aboutsummaryrefslogtreecommitdiff
path: root/lib/xray/xray_fdr_logging.cc
blob: e538b477a3defa42a944dcf7675f26466ee9df28 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//===-- xray_fdr_logging.cc ------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Here we implement the Flight Data Recorder mode for XRay, where we use
// compact structures to store records in memory as well as when writing out the
// data to files.
//
//===----------------------------------------------------------------------===//
#include "xray_fdr_logging.h"
#include <algorithm>
#include <bitset>
#include <cerrno>
#include <cstring>
#include <sys/syscall.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include <unordered_map>

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray/xray_interface.h"
#include "xray/xray_records.h"
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_fdr_logging_impl.h"
#include "xray_flags.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

// Global BufferQueue.
std::shared_ptr<BufferQueue> BQ;

__sanitizer::atomic_sint32_t LoggingStatus = {
    XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};

__sanitizer::atomic_sint32_t LogFlushStatus = {
    XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};

std::unique_ptr<FDRLoggingOptions> FDROptions;

XRayLogInitStatus fdrLoggingInit(std::size_t BufferSize, std::size_t BufferMax,
                                 void *Options,
                                 size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  if (OptionsSize != sizeof(FDRLoggingOptions))
    return static_cast<XRayLogInitStatus>(__sanitizer::atomic_load(
        &LoggingStatus, __sanitizer::memory_order_acquire));
  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  if (!__sanitizer::atomic_compare_exchange_strong(
          &LoggingStatus, &CurrentStatus,
          XRayLogInitStatus::XRAY_LOG_INITIALIZING,
          __sanitizer::memory_order_release))
    return static_cast<XRayLogInitStatus>(CurrentStatus);

  FDROptions.reset(new FDRLoggingOptions());
  memcpy(FDROptions.get(), Options, OptionsSize);
  bool Success = false;
  BQ = std::make_shared<BufferQueue>(BufferSize, BufferMax, Success);
  if (!Success) {
    Report("BufferQueue init failed.\n");
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  }

  // Install the actual handleArg0 handler after initialising the buffers.
  __xray_set_handler(fdrLoggingHandleArg0);

  __sanitizer::atomic_store(&LoggingStatus,
                            XRayLogInitStatus::XRAY_LOG_INITIALIZED,
                            __sanitizer::memory_order_release);
  Report("XRay FDR init successful.\n");
  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

// Must finalize before flushing.
XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
  if (__sanitizer::atomic_load(&LoggingStatus,
                               __sanitizer::memory_order_acquire) !=
      XRayLogInitStatus::XRAY_LOG_FINALIZED)
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;

  s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  if (!__sanitizer::atomic_compare_exchange_strong(
          &LogFlushStatus, &Result, XRayLogFlushStatus::XRAY_LOG_FLUSHING,
          __sanitizer::memory_order_release))
    return static_cast<XRayLogFlushStatus>(Result);

  // Make a copy of the BufferQueue pointer to prevent other threads that may be
  // resetting it from blowing away the queue prematurely while we're dealing
  // with it.
  auto LocalBQ = BQ;

  // We write out the file in the following format:
  //
  //   1) We write down the XRay file header with version 1, type FDR_LOG.
  //   2) Then we use the 'apply' member of the BufferQueue that's live, to
  //      ensure that at this point in time we write down the buffers that have
  //      been released (and marked "used") -- we dump the full buffer for now
  //      (fixed-sized) and let the tools reading the buffers deal with the data
  //      afterwards.
  //
  int Fd = FDROptions->Fd;
  if (Fd == -1)
    Fd = getLogFD();
  if (Fd == -1) {
    auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
    __sanitizer::atomic_store(&LogFlushStatus, Result,
                              __sanitizer::memory_order_release);
    return Result;
  }

  // Test for required CPU features and cache the cycle frequency
  static bool TSCSupported = probeRequiredCPUFeatures();
  static uint64_t CycleFrequency = TSCSupported ? getTSCFrequency()
                                   : __xray::NanosecondsPerSecond;

