aboutsummaryrefslogtreecommitdiff
path: root/llvm/include/llvm/IR/MatrixBuilder.h
blob: b14127df2182eb6393e17244163177e9e0fb5e1b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//===- llvm/MatrixBuilder.h - Builder to lower matrix ops -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MatrixBuilder class, which is used as a convenient way
// to lower matrix operations to LLVM IR.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_MATRIXBUILDER_H
#define LLVM_IR_MATRIXBUILDER_H

#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Alignment.h"

namespace llvm {

class Function;
class Twine;
class Module;

template <class IRBuilderTy> class MatrixBuilder {
  IRBuilderTy &B;
  Module *getModule() { return B.GetInsertBlock()->getParent()->getParent(); }

  std::pair<Value *, Value *> splatScalarOperandIfNeeded(Value *LHS,
                                                         Value *RHS) {
    assert((LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy()) &&
           "One of the operands must be a matrix (embedded in a vector)");
    if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
      assert(!isa<ScalableVectorType>(LHS->getType()) &&
             "LHS Assumed to be fixed width");
      RHS = B.CreateVectorSplat(
          cast<VectorType>(LHS->getType())->getElementCount(), RHS,
          "scalar.splat");
    } else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
      assert(!isa<ScalableVectorType>(RHS->getType()) &&
             "RHS Assumed to be fixed width");
      LHS = B.CreateVectorSplat(
          cast<VectorType>(RHS->getType())->getElementCount(), LHS,
          "scalar.splat");
    }
    return {LHS, RHS};
  }

public:
  MatrixBuilder(IRBuilderTy &Builder) : B(Builder) {}

  /// Create a column major, strided matrix load.
  /// \p DataPtr - Start address of the matrix read
  /// \p Rows    - Number of rows in matrix (must be a constant)
  /// \p Columns - Number of columns in matrix (must be a constant)
  /// \p Stride  - Space between columns
  CallInst *CreateColumnMajorLoad(Value *DataPtr, Align Alignment,
                                  Value *Stride, bool IsVolatile, unsigned Rows,
                                  unsigned Columns, const Twine &Name = "") {

    // Deal with the pointer
    PointerType *PtrTy = cast<PointerType>(DataPtr->getType());
    Type *EltTy = PtrTy->getElementType();

    auto *RetType = FixedVectorType::get(EltTy, Rows * Columns);

    Value *Ops[] = {DataPtr, Stride, B.getInt1(IsVolatile), B.getInt32(Rows),
                    B.getInt32(Columns)};
    Type *OverloadedTypes[] = {RetType};

    Function *TheFn = Intrinsic::getDeclaration(
        getModule(), Intrinsic::matrix_column_major_load, OverloadedTypes);

    CallInst *Call = B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
    Attribute AlignAttr =
        Attribute::getWithAlignment(Call->getContext(), Alignment);
    Call->addAttribute(1, AlignAttr);
    return Call;
  }

  /// Create a column major, strided matrix store.
  /// \p Matrix  - Matrix to store
  /// \p Ptr     - Pointer to write back to
  /// \p Stride  - Space between columns
  CallInst *CreateColumnMajorStore(Value *Matrix, Value *Ptr, Align Alignment,
                                   Value *Stride, bool IsVolatile,
                                   unsigned Rows, unsigned Columns,
                                   const Twine &Name = "") {
    Value *Ops[] = {Matrix,           Ptr,
                    Stride,           B.getInt1(IsVolatile),
                    B.getInt32(Rows), B.getInt32(Columns)};
    Type *OverloadedTypes[] = {Matrix->getType()};

    Function *TheFn = Intrinsic::getDeclaration(
        getModule(), Intrinsic::matrix_column_major_store, OverloadedTypes);

    CallInst *Call = B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
    Attribute AlignAttr =
        Attribute::getWithAlignment(Call->getContext(), Alignment);
    Call->addAttribute(2, AlignAttr);
    return Call;
  }

  /// Create a llvm.matrix.transpose call, transposing \p Matrix with \p Rows
  /// rows and \p Columns columns.
  CallInst *CreateMatrixTranspose(Value *Matrix, unsigned Rows,
                                  unsigned Columns, const Twine &Name = "") {
    auto *OpType = cast<VectorType>(Matrix->getType());
    auto *ReturnType =
        FixedVectorType::get(OpType->getElementType(), Rows * Columns);

