool packed,
                       const char *name, const char *extension = "sancov") {
  path->clear();
  if (!packed) {
    CHECK(name);
    path->append("%s/%s.%zd.%s", coverage_dir, name, internal_getpid(),
                extension);
  } else {
    if (!name)
      path->append("%s/%zd.%s.packed", coverage_dir, internal_getpid(),
                  extension);
    else
      path->append("%s/%s.%s.packed", coverage_dir, name, extension);
  }
  error_t err;
  fd_t fd = OpenFile(path->data(), WrOnly, &err);
  if (fd == kInvalidFd)
    Report("SanitizerCoverage: failed to open %s for writing (reason: %d)\n",
           path->data(), err);
  return fd;
}

// Dump trace PCs and trace events into two separate files.
void CoverageData::DumpTrace() {
  uptr max_idx = tr_event_pointer - tr_event_array;
  if (!max_idx) return;
  auto sym = Symbolizer::GetOrInit();
  if (!sym)
    return;
  InternalScopedString out(32 << 20);
  for (uptr i = 0, n = size(); i < n; i++) {
    const char *module_name = "<unknown>";
    uptr module_address = 0;
    sym->GetModuleNameAndOffsetForPC(UnbundlePc(pc_array[i]), &module_name,
                                     &module_address);
    out.append("%s 0x%zx\n", module_name, module_address);
  }
  InternalScopedString path(kMaxPathLength);
  fd_t fd = CovOpenFile(&path, false, "trace-points");
  if (fd == kInvalidFd) return;
  WriteToFile(fd, out.data(), out.length());
  CloseFile(fd);

  fd = CovOpenFile(&path, false, "trace-compunits");
  if (fd == kInvalidFd) return;
  out.clear();
  for (uptr i = 0; i < comp_unit_name_vec.size(); i++)
    out.append("%s\n", comp_unit_name_vec[i].copied_module_name);
  WriteToFile(fd, out.data(), out.length());
  CloseFile(fd);

  fd = CovOpenFile(&path, false, "trace-events");
  if (fd == kInvalidFd) return;
  uptr bytes_to_write = max_idx * sizeof(tr_event_array[0]);
  u8 *event_bytes = reinterpret_cast<u8*>(tr_event_array);
  // The trace file could be huge, and may not be written with a single syscall.
  while (bytes_to_write) {
    uptr actually_written;
    if (WriteToFile(fd, event_bytes, bytes_to_write, &actually_written) &&
        actually_written <= bytes_to_write) {
      bytes_to_write -= actually_written;
      event_bytes += actually_written;
    } else {
      break;
    }
  }
  CloseFile(fd);
  VReport(1, " CovDump: Trace: %zd PCs written\n", size());
  VReport(1, " CovDump: Trace: %zd Events written\n", max_idx);
}

// This function dumps the caller=>callee pairs into a file as a sequence of
// lines like "module_name offset".
void CoverageData::DumpCallerCalleePairs() {
  uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed);
  if (!max_idx) return;
  auto sym = Symbolizer::GetOrInit();
  if (!sym)
    return;
  InternalScopedString out(32 << 20);
  uptr total = 0;
  for (uptr i = 0; i < max_idx; i++) {
    uptr *cc_cache = cc_array[i];
    CHECK(cc_cache);
    uptr caller = cc_cache[0];
    uptr n_callees = cc_cache[1];
    const char *caller_module_name = "<unknown>";
    uptr caller_module_address = 0;
    sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name,
                                     &caller_module_address);
    for (uptr j = 2; j < n_callees; j++) {
      uptr callee = cc_cache[j];
      if (!callee) break;
      total++;
      const char *callee_module_name = "<unknown>";
      uptr callee_module_address = 0;
      sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name,
                                       &callee_module_address);
      out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name,
                 caller_module_address, callee_module_name,
                 callee_module_address);
    }
  }
  InternalScopedString path(kMaxPathLength);
  fd_t fd = CovOpenFile(&path, false, "caller-callee");
  if (fd == kInvalidFd) return;
  WriteToFile(fd, out.data(), out.length());
  CloseFile(fd);
  VReport(1, " CovDump: %zd caller-callee pairs written\n", total);
}

