aboutsummaryrefslogtreecommitdiff
path: root/lldb/source/Core/DumpDataExtractor.cpp
blob: dc96a3454b7243d724744979642b7fa282f08885 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
//===-- DumpDataExtractor.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Core/DumpDataExtractor.h"

#include "lldb/lldb-defines.h"
#include "lldb/lldb-forward.h"

#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/ExecutionContextScope.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/MemoryTagManager.h"
#include "lldb/Target/MemoryTagMap.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"

#include <limits>
#include <memory>
#include <string>

#include <cassert>
#include <cctype>
#include <cinttypes>
#include <cmath>

#include <bitset>
#include <sstream>

using namespace lldb_private;
using namespace lldb;

#define NON_PRINTABLE_CHAR '.'

static float half2float(uint16_t half) {
  union {
    float f;
    uint32_t u;
  } u;
  // Sign extend to 4 byte.
  int32_t sign_extended = static_cast<int16_t>(half);
  uint32_t v = static_cast<uint32_t>(sign_extended);

  if (0 == (v & 0x7c00)) {
    u.u = v & 0x80007FFFU;
    return u.f * ldexpf(1, 125);
  }

  v <<= 13;
  u.u = v | 0x70000000U;
  return u.f * ldexpf(1, -112);
}

static llvm::Optional<llvm::APInt> GetAPInt(const DataExtractor &data,
                                            lldb::offset_t *offset_ptr,
                                            lldb::offset_t byte_size) {
  if (byte_size == 0)
    return llvm::None;

  llvm::SmallVector<uint64_t, 2> uint64_array;
  lldb::offset_t bytes_left = byte_size;
  uint64_t u64;
  const lldb::ByteOrder byte_order = data.GetByteOrder();
  if (byte_order == lldb::eByteOrderLittle) {
    while (bytes_left > 0) {
      if (bytes_left >= 8) {
        u64 = data.GetU64(offset_ptr);
        bytes_left -= 8;
      } else {
        u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
        bytes_left = 0;
      }
      uint64_array.push_back(u64);
    }
    return llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
  } else if (byte_order == lldb::eByteOrderBig) {
    lldb::offset_t be_offset = *offset_ptr + byte_size;
    lldb::offset_t temp_offset;
    while (bytes_left > 0) {
      if (bytes_left >= 8) {
        be_offset -= 8;
        temp_offset = be_offset;
        u64 = data.GetU64(&temp_offset);
        bytes_left -= 8;
      } else {
        be_offset -= bytes_left;
        temp_offset = be_offset;
        u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
        bytes_left = 0;
      }
      uint64_array.push_back(u64);
    }
    *offset_ptr += byte_size;
    return llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
  }
  return llvm::None;
}

static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data,
                                lldb::offset_t offset, lldb::offset_t byte_size,
                                bool is_signed, unsigned radix) {
  llvm::Optional<llvm::APInt> apint = GetAPInt(data, &offset, byte_size);
  if (apint) {
    std::string apint_str = toString(apint.getValue(), radix, is_signed);
    switch (radix) {
    case 2:
      s->Write("0b", 2);
      break;
    case 8:
      s->Write("0", 1);
      break;
    case 10:
      break;
    }
    s->Write(apint_str.c_str(), apint_str.size());
  }
  return offset;
}

/// Dumps decoded instructions to a stream.
static lldb::offset_t DumpInstructions(const DataExtractor &DE, Stream *s,
                                       ExecutionContextScope *exe_scope,
                                       offset_t start_offset,
                                       uint64_t base_addr,
                                       size_t number_of_instructions) {
  offset_t offset = start_offset;

  TargetSP target_sp;
  if (exe_scope)
    target_sp = exe_scope->CalculateTarget();
  if (target_sp) {
    DisassemblerSP disassembler_sp(
        Disassembler::FindPlugin(target_sp->GetArchitecture(),
                                 target_sp->GetDisassemblyFlavor(), nullptr));
    if (disassembler_sp) {
      lldb::addr_t addr = base_addr + start_offset;
      lldb_private::Address so_addr;
      bool data_from_file = true;
      if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) {
        data_from_file = false;
      } else {
        if (target_sp->GetSectionLoadList().IsEmpty() ||
            !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
          so_addr.SetRawAddress(addr);
      }

      size_t bytes_consumed = disassembler_sp->DecodeInstructions(
          so_addr, DE, start_offset, number_of_instructions, false,
          data_from_file);

