aboutsummaryrefslogtreecommitdiff
path: root/lld/ELF/ARMErrataFix.cpp
blob: 86b822f02fd5543515fd5c71f9ea28144ebde774 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
//===- ARMErrataFix.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around the
// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
// can result in an incorrect instruction fetch or processor deadlock." The
// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
// Cortex-A8. A high level description of the patching technique is given in
// the opening comment of AArch64ErrataFix.cpp.
//===----------------------------------------------------------------------===//

#include "ARMErrataFix.h"

#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;

// The documented title for Erratum 657417 is:
// "A 32bit branch instruction that spans two 4K regions can result in an
// incorrect instruction fetch or processor deadlock". Graphically using a
// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
// xxxxxx000 // Memory region 1 start
// target:
// ...
// xxxxxxffe f7fe // First halfword of branch to target:
// xxxxxx000 // Memory region 2 start
// xxxxxx002 bfff // Second halfword of branch to target:
//
// The specific trigger conditions that can be detected at link time are:
// - There is a 32-bit Thumb-2 branch instruction with an address of the form
//   xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
//   second 2 bytes are in region 2.
// - The branch instruction is one of BLX, BL, B.w BCC.w
// - The instruction preceding the branch is a 32-bit non-branch instruction.
// - The target of the branch is in region 1.
//
// The linker mitigation for the fix is to redirect any branch that meets the
// erratum conditions to a patch section containing a branch to the target.
//
// As adding patch sections may move branches onto region boundaries the patch
// must iterate until no more patches are added.
//
// Example, before:
// 00000FFA func: NOP.w      // 32-bit Thumb function
// 00000FFE       B.W func   // 32-bit branch spanning 2 regions, dest in 1st.
// Example, after:
// 00000FFA func: NOP.w      // 32-bit Thumb function
// 00000FFE       B.w __CortexA8657417_00000FFE
// 00001002       2 - bytes padding
// 00001004 __CortexA8657417_00000FFE: B.w func

class elf::Patch657417Section : public SyntheticSection {
public:
  Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);

  void writeTo(uint8_t *buf) override;

  size_t getSize() const override { return 4; }

  // Get the virtual address of the branch instruction at patcheeOffset.
  uint64_t getBranchAddr() const;

  static bool classof(const SectionBase *d) {
    return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
  }

  // The Section we are patching.
  const InputSection *patchee;
  // The offset of the instruction in the Patchee section we are patching.
  uint64_t patcheeOffset;
  // A label for the start of the Patch that we can use as a relocation target.
  Symbol *patchSym;
  // A decoding of the branch instruction at patcheeOffset.
  uint32_t instr;
  // True If the patch is to be written in ARM state, otherwise the patch will
  // be written in Thumb state.
  bool isARM;
};

// Return true if the half-word, when taken as the first of a pair of halfwords
// is the first half of a 32-bit instruction.
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3: 32-bit Thumb instruction encoding
// |             HW1                   |               HW2                |
// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op|           x (15)              |
// With op1 == 0b00, a 16-bit instruction is encoded.
//
// We test only the first halfword, looking for op != 0b00.
static bool is32bitInstruction(uint16_t hw) {
  return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
}

// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3.4 Branches and miscellaneous control.
// |             HW1              |               HW2                |
// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
// op1 == 0x1               | Branch (B.W)
// op1 == 1x0               | Branch with Link and Exchange (BLX.w)
// op1 == 1x1               | Branch with Link (BL.W)

static bool isBcc(uint32_t instr) {
  return (instr & 0xf800d000) == 0xf0008000 &&
         (instr & 0x03800000) != 0x03800000;
}

static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }

static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }

static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }

static bool is32bitBranch(uint32_t instr) {
  return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
}

Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
                                       uint32_t instr, bool isARM)
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
                       ".text.patch"),
      patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
  parent = p->getParent();
  patchSym = addSyntheticLocal(
      saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
      isARM ? 0 : 1, getSize(), *this);
  addSyntheticLocal(saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
}

uint64_t Patch657417Section::getBranchAddr() const {
  return patchee->getVA(patcheeOffset);
}

