aboutsummaryrefslogtreecommitdiff
path: root/llvm/include/llvm/CodeGen/MachinePassManager.h
blob: f967167c65e1311348367d54244add50ec00fb9c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//===- PassManager.h --- Pass management for CodeGen ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header defines the pass manager interface for codegen. The codegen
// pipeline consists of only machine function passes. There is no container
// relationship between IR module/function and machine function in terms of pass
// manager organization. So there is no need for adaptor classes (for example
// ModuleToMachineFunctionAdaptor). Since invalidation could only happen among
// machine function passes, there is no proxy classes to handle cross-IR-unit
// invalidation. IR analysis results are provided for machine function passes by
// their respective analysis managers such as ModuleAnalysisManager and
// FunctionAnalysisManager.
//
// TODO: Add MachineFunctionProperties support.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINEPASSMANAGER_H
#define LLVM_CODEGEN_MACHINEPASSMANAGER_H

#include "llvm/ADT/FunctionExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/type_traits.h"

namespace llvm {
class Module;

extern template class AnalysisManager<MachineFunction>;

/// An AnalysisManager<MachineFunction> that also exposes IR analysis results.
class MachineFunctionAnalysisManager : public AnalysisManager<MachineFunction> {
public:
  using Base = AnalysisManager<MachineFunction>;

  MachineFunctionAnalysisManager() : Base(), FAM(nullptr), MAM(nullptr) {}
  MachineFunctionAnalysisManager(FunctionAnalysisManager &FAM,
                                 ModuleAnalysisManager &MAM)
      : Base(), FAM(&FAM), MAM(&MAM) {}
  MachineFunctionAnalysisManager(MachineFunctionAnalysisManager &&) = default;
  MachineFunctionAnalysisManager &
  operator=(MachineFunctionAnalysisManager &&) = default;

  /// Get the result of an analysis pass for a Function.
  ///
  /// Runs the analysis if a cached result is not available.
  template <typename PassT> typename PassT::Result &getResult(Function &F) {
    return FAM->getResult<PassT>(F);
  }

  /// Get the cached result of an analysis pass for a Function.
  ///
  /// This method never runs the analysis.
  ///
  /// \returns null if there is no cached result.
  template <typename PassT>
  typename PassT::Result *getCachedResult(Function &F) {
    return FAM->getCachedResult<PassT>(F);
  }

  /// Get the result of an analysis pass for a Module.
  ///
  /// Runs the analysis if a cached result is not available.
  template <typename PassT> typename PassT::Result &getResult(Module &M) {
    return MAM->getResult<PassT>(M);
  }

  /// Get the cached result of an analysis pass for a Module.
  ///
  /// This method never runs the analysis.
  ///
  /// \returns null if there is no cached result.
  template <typename PassT> typename PassT::Result *getCachedResult(Module &M) {
    return MAM->getCachedResult<PassT>(M);
  }

  /// Get the result of an analysis pass for a MachineFunction.
  ///
  /// Runs the analysis if a cached result is not available.
  using Base::getResult;

  /// Get the cached result of an analysis pass for a MachineFunction.
  ///
  /// This method never runs the analysis.
  ///
  /// returns null if there is no cached result.
  using Base::getCachedResult;

  // FIXME: Add LoopAnalysisManager or CGSCCAnalysisManager if needed.
  FunctionAnalysisManager *FAM;
  ModuleAnalysisManager *MAM;
};

extern template class PassManager<MachineFunction>;

/// MachineFunctionPassManager adds/removes below features to/from the base
/// PassManager template instantiation.
///
/// - Support passes that implement doInitialization/doFinalization. This is for
///   machine function passes to work on module level constructs. One such pass
///   is AsmPrinter.
///
/// - Support machine module pass which runs over the module (for example,
///   MachineOutliner). A machine module pass needs to define the method:
///
///   ```Error run(Module &, MachineFunctionAnalysisManager &)```
///
///   FIXME: machine module passes still need to define the usual machine
///          function pass interface, namely,
///          `PreservedAnalyses run(MachineFunction &,
///                                 MachineFunctionAnalysisManager &)`
///          But this interface wouldn't be executed. It is just a placeholder
///          to satisfy the pass manager type-erased inteface. This
///          special-casing of machine module pass is due to its limited use
///          cases and the unnecessary complexity it may bring to the machine
///          pass manager.
///
/// - The base class `run` method is replaced by an alternative `run` method.
///   See details below.
///
/// - Support codegening in the SCC order. Users include interprocedural
///   register allocation (IPRA).
class MachineFunctionPassManager
    : public PassManager<MachineFunction, MachineFunctionAnalysisManager> {
  using Base = PassManager<MachineFunction, MachineFunctionAnalysisManager>;

public:
  MachineFunctionPassManager(bool DebugLogging = false,
                             bool RequireCodeGenSCCOrder = false,
                             bool VerifyMachineFunction = false)
      : Base(), RequireCodeGenSCCOrder(RequireCodeGenSCCOrder),
        VerifyMachineFunction(VerifyMachineFunction) {}
  MachineFunctionPassManager(MachineFunctionPassManager &&) = default;
  MachineFunctionPassManager &
  operator=(MachineFunctionPassManager &&) = default;