      if (bytes_consumed) {
        offset += bytes_consumed;
        const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
        const bool show_bytes = true;
        const bool show_control_flow_kind = true;
        ExecutionContext exe_ctx;
        exe_scope->CalculateExecutionContext(exe_ctx);
        disassembler_sp->GetInstructionList().Dump(
            s, show_address, show_bytes, show_control_flow_kind, &exe_ctx);
      }
    }
  } else
    s->Printf("invalid target");

  return offset;
}

/// Prints the specific escape sequence of the given character to the stream.
/// If the character doesn't have a known specific escape sequence (e.g., '\a',
/// '\n' but not generic escape sequences such as'\x12'), this function will
/// not modify the stream and return false.
static bool TryDumpSpecialEscapedChar(Stream &s, const char c) {
  switch (c) {
  case '\033':
    // Common non-standard escape code for 'escape'.
    s.Printf("\\e");
    return true;
  case '\a':
    s.Printf("\\a");
    return true;
  case '\b':
    s.Printf("\\b");
    return true;
  case '\f':
    s.Printf("\\f");
    return true;
  case '\n':
    s.Printf("\\n");
    return true;
  case '\r':
    s.Printf("\\r");
    return true;
  case '\t':
    s.Printf("\\t");
    return true;
  case '\v':
    s.Printf("\\v");
    return true;
  case '\0':
    s.Printf("\\0");
    return true;
  default:
    return false;
  }
}

/// Dump the character to a stream. A character that is not printable will be
/// represented by its escape sequence.
static void DumpCharacter(Stream &s, const char c) {
  if (TryDumpSpecialEscapedChar(s, c))
    return;
  if (llvm::isPrint(c)) {
    s.PutChar(c);
    return;
  }
  s.Printf("\\x%2.2x", c);
}

/// Dump a floating point type.
template <typename FloatT>
void DumpFloatingPoint(std::ostringstream &ss, FloatT f) {
  static_assert(std::is_floating_point<FloatT>::value,
                "Only floating point types can be dumped.");
  // NaN and Inf are potentially implementation defined and on Darwin it
  // seems NaNs are printed without their sign. Manually implement dumping them
  // here to avoid having to deal with platform differences.
  if (std::isnan(f)) {
    if (std::signbit(f))
      ss << '-';
    ss << "nan";
    return;
  }
  if (std::isinf(f)) {
    if (std::signbit(f))
      ss << '-';
    ss << "inf";
    return;
  }
  ss << f;
}

static llvm::Optional<MemoryTagMap>
GetMemoryTags(lldb::addr_t addr, size_t length,
              ExecutionContextScope *exe_scope) {
  assert(addr != LLDB_INVALID_ADDRESS);

  if (!exe_scope)
    return llvm::None;

  TargetSP target_sp = exe_scope->CalculateTarget();
  if (!target_sp)
    return llvm::None;

  ProcessSP process_sp = target_sp->CalculateProcess();
  if (!process_sp)
    return llvm::None;

  llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
      process_sp->GetMemoryTagManager();
  if (!tag_manager_or_err) {
    llvm::consumeError(tag_manager_or_err.takeError());
    return llvm::None;
  }

  MemoryRegionInfos memory_regions;
  // Don't check return status, list will be just empty if an error happened.
  process_sp->GetMemoryRegions(memory_regions);

  llvm::Expected<std::vector<MemoryTagManager::TagRange>> tagged_ranges_or_err =
      (*tag_manager_or_err)
          ->MakeTaggedRanges(addr, addr + length, memory_regions);
  // Here we know that our range will not be inverted but we must still check
  // for an error.
  if (!tagged_ranges_or_err) {
    llvm::consumeError(tagged_ranges_or_err.takeError());
    return llvm::None;
  }
  if (tagged_ranges_or_err->empty())
    return llvm::None;

  MemoryTagMap memory_tag_map(*tag_manager_or_err);
  for (const MemoryTagManager::TagRange &range : *tagged_ranges_or_err) {
    llvm::Expected<std::vector<lldb::addr_t>> tags_or_err =
        process_sp->ReadMemoryTags(range.GetRangeBase(), range.GetByteSize());

    if (tags_or_err)
      memory_tag_map.InsertTags(range.GetRangeBase(), *tags_or_err);
    else
      llvm::consumeError(tags_or_err.takeError());
  }

  if (memory_tag_map.Empty())
    return llvm::None;

  return memory_tag_map;
}

static void
printMemoryTags(const DataExtractor &DE, Stream *s, lldb::addr_t addr,
                size_t len,
                const llvm::Optional<MemoryTagMap> &memory_tag_map) {
  std::vector<llvm::Optional<lldb::addr_t>> tags =
      memory_tag_map->GetTags(addr, len);