// Record the current PC into the event buffer.
// Every event is a u32 value (index in tr_pc_array_index) so we compute
// it once and then cache in the provided 'cache' storage.
//
// This function will eventually be inlined by the compiler.
void CoverageData::TraceBasicBlock(s32 *id) {
  // Will trap here if
  //  1. coverage is not enabled at run-time.
  //  2. The array tr_event_array is full.
  *tr_event_pointer = static_cast<u32>(*id - 1);
  tr_event_pointer++;
}

void CoverageData::DumpCounters() {
  if (!common_flags()->coverage_counters) return;
  uptr n = coverage_data.GetNumberOf8bitCounters();
  if (!n) return;
  InternalScopedBuffer<u8> bitset(n);
  coverage_data.Update8bitCounterBitsetAndClearCounters(bitset.data());
  InternalScopedString path(kMaxPathLength);

  for (uptr m = 0; m < module_name_vec.size(); m++) {
    auto r = module_name_vec[m];
    CHECK(r.copied_module_name);
    CHECK_LE(r.beg, r.end);
    CHECK_LE(r.end, size());
    const char *base_name = StripModuleName(r.copied_module_name);
    fd_t fd =
        CovOpenFile(&path, /* packed */ false, base_name, "counters-sancov");
    if (fd == kInvalidFd) return;
    WriteToFile(fd, bitset.data() + r.beg, r.end - r.beg);
    CloseFile(fd);
    VReport(1, " CovDump: %zd counters written for '%s'\n", r.end - r.beg,
            base_name);
  }
}

void CoverageData::DumpAsBitSet() {
  if (!common_flags()->coverage_bitset) return;
  if (!size()) return;
  InternalScopedBuffer<char> out(size());
  InternalScopedString path(kMaxPathLength);
  for (uptr m = 0; m < module_name_vec.size(); m++) {
    uptr n_set_bits = 0;
    auto r = module_name_vec[m];
    CHECK(r.copied_module_name);
    CHECK_LE(r.beg, r.end);
    CHECK_LE(r.end, size());
    for (uptr i = r.beg; i < r.end; i++) {
      uptr pc = UnbundlePc(pc_array[i]);
      out[i] = pc ? '1' : '0';
      if (pc)
        n_set_bits++;
    }
    const char *base_name = StripModuleName(r.copied_module_name);
    fd_t fd = CovOpenFile(&path, /* packed */false, base_name, "bitset-sancov");
    if (fd == kInvalidFd) return;
    WriteToFile(fd, out.data() + r.beg, r.end - r.beg);
    CloseFile(fd);
    VReport(1,
            " CovDump: bitset of %zd bits written for '%s', %zd bits are set\n",
            r.end - r.beg, base_name, n_set_bits);
  }
}

void CoverageData::DumpOffsets() {
  auto sym = Symbolizer::GetOrInit();
  if (!common_flags()->coverage_pcs) return;
  CHECK_NE(sym, nullptr);
  InternalMmapVector<uptr> offsets(0);
  InternalScopedString path(kMaxPathLength);
  for (uptr m = 0; m < module_name_vec.size(); m++) {
    offsets.clear();
    uptr num_words_for_magic = SANITIZER_WORDSIZE == 64 ? 1 : 2;
    for (uptr i = 0; i < num_words_for_magic; i++)
      offsets.push_back(0);
    auto r = module_name_vec[m];
    CHECK(r.copied_module_name);
    CHECK_LE(r.beg, r.end);
    CHECK_LE(r.end, size());
    for (uptr i = r.beg; i < r.end; i++) {
      uptr pc = UnbundlePc(pc_array[i]);
      uptr counter = UnbundleCounter(pc_array[i]);
      if (!pc) continue; // Not visited.
      uptr offset = 0;
      sym->GetModuleNameAndOffsetForPC(pc, nullptr, &offset);
      offsets.push_back(BundlePcAndCounter(offset, counter));
    }

    CHECK_GE(offsets.size(), num_words_for_magic);
    SortArray(offsets.data(), offsets.size());
    for (uptr i = 0; i < offsets.size(); i++)
      offsets[i] = UnbundlePc(offsets[i]);

    uptr num_offsets = offsets.size() - num_words_for_magic;
    u64 *magic_p = reinterpret_cast<u64*>(offsets.data());
    CHECK_EQ(*magic_p, 0ULL);
    // FIXME: we may want to write 32-bit offsets even in 64-mode
    // if all the offsets are small enough.
    *magic_p = SANITIZER_WORDSIZE == 64 ? kMagic64 : kMagic32;

    const char *module_name = StripModuleName(r.copied_module_name);
    if (cov_sandboxed) {
      if (cov_fd != kInvalidFd) {
        CovWritePacked(internal_getpid(), module_name, offsets.data(),
                       offsets.size() * sizeof(offsets[0]));
        VReport(1, " CovDump: %zd PCs written to packed file\n", num_offsets);
      }
    } else {
      // One file per module per process.
      fd_t fd = CovOpenFile(&path, false /* packed */, module_name);
      if (fd == kInvalidFd) continue;
      WriteToFile(fd, offsets.data(), offsets.size() * sizeof(offsets[0]));
      CloseFile(fd);
      VReport(1, " CovDump: %s: %zd PCs written\n", path.data(), num_offsets);
    }
  }
  if (cov_fd != kInvalidFd)
    CloseFile(cov_fd);
}