// Given a branch instruction instr at sourceAddr work out its destination
// address. This is only used when the branch instruction has no relocation.
static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
  uint8_t buf[4];
  write16le(buf, instr >> 16);
  write16le(buf + 2, instr & 0x0000ffff);
  int64_t offset;
  if (isBcc(instr))
    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
  else if (isB(instr))
    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
  else
    offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
  return sourceAddr + offset + 4;
}

void Patch657417Section::writeTo(uint8_t *buf) {
  // The base instruction of the patch is always a 32-bit unconditional branch.
  if (isARM)
    write32le(buf, 0xea000000);
  else
    write32le(buf, 0x9000f000);
  // If we have a relocation then apply it.
  if (!relocations.empty()) {
    relocateAlloc(buf, buf + getSize());
    return;
  }

  // If we don't have a relocation then we must calculate and write the offset
  // ourselves.
  // Get the destination offset from the addend in the branch instruction.
  // We cannot use the instruction in the patchee section as this will have
  // been altered to point to us!
  uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
  uint64_t p = getVA(4);
  target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
}

// Given a branch instruction spanning two 4KiB regions, at offset off from the
// start of isec, return true if the destination of the branch is within the
// first of the two 4Kib regions.
static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
                                    uint32_t instr, const Relocation *r) {
  uint64_t sourceAddr = isec->getVA(0) + off;
  assert((sourceAddr & 0xfff) == 0xffe);
  uint64_t destAddr = sourceAddr;
  // If there is a branch relocation at the same offset we must use this to
  // find the destination address as the branch could be indirected via a thunk
  // or the PLT.
  if (r) {
    uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
    // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
    destAddr = dst + r->addend + 4;
  } else {
    // If there is no relocation, we must have an intra-section branch
    // We must extract the offset from the addend manually.
    destAddr = getThumbDestAddr(sourceAddr, instr);
  }

  return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
}

// Return true if a branch can reach a patch section placed after isec.
// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
static bool patchInRange(const InputSection *isec, uint64_t off,
                         uint32_t instr) {

  // We need the branch at source to reach a patch section placed immediately
  // after isec. As there can be more than one patch in the patch section we
  // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
  // for a 1 MiB range.
  return target->inBranchRange(
      isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
      isec->getVA() + isec->getSize() + 0x100);
}

struct ScanResult {
  // Offset of branch within its InputSection.
  uint64_t off;
  // Cached decoding of the branch instruction.
  uint32_t instr;
  // Branch relocation at off. Will be nullptr if no relocation exists.
  Relocation *rel;
};

// Detect the erratum sequence, returning the offset of the branch instruction
// and a decoding of the branch. If the erratum sequence is not found then
// return an offset of 0 for the branch. 0 is a safe value to use for no patch
// as there must be at least one 32-bit non-branch instruction before the
// branch so the minimum offset for a patch is 4.
static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
                                           uint64_t limit) {
  uint64_t isecAddr = isec->getVA(0);
  // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
  // need to check for a 32-bit instruction immediately before a 32-bit branch
  // at 0xffe modulo 0x1000.
  off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
  if (off >= limit || limit - off < 8) {
    // Need at least 2 4-byte sized instructions to trigger erratum.
    off = limit;
    return {0, 0, nullptr};
  }

  ScanResult scanRes = {0, 0, nullptr};
  const uint8_t *buf = isec->data().begin();
  // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
  // little-endian halfwords.
  const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
  uint16_t hw11 = *instBuf++;
  uint16_t hw12 = *instBuf++;
  uint16_t hw21 = *instBuf++;
  uint16_t hw22 = *instBuf++;
  if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
    uint32_t instr1 = (hw11 << 16) | hw12;
    uint32_t instr2 = (hw21 << 16) | hw22;
    if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
      // Find a relocation for the branch if it exists. This will be used
      // to determine the target.
      uint64_t branchOff = off + 4;
      auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
        return r.offset == branchOff &&
               (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
                r.type == R_ARM_THM_CALL);
      });
      if (relIt != isec->relocations.end())
        scanRes.rel = &(*relIt);
      if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
        if (patchInRange(isec, branchOff, instr2)) {
          scanRes.off = branchOff;
          scanRes.instr = instr2;
        } else {
          warn(toString(isec->file) +
               ": skipping cortex-a8 657417 erratum sequence, section " +
               isec->name + " is too large to patch");
        }
      }
    }
  }
  off += 0x1000;
  return scanRes;
}

void ARMErr657417Patcher::init() {
  // The Arm ABI permits a mix of ARM, Thumb and Data in the same
  // InputSection. We must only scan Thumb instructions to avoid false
  // matches. We use the mapping symbols in the InputObjects to identify this
  // data, caching the results in sectionMap so we don't have to recalculate
  // it each pass.

  // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
  // half open intervals [Symbol Value, Next Symbol Value) of code and data
  // within sections. If there is no next symbol then the half open interval is
  // [Symbol Value, End of section). The type, code or data, is determined by
  // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
  auto isArmMapSymbol = [](const Symbol *s) {
    return s->getName() == "$a" || s->getName().startswith("$a.");
  };
  auto isThumbMapSymbol = [](const Symbol *s) {
    return s->getName() == "$t" || s->getName().startswith("$t.");
  };
  auto isDataMapSymbol = [](const Symbol *s) {
    return s->getName() == "$d" || s->getName().startswith("$d.");
  };

  // Collect mapping symbols for every executable InputSection.
  for (InputFile *file : objectFiles) {
    auto *f = cast<ObjFile<ELF32LE>>(file);
    for (Symbol *s : f->getLocalSymbols()) {
      auto *def = dyn_cast<Defined>(s);
      if (!def)
        continue;
      if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
          !isDataMapSymbol(def))
        continue;
      if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
        if (sec->flags & SHF_EXECINSTR)
          sectionMap[sec].push_back(def);
    }
  }
  // For each InputSection make sure the mapping symbols are in sorted in
  // ascending order and are in alternating Thumb, non-Thumb order.
  for (auto &kv : sectionMap) {
    std::vector<const Defined *> &mapSyms = kv.second;
    llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
      return a->value < b->value;
    });
    mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
                              [=](const Defined *a, const Defined *b) {
                                return (isThumbMapSymbol(a) ==
                                        isThumbMapSymbol(b));
                              }),
                  mapSyms.end());
    // Always start with a Thumb Mapping Symbol
    if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
      mapSyms.erase(mapSyms.begin());
  }
  initialized = true;
}

void ARMErr657417Patcher::insertPatches(
    InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
  uint64_t spacing = 0x100000 - 0x7500;
  uint64_t isecLimit;
  uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
  uint64_t patchUpperBound = prevIsecLimit + spacing;
  uint64_t outSecAddr = isd.sections.front()->getParent()->addr;

  // Set the outSecOff of patches to the place where we want to insert them.
  // We use a similar strategy to initial thunk placement, using 1 MiB as the
  // range of the Thumb-2 conditional branch with a contingency accounting for
  // thunk generation.
  auto patchIt = patches.begin();
  auto patchEnd = patches.end();
  for (const InputSection *isec : isd.sections) {
    isecLimit = isec->outSecOff + isec->getSize();
    if (isecLimit > patchUpperBound) {
      for (; patchIt != patchEnd; ++patchIt) {
        if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
          break;
        (*patchIt)->outSecOff = prevIsecLimit;
      }
      patchUpperBound = prevIsecLimit + spacing;
    }
    prevIsecLimit = isecLimit;
  }
  for (; patchIt != patchEnd; ++patchIt)
    (*patchIt)->outSecOff = isecLimit;

  // Merge all patch sections. We use the outSecOff assigned above to
  // determine the insertion point. This is ok as we only merge into an
  // InputSectionDescription once per pass, and at the end of the pass
  // assignAddresses() will recalculate all the outSecOff values.
  std::vector<InputSection *> tmp;
  tmp.reserve(isd.sections.size() + patches.size());
  auto mergeCmp = [](const InputSection *a, const InputSection *b) {
    if (a->outSecOff != b->outSecOff)
      return a->outSecOff < b->outSecOff;
    return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
  };
  std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
             patches.end(), std::back_inserter(tmp), mergeCmp);
  isd.sections = std::move(tmp);
}