  // Only print if there is at least one tag for this line
  if (tags.empty())
    return;

  s->Printf(" (tag%s:", tags.size() > 1 ? "s" : "");
  // Some granules may not be tagged but print something for them
  // so that the ordering remains intact.
  for (auto tag : tags) {
    if (tag)
      s->Printf(" 0x%" PRIx64, *tag);
    else
      s->PutCString(" <no tag>");
  }
  s->PutCString(")");
}

lldb::offset_t lldb_private::DumpDataExtractor(
    const DataExtractor &DE, Stream *s, offset_t start_offset,
    lldb::Format item_format, size_t item_byte_size, size_t item_count,
    size_t num_per_line, uint64_t base_addr,
    uint32_t item_bit_size,   // If zero, this is not a bitfield value, if
                              // non-zero, the value is a bitfield
    uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the
                              // shift amount to apply to a bitfield
    ExecutionContextScope *exe_scope, bool show_memory_tags) {
  if (s == nullptr)
    return start_offset;

  if (item_format == eFormatPointer) {
    if (item_byte_size != 4 && item_byte_size != 8)
      item_byte_size = s->GetAddressByteSize();
  }

  offset_t offset = start_offset;

  llvm::Optional<MemoryTagMap> memory_tag_map = llvm::None;
  if (show_memory_tags && base_addr != LLDB_INVALID_ADDRESS)
    memory_tag_map =
        GetMemoryTags(base_addr, DE.GetByteSize() - offset, exe_scope);

  if (item_format == eFormatInstruction)
    return DumpInstructions(DE, s, exe_scope, start_offset, base_addr,
                            item_count);

  if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) &&
      item_byte_size > 8)
    item_format = eFormatHex;

  lldb::offset_t line_start_offset = start_offset;
  for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count;
       ++count) {
    // If we are at the beginning or end of a line
    // Note that the last line is handled outside this for loop.
    if ((count % num_per_line) == 0) {
      // If we are at the end of a line
      if (count > 0) {
        if (item_format == eFormatBytesWithASCII &&
            offset > line_start_offset) {
          s->Printf("%*s",
                    static_cast<int>(
                        (num_per_line - (offset - line_start_offset)) * 3 + 2),
                    "");
          DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
                            offset - line_start_offset, SIZE_MAX,
                            LLDB_INVALID_ADDRESS, 0, 0);
        }

        if (base_addr != LLDB_INVALID_ADDRESS && memory_tag_map) {
          size_t line_len = offset - line_start_offset;
          lldb::addr_t line_base =
              base_addr +
              (offset - start_offset - line_len) / DE.getTargetByteSize();
          printMemoryTags(DE, s, line_base, line_len, memory_tag_map);
        }

        s->EOL();
      }
      if (base_addr != LLDB_INVALID_ADDRESS)
        s->Printf("0x%8.8" PRIx64 ": ",
                  (uint64_t)(base_addr +
                             (offset - start_offset) / DE.getTargetByteSize()));

      line_start_offset = offset;
    } else if (item_format != eFormatChar &&
               item_format != eFormatCharPrintable &&
               item_format != eFormatCharArray && count > 0) {
      s->PutChar(' ');
    }

    switch (item_format) {
    case eFormatBoolean:
      if (item_byte_size <= 8)
        s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                             item_bit_size, item_bit_offset)
                            ? "true"
                            : "false");
      else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for boolean format",
                  (uint64_t)item_byte_size);
        return offset;
      }
      break;

    case eFormatBinary:
      if (item_byte_size <= 8) {
        uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                               item_bit_size, item_bit_offset);
        // Avoid std::bitset<64>::to_string() since it is missing in earlier
        // C++ libraries
        std::string binary_value(64, '0');
        std::bitset<64> bits(uval64);
        for (uint32_t i = 0; i < 64; ++i)
          if (bits[i])
            binary_value[64 - 1 - i] = '1';
        if (item_bit_size > 0)
          s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
        else if (item_byte_size > 0 && item_byte_size <= 8)
          s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
      } else {
        const bool is_signed = false;
        const unsigned radix = 2;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatBytes:
    case eFormatBytesWithASCII:
      for (uint32_t i = 0; i < item_byte_size; ++i) {
        s->Printf("%2.2x", DE.GetU8(&offset));
      }