void CoverageData::DumpAll() {
  if (!coverage_enabled || common_flags()->coverage_direct) return;
  if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed))
    return;
  DumpAsBitSet();
  DumpCounters();
  DumpTrace();
  DumpOffsets();
  DumpCallerCalleePairs();
}

void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
  if (!args) return;
  if (!coverage_enabled) return;
  cov_sandboxed = args->coverage_sandboxed;
  if (!cov_sandboxed) return;
  cov_max_block_size = args->coverage_max_block_size;
  if (args->coverage_fd >= 0) {
    cov_fd = (fd_t)args->coverage_fd;
  } else {
    InternalScopedString path(kMaxPathLength);
    // Pre-open the file now. The sandbox won't allow us to do it later.
    cov_fd = CovOpenFile(&path, true /* packed */, 0);
  }
}

fd_t MaybeOpenCovFile(const char *name) {
  CHECK(name);
  if (!coverage_enabled) return kInvalidFd;
  InternalScopedString path(kMaxPathLength);
  return CovOpenFile(&path, true /* packed */, name);
}

void CovBeforeFork() {
  coverage_data.BeforeFork();
}

void CovAfterFork(int child_pid) {
  coverage_data.AfterFork(child_pid);
}

void InitializeCoverage(bool enabled, const char *dir) {
  if (coverage_enabled)
    return;  // May happen if two sanitizer enable coverage in the same process.
  coverage_enabled = enabled;
  coverage_dir = dir;
  coverage_data.Init();
  if (enabled) coverage_data.Enable();
  if (!common_flags()->coverage_direct) Atexit(__sanitizer_cov_dump);
}

void ReInitializeCoverage(bool enabled, const char *dir) {
  coverage_enabled = enabled;
  coverage_dir = dir;
  coverage_data.ReInit();
}

void CoverageUpdateMapping() {
  if (coverage_enabled)
    CovUpdateMapping(coverage_dir);
}

}  // namespace __sanitizer

extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov(u32 *guard) {
  coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
                    guard);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_with_check(u32 *guard) {
  atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard);
  if (static_cast<s32>(
          __sanitizer::atomic_load(atomic_guard, memory_order_relaxed)) < 0)
    __sanitizer_cov(guard);
}
SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) {
  coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
                          callee, callee_cache16, 16);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() {
  coverage_enabled = true;
  coverage_dir = common_flags()->coverage_dir;
  coverage_data.Init();
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
  coverage_data.DumpAll();
}
SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_module_init(s32 *guards, uptr npcs, u8 *counters,
                            const char *comp_unit_name) {
  coverage_data.InitializeGuards(guards, npcs, comp_unit_name, GET_CALLER_PC());
  coverage_data.InitializeCounters(counters, npcs);
  if (!common_flags()->coverage_direct) return;
  if (SANITIZER_ANDROID && coverage_enabled) {
    // dlopen/dlclose interceptors do not work on Android, so we rely on
    // Extend() calls to update .sancov.map.
    CovUpdateMapping(coverage_dir, GET_CALLER_PC());
  }
  coverage_data.Extend(npcs);
}
SANITIZER_INTERFACE_ATTRIBUTE
sptr __sanitizer_maybe_open_cov_file(const char *name) {
  return (sptr)MaybeOpenCovFile(name);
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_total_unique_coverage() {
  return atomic_load(&coverage_counter, memory_order_relaxed);
}

SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_cov_trace_func_enter(s32 *id) {
  coverage_data.TraceBasicBlock(id);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_cov_trace_basic_block(s32 *id) {
  coverage_data.TraceBasicBlock(id);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_reset_coverage() {
  coverage_data.ReinitializeGuards();
  internal_bzero_aligned16(
      coverage_data.data(),
      RoundUpTo(coverage_data.size() * sizeof(coverage_data.data()[0]), 16));
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_coverage_guards(uptr **data) {
  *data = coverage_data.data();
  return coverage_data.size();
}

SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_number_of_counters() {
  return coverage_data.GetNumberOf8bitCounters();
}

SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_update_counter_bitset_and_clear_counters(u8 *bitset) {
  return coverage_data.Update8bitCounterBitsetAndClearCounters(bitset);
}
// Default empty implementation (weak). Users should redefine it.
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_cov_trace_cmp() {}
}  // extern "C"