  XRayFileHeader Header;
  Header.Version = 1;
  Header.Type = FileTypes::FDR_LOG;
  Header.CycleFrequency = CycleFrequency;
  // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
  // before setting the values in the header.
  Header.ConstantTSC = 1;
  Header.NonstopTSC = 1;
  Header.FdrData = FdrAdditionalHeaderData{LocalBQ->ConfiguredBufferSize()};
  retryingWriteAll(Fd, reinterpret_cast<char *>(&Header),
                   reinterpret_cast<char *>(&Header) + sizeof(Header));

  LocalBQ->apply([&](const BufferQueue::Buffer &B) {
    uint64_t BufferSize = B.Size;
    if (BufferSize > 0) {
      retryingWriteAll(Fd, reinterpret_cast<char *>(B.Buffer),
                       reinterpret_cast<char *>(B.Buffer) + B.Size);
    }
  });
  __sanitizer::atomic_store(&LogFlushStatus,
                            XRayLogFlushStatus::XRAY_LOG_FLUSHED,
                            __sanitizer::memory_order_release);
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  if (!__sanitizer::atomic_compare_exchange_strong(
          &LoggingStatus, &CurrentStatus,
          XRayLogInitStatus::XRAY_LOG_FINALIZING,
          __sanitizer::memory_order_release))
    return static_cast<XRayLogInitStatus>(CurrentStatus);

  // Do special things to make the log finalize itself, and not allow any more
  // operations to be performed until re-initialized.
  BQ->finalize();

  __sanitizer::atomic_store(&LoggingStatus,
                            XRayLogInitStatus::XRAY_LOG_FINALIZED,
                            __sanitizer::memory_order_release);
  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

XRayLogInitStatus fdrLoggingReset() XRAY_NEVER_INSTRUMENT {
  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_FINALIZED;
  if (__sanitizer::atomic_compare_exchange_strong(
          &LoggingStatus, &CurrentStatus,
          XRayLogInitStatus::XRAY_LOG_INITIALIZED,
          __sanitizer::memory_order_release))
    return static_cast<XRayLogInitStatus>(CurrentStatus);

  // Release the in-memory buffer queue.
  BQ.reset();

  // Spin until the flushing status is flushed.
  s32 CurrentFlushingStatus = XRayLogFlushStatus::XRAY_LOG_FLUSHED;
  while (__sanitizer::atomic_compare_exchange_weak(
      &LogFlushStatus, &CurrentFlushingStatus,
      XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
      __sanitizer::memory_order_release)) {
    if (CurrentFlushingStatus == XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING)
      break;
    CurrentFlushingStatus = XRayLogFlushStatus::XRAY_LOG_FLUSHED;
  }

  // At this point, we know that the status is flushed, and that we can assume
  return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
}

void fdrLoggingHandleArg0(int32_t FuncId,
                          XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
  // We want to get the TSC as early as possible, so that we can check whether
  // we've seen this CPU before. We also do it before we load anything else, to
  // allow for forward progress with the scheduling.
  unsigned char CPU;
  uint64_t TSC;

  // Test once for required CPU features
  static bool TSCSupported = probeRequiredCPUFeatures();

  if(TSCSupported) {
    TSC = __xray::readTSC(CPU);
  } else {
    // FIXME: This code needs refactoring as it appears in multiple locations
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettime(2) return %d, errno=%d", result, int(errno));
      TS = {0, 0};
    }
    CPU = 0;
    TSC = TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
  }

  __xray_fdr_internal::processFunctionHook(FuncId, Entry, TSC, CPU,
                                           clock_gettime, LoggingStatus, BQ);
}

} // namespace __xray

static auto UNUSED Unused = [] {
  using namespace __xray;
  if (flags()->xray_fdr_log) {
    XRayLogImpl Impl{
        fdrLoggingInit, fdrLoggingFinalize, fdrLoggingHandleArg0,
        fdrLoggingFlush,
    };
    __xray_set_log_impl(Impl);
  }
  return true;
}();