      // Put an extra space between the groups of bytes if more than one is
      // being dumped in a group (item_byte_size is more than 1).
      if (item_byte_size > 1)
        s->PutChar(' ');
      break;

    case eFormatChar:
    case eFormatCharPrintable:
    case eFormatCharArray: {
      // Reject invalid item_byte_size.
      if (item_byte_size > 8) {
        s->Printf("error: unsupported byte size (%" PRIu64 ") for char format",
                  (uint64_t)item_byte_size);
        return offset;
      }

      // If we are only printing one character surround it with single quotes
      if (item_count == 1 && item_format == eFormatChar)
        s->PutChar('\'');

      const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                               item_bit_size, item_bit_offset);
      if (llvm::isPrint(ch))
        s->Printf("%c", (char)ch);
      else if (item_format != eFormatCharPrintable) {
        if (!TryDumpSpecialEscapedChar(*s, ch)) {
          if (item_byte_size == 1)
            s->Printf("\\x%2.2x", (uint8_t)ch);
          else
            s->Printf("%" PRIu64, ch);
        }
      } else {
        s->PutChar(NON_PRINTABLE_CHAR);
      }

      // If we are only printing one character surround it with single quotes
      if (item_count == 1 && item_format == eFormatChar)
        s->PutChar('\'');
    } break;

    case eFormatEnum: // Print enum value as a signed integer when we don't get
                      // the enum type
    case eFormatDecimal:
      if (item_byte_size <= 8)
        s->Printf("%" PRId64,
                  DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
      else {
        const bool is_signed = true;
        const unsigned radix = 10;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatUnsigned:
      if (item_byte_size <= 8)
        s->Printf("%" PRIu64,
                  DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
      else {
        const bool is_signed = false;
        const unsigned radix = 10;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatOctal:
      if (item_byte_size <= 8)
        s->Printf("0%" PRIo64,
                  DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
      else {
        const bool is_signed = false;
        const unsigned radix = 8;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatOSType: {
      uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                             item_bit_size, item_bit_offset);
      s->PutChar('\'');
      for (uint32_t i = 0; i < item_byte_size; ++i) {
        uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
        DumpCharacter(*s, ch);
      }
      s->PutChar('\'');
    } break;

    case eFormatCString: {
      const char *cstr = DE.GetCStr(&offset);

      if (!cstr) {
        s->Printf("NULL");
        offset = LLDB_INVALID_OFFSET;
      } else {
        s->PutChar('\"');

        while (const char c = *cstr) {
          DumpCharacter(*s, c);
          ++cstr;
        }

        s->PutChar('\"');
      }
    } break;

    case eFormatPointer:
      DumpAddress(s->AsRawOstream(),
                  DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset),
                  sizeof(addr_t));
      break;

    case eFormatComplexInteger: {
      size_t complex_int_byte_size = item_byte_size / 2;

      if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) {
        s->Printf("%" PRIu64,
                  DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
        s->Printf(" + %" PRIu64 "i",
                  DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
      } else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for complex integer format",
                  (uint64_t)item_byte_size);
        return offset;
      }
    } break;

    case eFormatComplex:
      if (sizeof(float) * 2 == item_byte_size) {
        float f32_1 = DE.GetFloat(&offset);
        float f32_2 = DE.GetFloat(&offset);

        s->Printf("%g + %gi", f32_1, f32_2);
        break;
      } else if (sizeof(double) * 2 == item_byte_size) {
        double d64_1 = DE.GetDouble(&offset);
        double d64_2 = DE.GetDouble(&offset);

        s->Printf("%lg + %lgi", d64_1, d64_2);
        break;
      } else if (sizeof(long double) * 2 == item_byte_size) {
        long double ld64_1 = DE.GetLongDouble(&offset);
        long double ld64_2 = DE.GetLongDouble(&offset);
        s->Printf("%Lg + %Lgi", ld64_1, ld64_2);
        break;
      } else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for complex float format",
                  (uint64_t)item_byte_size);
        return offset;
      }
      break;