// Given a branch instruction described by ScanRes redirect it to a patch
// section containing an unconditional branch instruction to the target.
// Ensure that this patch section is 4-byte aligned so that the branch cannot
// span two 4 KiB regions. Place the patch section so that it is always after
// isec so the branch we are patching always goes forwards.
static void implementPatch(ScanResult sr, InputSection *isec,
                           std::vector<Patch657417Section *> &patches) {

  log("detected cortex-a8-657419 erratum sequence starting at " +
      utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
  Patch657417Section *psec;
  // We have two cases to deal with.
  // Case 1. There is a relocation at patcheeOffset to a symbol. The
  // unconditional branch in the patch must have a relocation so that any
  // further redirection via the PLT or a Thunk happens as normal. At
  // patcheeOffset we redirect the existing relocation to a Symbol defined at
  // the start of the patch section.
  //
  // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
  // a symbol that we can use as a target for a relocation in the patch section.
  // Luckily we know that the destination cannot be indirected via the PLT or
  // a Thunk so we can just write the destination directly.
  if (sr.rel) {
    // Case 1. We have an existing relocation to redirect to patch and a
    // Symbol target.

    // Create a branch relocation for the unconditional branch in the patch.
    // This can be redirected via the PLT or Thunks.
    RelType patchRelType = R_ARM_THM_JUMP24;
    int64_t patchRelAddend = sr.rel->addend;
    bool destIsARM = false;
    if (isBL(sr.instr) || isBLX(sr.instr)) {
      // The final target of the branch may be ARM or Thumb, if the target
      // is ARM then we write the patch in ARM state to avoid a state change
      // Thunk from the patch to the target.
      uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
                                                       : sr.rel->sym->getVA();
      destIsARM = (dstSymAddr & 1) == 0;
    }
    psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
    if (destIsARM) {
      // The patch will be in ARM state. Use an ARM relocation and account for
      // the larger ARM PC-bias of 8 rather than Thumb's 4.
      patchRelType = R_ARM_JUMP24;
      patchRelAddend -= 4;
    }
    psec->relocations.push_back(
        Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
    // Redirect the existing branch relocation to the patch.
    sr.rel->expr = R_PC;
    sr.rel->addend = -4;
    sr.rel->sym = psec->patchSym;
  } else {
    // Case 2. We do not have a relocation to the patch. Add a relocation of the
    // appropriate type to the patch at patcheeOffset.

    // The destination is ARM if we have a BLX.
    psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
    RelType type;
    if (isBcc(sr.instr))
      type = R_ARM_THM_JUMP19;
    else if (isB(sr.instr))
      type = R_ARM_THM_JUMP24;
    else
      type = R_ARM_THM_CALL;
    isec->relocations.push_back(
        Relocation{R_PC, type, sr.off, -4, psec->patchSym});
  }
  patches.push_back(psec);
}

// Scan all the instructions in InputSectionDescription, for each instance of
// the erratum sequence create a Patch657417Section. We return the list of
// Patch657417Sections that need to be applied to the InputSectionDescription.
std::vector<Patch657417Section *>
ARMErr657417Patcher::patchInputSectionDescription(
    InputSectionDescription &isd) {
  std::vector<Patch657417Section *> patches;
  for (InputSection *isec : isd.sections) {
    // LLD doesn't use the erratum sequence in SyntheticSections.
    if (isa<SyntheticSection>(isec))
      continue;
    // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
    // data. We have already sorted mapSyms in ascending order and removed
    // consecutive mapping symbols of the same type. Our range of executable
    // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
    // or [thumbSym->value, section size).
    std::vector<const Defined *> &mapSyms = sectionMap[isec];

    auto thumbSym = mapSyms.begin();
    while (thumbSym != mapSyms.end()) {
      auto nonThumbSym = std::next(thumbSym);
      uint64_t off = (*thumbSym)->value;
      uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
                                                      : (*nonThumbSym)->value;

      while (off < limit) {
        ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
        if (sr.off)
          implementPatch(sr, isec, patches);
      }
      if (nonThumbSym == mapSyms.end())
        break;
      thumbSym = std::next(nonThumbSym);
    }
  }
  return patches;
}

bool ARMErr657417Patcher::createFixes() {
  if (!initialized)
    init();

  bool addressesChanged = false;
  for (OutputSection *os : outputSections) {
    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
      continue;
    for (BaseCommand *bc : os->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
        std::vector<Patch657417Section *> patches =
            patchInputSectionDescription(*isd);
        if (!patches.empty()) {
          insertPatches(*isd, patches);
          addressesChanged = true;
        }
      }
  }
  return addressesChanged;
}