  /// Run machine passes for a Module.
  ///
  /// The intended use is to start the codegen pipeline for a Module. The base
  /// class's `run` method is deliberately hidden by this due to the observation
  /// that we don't yet have the use cases of compositing two instances of
  /// machine pass managers, or compositing machine pass managers with other
  /// types of pass managers.
  Error run(Module &M, MachineFunctionAnalysisManager &MFAM);

  template <typename PassT> void addPass(PassT &&Pass) {
    Base::addPass(std::forward<PassT>(Pass));
    PassConceptT *P = Passes.back().get();
    addDoInitialization<PassT>(P);
    addDoFinalization<PassT>(P);

    // Add machine module pass.
    addRunOnModule<PassT>(P);
  }

private:
  template <typename PassT>
  using has_init_t = decltype(std::declval<PassT &>().doInitialization(
      std::declval<Module &>(),
      std::declval<MachineFunctionAnalysisManager &>()));

  template <typename PassT>
  std::enable_if_t<!is_detected<has_init_t, PassT>::value>
  addDoInitialization(PassConceptT *Pass) {}

  template <typename PassT>
  std::enable_if_t<is_detected<has_init_t, PassT>::value>
  addDoInitialization(PassConceptT *Pass) {
    using PassModelT =
        detail::PassModel<MachineFunction, PassT, PreservedAnalyses,
                          MachineFunctionAnalysisManager>;
    auto *P = static_cast<PassModelT *>(Pass);
    InitializationFuncs.emplace_back(
        [=](Module &M, MachineFunctionAnalysisManager &MFAM) {
          return P->Pass.doInitialization(M, MFAM);
        });
  }

  template <typename PassT>
  using has_fini_t = decltype(std::declval<PassT &>().doFinalization(
      std::declval<Module &>(),
      std::declval<MachineFunctionAnalysisManager &>()));

  template <typename PassT>
  std::enable_if_t<!is_detected<has_fini_t, PassT>::value>
  addDoFinalization(PassConceptT *Pass) {}

  template <typename PassT>
  std::enable_if_t<is_detected<has_fini_t, PassT>::value>
  addDoFinalization(PassConceptT *Pass) {
    using PassModelT =
        detail::PassModel<MachineFunction, PassT, PreservedAnalyses,
                          MachineFunctionAnalysisManager>;
    auto *P = static_cast<PassModelT *>(Pass);
    FinalizationFuncs.emplace_back(
        [=](Module &M, MachineFunctionAnalysisManager &MFAM) {
          return P->Pass.doFinalization(M, MFAM);
        });
  }

  template <typename PassT>
  using is_machine_module_pass_t = decltype(std::declval<PassT &>().run(
      std::declval<Module &>(),
      std::declval<MachineFunctionAnalysisManager &>()));

  template <typename PassT>
  using is_machine_function_pass_t = decltype(std::declval<PassT &>().run(
      std::declval<MachineFunction &>(),
      std::declval<MachineFunctionAnalysisManager &>()));

  template <typename PassT>
  std::enable_if_t<!is_detected<is_machine_module_pass_t, PassT>::value>
  addRunOnModule(PassConceptT *Pass) {}

  template <typename PassT>
  std::enable_if_t<is_detected<is_machine_module_pass_t, PassT>::value>
  addRunOnModule(PassConceptT *Pass) {
    static_assert(is_detected<is_machine_function_pass_t, PassT>::value,
                  "machine module pass needs to define machine function pass "
                  "api. sorry.");

    using PassModelT =
        detail::PassModel<MachineFunction, PassT, PreservedAnalyses,
                          MachineFunctionAnalysisManager>;
    auto *P = static_cast<PassModelT *>(Pass);
    MachineModulePasses.emplace(
        Passes.size() - 1,
        [=](Module &M, MachineFunctionAnalysisManager &MFAM) {
          return P->Pass.run(M, MFAM);
        });
  }

  using FuncTy = Error(Module &, MachineFunctionAnalysisManager &);
  SmallVector<llvm::unique_function<FuncTy>, 4> InitializationFuncs;
  SmallVector<llvm::unique_function<FuncTy>, 4> FinalizationFuncs;

  using PassIndex = decltype(Passes)::size_type;
  std::map<PassIndex, llvm::unique_function<FuncTy>> MachineModulePasses;

  // Run codegen in the SCC order.
  bool RequireCodeGenSCCOrder;

  bool VerifyMachineFunction;
};

} // end namespace llvm

#endif // LLVM_CODEGEN_MACHINEPASSMANAGER_H