    default:
    case eFormatDefault:
    case eFormatHex:
    case eFormatHexUppercase: {
      bool wantsuppercase = (item_format == eFormatHexUppercase);
      switch (item_byte_size) {
      case 1:
      case 2:
      case 4:
      case 8:
        s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64,
                  (int)(2 * item_byte_size), (int)(2 * item_byte_size),
                  DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
        break;
      default: {
        assert(item_bit_size == 0 && item_bit_offset == 0);
        const uint8_t *bytes =
            (const uint8_t *)DE.GetData(&offset, item_byte_size);
        if (bytes) {
          s->PutCString("0x");
          uint32_t idx;
          if (DE.GetByteOrder() == eByteOrderBig) {
            for (idx = 0; idx < item_byte_size; ++idx)
              s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
          } else {
            for (idx = 0; idx < item_byte_size; ++idx)
              s->Printf(wantsuppercase ? "%2.2X" : "%2.2x",
                        bytes[item_byte_size - 1 - idx]);
          }
        }
      } break;
      }
    } break;

    case eFormatFloat: {
      TargetSP target_sp;
      bool used_upfloat = false;
      if (exe_scope)
        target_sp = exe_scope->CalculateTarget();
      if (target_sp) {
        auto type_system_or_err =
            target_sp->GetScratchTypeSystemForLanguage(eLanguageTypeC);
        if (!type_system_or_err) {
          llvm::consumeError(type_system_or_err.takeError());
        } else {
          auto &type_system = *type_system_or_err;
          llvm::SmallVector<char, 256> sv;
          // Show full precision when printing float values
          const unsigned format_precision = 0;
          const unsigned format_max_padding =
              target_sp->GetMaxZeroPaddingInFloatFormat();

          const auto &semantics =
              type_system.GetFloatTypeSemantics(item_byte_size);

          // Recalculate the byte size in case of a difference. This is possible
          // when item_byte_size is 16 (128-bit), because you could get back the
          // x87DoubleExtended semantics which has a byte size of 10 (80-bit).
          const size_t semantics_byte_size =
              (llvm::APFloat::getSizeInBits(semantics) + 7) / 8;
          llvm::Optional<llvm::APInt> apint =
              GetAPInt(DE, &offset, semantics_byte_size);
          if (apint) {
            llvm::APFloat apfloat(semantics, apint.getValue());
            apfloat.toString(sv, format_precision, format_max_padding);
            if (!sv.empty()) {
              s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
              used_upfloat = true;
            }
          }
        }
      }

      if (!used_upfloat) {
        std::ostringstream ss;
        if (item_byte_size == sizeof(float) || item_byte_size == 2) {
          float f;
          if (item_byte_size == 2) {
            uint16_t half = DE.GetU16(&offset);
            f = half2float(half);
          } else {
            f = DE.GetFloat(&offset);
          }
          ss.precision(std::numeric_limits<float>::digits10);
          DumpFloatingPoint(ss, f);
        } else if (item_byte_size == sizeof(double)) {
          ss.precision(std::numeric_limits<double>::digits10);
          DumpFloatingPoint(ss, DE.GetDouble(&offset));
        } else if (item_byte_size == sizeof(long double) ||
                   item_byte_size == 10) {
          ss.precision(std::numeric_limits<long double>::digits10);
          DumpFloatingPoint(ss, DE.GetLongDouble(&offset));
        } else {
          s->Printf("error: unsupported byte size (%" PRIu64
                    ") for float format",
                    (uint64_t)item_byte_size);
          return offset;
        }
        ss.flush();
        s->Printf("%s", ss.str().c_str());
      }
    } break;

    case eFormatUnicode16:
      s->Printf("U+%4.4x", DE.GetU16(&offset));
      break;

    case eFormatUnicode32:
      s->Printf("U+0x%8.8x", DE.GetU32(&offset));
      break;

    case eFormatAddressInfo: {
      addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                         item_bit_offset);
      s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size),
                (int)(2 * item_byte_size), addr);
      if (exe_scope) {
        TargetSP target_sp(exe_scope->CalculateTarget());
        lldb_private::Address so_addr;
        if (target_sp) {
          if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr,
                                                                 so_addr)) {
            s->PutChar(' ');
            so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription,
                         Address::DumpStyleModuleWithFileAddress);
          } else {
            so_addr.SetOffset(addr);
            so_addr.Dump(s, exe_scope,
                         Address::DumpStyleResolvedPointerDescription);
            if (ProcessSP process_sp = exe_scope->CalculateProcess()) {
              if (ABISP abi_sp = process_sp->GetABI()) {
                addr_t addr_fixed = abi_sp->FixCodeAddress(addr);
                if (target_sp->GetSectionLoadList().ResolveLoadAddress(
                        addr_fixed, so_addr)) {
                  s->PutChar(' ');
                  s->Printf("(0x%*.*" PRIx64 ")", (int)(2 * item_byte_size),
                            (int)(2 * item_byte_size), addr_fixed);
                  s->PutChar(' ');
                  so_addr.Dump(s, exe_scope,
                               Address::DumpStyleResolvedDescription,
                               Address::DumpStyleModuleWithFileAddress);
                }
              }
            }
          }
        }
      }
    } break;

