aboutsummaryrefslogtreecommitdiff
path: root/lld/ELF/Arch/AVR.cpp
blob: 4513a970b32d732df45066377b1c72f0b8bcbc13 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//===- AVR.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AVR is a Harvard-architecture 8-bit micrcontroller designed for small
// baremetal programs. All AVR-family processors have 32 8-bit registers.
// The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
// one supports up to 2^24 data address space and 2^22 code address space.
//
// Since it is a baremetal programming, there's usually no loader to load
// ELF files on AVRs. You are expected to link your program against address
// 0 and pull out a .text section from the result using objcopy, so that you
// can write the linked code to on-chip flush memory. You can do that with
// the following commands:
//
//   ld.lld -Ttext=0 -o foo foo.o
//   objcopy -O binary --only-section=.text foo output.bin
//
// Note that the current AVR support is very preliminary so you can't
// link any useful program yet, though.
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

namespace {
class AVR final : public TargetInfo {
public:
  AVR();
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
};
} // namespace

AVR::AVR() { noneRel = R_AVR_NONE; }

RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
                        const uint8_t *loc) const {
  switch (type) {
  case R_AVR_7_PCREL:
  case R_AVR_13_PCREL:
    return R_PC;
  default:
    return R_ABS;
  }
}

static void writeLDI(uint8_t *loc, uint64_t val) {
  write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f));
}

void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_AVR_8:
    checkUInt(loc, val, 8, rel);
    *loc = val;
    break;
  case R_AVR_16:
    // Note: this relocation is often used between code and data space, which
    // are 0x800000 apart in the output ELF file. The bitmask cuts off the high
    // bit.
    write16le(loc, val & 0xffff);
    break;
  case R_AVR_16_PM:
    checkAlignment(loc, val, 2, rel);
    checkUInt(loc, val >> 1, 16, rel);
    write16le(loc, val >> 1);
    break;
  case R_AVR_32:
    checkUInt(loc, val, 32, rel);
    write32le(loc, val);
    break;

  case R_AVR_LDI:
    checkUInt(loc, val, 8, rel);
    writeLDI(loc, val & 0xff);
    break;

  case R_AVR_LO8_LDI_NEG:
    writeLDI(loc, -val & 0xff);
    break;
  case R_AVR_LO8_LDI:
    writeLDI(loc, val & 0xff);
    break;
  case R_AVR_HI8_LDI_NEG:
    writeLDI(loc, (-val >> 8) & 0xff);
    break;
  case R_AVR_HI8_LDI:
    writeLDI(loc, (val >> 8) & 0xff);
    break;
  case R_AVR_HH8_LDI_NEG:
    writeLDI(loc, (-val >> 16) & 0xff);
    break;
  case R_AVR_HH8_LDI:
    writeLDI(loc, (val >> 16) & 0xff);
    break;
  case R_AVR_MS8_LDI_NEG:
    writeLDI(loc, (-val >> 24) & 0xff);
    break;
  case R_AVR_MS8_LDI:
    writeLDI(loc, (val >> 24) & 0xff);
    break;

  case R_AVR_LO8_LDI_PM:
    checkAlignment(loc, val, 2, rel);
    writeLDI(loc, (val >> 1) & 0xff);
    break;
  case R_AVR_HI8_LDI_PM:
    checkAlignment(loc, val, 2, rel);
    writeLDI(loc, (val >> 9) & 0xff);
    break;
  case R_AVR_HH8_LDI_PM:
    checkAlignment(loc, val, 2, rel);
    writeLDI(loc, (val >> 17) & 0xff);
    break;

  case R_AVR_LO8_LDI_PM_NEG:
    checkAlignment(loc, val, 2, rel);
    writeLDI(loc, (-val >> 1) & 0xff);
    break;
  case R_AVR_HI8_LDI_PM_NEG:
    checkAlignment(loc, val, 2, rel);
    writeLDI(loc, (-val >> 9) & 0xff);
    break;
  case R_AVR_HH8_LDI_PM_NEG:
    checkAlignment(loc, val, 2, rel);
    writeLDI(loc, (-val >> 17) & 0xff);
    break;

  case R_AVR_PORT5:
    checkUInt(loc, val, 5, rel);
    write16le(loc, (read16le(loc) & 0xff07) | (val << 3));
    break;
  case R_AVR_PORT6:
    checkUInt(loc, val, 6, rel);
    write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f));
    break;

  // Since every jump destination is word aligned we gain an extra bit
  case R_AVR_7_PCREL: {
    checkInt(loc, val, 7, rel);
    checkAlignment(loc, val, 2, rel);
    const uint16_t target = (val - 2) >> 1;
    write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3));
    break;
  }
  case R_AVR_13_PCREL: {
    checkAlignment(loc, val, 2, rel);
    const uint16_t target = (val - 2) >> 1;
    write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff));
    break;
  }

  case R_AVR_6:
    checkInt(loc, val, 6, rel);
    write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 |
                       (val & 0x18) << 7 | (val & 0x07));
    break;
  case R_AVR_6_ADIW:
    checkInt(loc, val, 6, rel);
    write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F));
    break;

  case R_AVR_CALL: {
    uint16_t hi = val >> 17;
    uint16_t lo = val >> 1;
    write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1));
    write16le(loc + 2, lo);
    break;
  }
  default:
    error(getErrorLocation(loc) + "unrecognized relocation " +
          toString(rel.type));
  }
}

TargetInfo *elf::getAVRTargetInfo() {
  static AVR target;
  return &target;
}