    case eFormatHexFloat:
      if (sizeof(float) == item_byte_size) {
        char float_cstr[256];
        llvm::APFloat ap_float(DE.GetFloat(&offset));
        ap_float.convertToHexString(float_cstr, 0, false,
                                    llvm::APFloat::rmNearestTiesToEven);
        s->Printf("%s", float_cstr);
        break;
      } else if (sizeof(double) == item_byte_size) {
        char float_cstr[256];
        llvm::APFloat ap_float(DE.GetDouble(&offset));
        ap_float.convertToHexString(float_cstr, 0, false,
                                    llvm::APFloat::rmNearestTiesToEven);
        s->Printf("%s", float_cstr);
        break;
      } else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for hex float format",
                  (uint64_t)item_byte_size);
        return offset;
      }
      break;

    // please keep the single-item formats below in sync with
    // FormatManager::GetSingleItemFormat if you fail to do so, users will
    // start getting different outputs depending on internal implementation
    // details they should not care about ||
    case eFormatVectorOfChar: //   ||
      s->PutChar('{');        //   \/
      offset =
          DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size,
                            item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt8:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size,
                            item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt8:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size,
                                 item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt16:
      s->PutChar('{');
      offset = DumpDataExtractor(
          DE, s, offset, eFormatDecimal, sizeof(uint16_t),
          item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t),
          LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt16:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t),
                                 item_byte_size / sizeof(uint16_t),
                                 item_byte_size / sizeof(uint16_t),
                                 LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt32:
      s->PutChar('{');
      offset = DumpDataExtractor(
          DE, s, offset, eFormatDecimal, sizeof(uint32_t),
          item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t),
          LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt32:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t),
                                 item_byte_size / sizeof(uint32_t),
                                 item_byte_size / sizeof(uint32_t),
                                 LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt64:
      s->PutChar('{');
      offset = DumpDataExtractor(
          DE, s, offset, eFormatDecimal, sizeof(uint64_t),
          item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t),
          LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt64:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t),
                                 item_byte_size / sizeof(uint64_t),
                                 item_byte_size / sizeof(uint64_t),
                                 LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfFloat16:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2,
                            item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfFloat32:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4,
                            item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfFloat64:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8,
                            item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt128:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16,
                            item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;
    }
  }

  // If anything was printed we want to catch the end of the last line.
  // Since we will exit the for loop above before we get a chance to append to
  // it normally.
  if (offset > line_start_offset) {
    if (item_format == eFormatBytesWithASCII) {
      s->Printf("%*s",
                static_cast<int>(
                    (num_per_line - (offset - line_start_offset)) * 3 + 2),
                "");
      DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
                        offset - line_start_offset, SIZE_MAX,
                        LLDB_INVALID_ADDRESS, 0, 0);
    }

    if (base_addr != LLDB_INVALID_ADDRESS && memory_tag_map) {
      size_t line_len = offset - line_start_offset;
      lldb::addr_t line_base = base_addr + (offset - start_offset - line_len) /
                                               DE.getTargetByteSize();
      printMemoryTags(DE, s, line_base, line_len, memory_tag_map);
    }
  }

  return offset; // Return the offset at which we ended up
}

void lldb_private::DumpHexBytes(Stream *s, const void *src, size_t src_len,
                                uint32_t bytes_per_line,
                                lldb::addr_t base_addr) {
  DataExtractor data(src, src_len, lldb::eByteOrderLittle, 4);
  DumpDataExtractor(data, s,
                    0,                  // Offset into "src"
                    lldb::eFormatBytes, // Dump as hex bytes
                    1,              // Size of each item is 1 for single bytes
                    src_len,        // Number of bytes
                    bytes_per_line, // Num bytes per line
                    base_addr,      // Base address
                    0, 0);          // Bitfield info
}