    Type *OverloadedTypes[] = {ReturnType};
    Value *Ops[] = {Matrix, B.getInt32(Rows), B.getInt32(Columns)};
    Function *TheFn = Intrinsic::getDeclaration(
        getModule(), Intrinsic::matrix_transpose, OverloadedTypes);

    return B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
  }

  /// Create a llvm.matrix.multiply call, multiplying matrixes \p LHS and \p
  /// RHS.
  CallInst *CreateMatrixMultiply(Value *LHS, Value *RHS, unsigned LHSRows,
                                 unsigned LHSColumns, unsigned RHSColumns,
                                 const Twine &Name = "") {
    auto *LHSType = cast<VectorType>(LHS->getType());
    auto *RHSType = cast<VectorType>(RHS->getType());

    auto *ReturnType =
        FixedVectorType::get(LHSType->getElementType(), LHSRows * RHSColumns);

    Value *Ops[] = {LHS, RHS, B.getInt32(LHSRows), B.getInt32(LHSColumns),
                    B.getInt32(RHSColumns)};
    Type *OverloadedTypes[] = {ReturnType, LHSType, RHSType};

    Function *TheFn = Intrinsic::getDeclaration(
        getModule(), Intrinsic::matrix_multiply, OverloadedTypes);
    return B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
  }

  /// Insert a single element \p NewVal into \p Matrix at indices (\p RowIdx, \p
  /// ColumnIdx).
  Value *CreateMatrixInsert(Value *Matrix, Value *NewVal, Value *RowIdx,
                            Value *ColumnIdx, unsigned NumRows) {
    return B.CreateInsertElement(
        Matrix, NewVal,
        B.CreateAdd(B.CreateMul(ColumnIdx, ConstantInt::get(
                                               ColumnIdx->getType(), NumRows)),
                    RowIdx));
  }

  /// Add matrixes \p LHS and \p RHS. Support both integer and floating point
  /// matrixes.
  Value *CreateAdd(Value *LHS, Value *RHS) {
    assert(LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy());
    if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
      assert(!isa<ScalableVectorType>(LHS->getType()) &&
             "LHS Assumed to be fixed width");
      RHS = B.CreateVectorSplat(
          cast<VectorType>(LHS->getType())->getElementCount(), RHS,
          "scalar.splat");
    } else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
      assert(!isa<ScalableVectorType>(RHS->getType()) &&
             "RHS Assumed to be fixed width");
      LHS = B.CreateVectorSplat(
          cast<VectorType>(RHS->getType())->getElementCount(), LHS,
          "scalar.splat");
    }

    return cast<VectorType>(LHS->getType())
                   ->getElementType()
                   ->isFloatingPointTy()
               ? B.CreateFAdd(LHS, RHS)
               : B.CreateAdd(LHS, RHS);
  }

  /// Subtract matrixes \p LHS and \p RHS. Support both integer and floating
  /// point matrixes.
  Value *CreateSub(Value *LHS, Value *RHS) {
    assert(LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy());
    if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
      assert(!isa<ScalableVectorType>(LHS->getType()) &&
             "LHS Assumed to be fixed width");
      RHS = B.CreateVectorSplat(
          cast<VectorType>(LHS->getType())->getElementCount(), RHS,
          "scalar.splat");
    } else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
      assert(!isa<ScalableVectorType>(RHS->getType()) &&
             "RHS Assumed to be fixed width");
      LHS = B.CreateVectorSplat(
          cast<VectorType>(RHS->getType())->getElementCount(), LHS,
          "scalar.splat");
    }

    return cast<VectorType>(LHS->getType())
                   ->getElementType()
                   ->isFloatingPointTy()
               ? B.CreateFSub(LHS, RHS)
               : B.CreateSub(LHS, RHS);
  }

  /// Multiply matrix \p LHS with scalar \p RHS or scalar \p LHS with matrix \p
  /// RHS.
  Value *CreateScalarMultiply(Value *LHS, Value *RHS) {
    std::tie(LHS, RHS) = splatScalarOperandIfNeeded(LHS, RHS);
    if (LHS->getType()->getScalarType()->isFloatingPointTy())
      return B.CreateFMul(LHS, RHS);
    return B.CreateMul(LHS, RHS);
  }

  /// Divide matrix \p LHS by scalar \p RHS. If the operands are integers, \p
  /// IsUnsigned indicates whether UDiv or SDiv should be used.
  Value *CreateScalarDiv(Value *LHS, Value *RHS, bool IsUnsigned) {
    assert(LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy());
    assert(!isa<ScalableVectorType>(LHS->getType()) &&
           "LHS Assumed to be fixed width");
    RHS =
        B.CreateVectorSplat(cast<VectorType>(LHS->getType())->getElementCount(),
                            RHS, "scalar.splat");
    return cast<VectorType>(LHS->getType())
                   ->getElementType()
                   ->isFloatingPointTy()
               ? B.CreateFDiv(LHS, RHS)
               : (IsUnsigned ? B.CreateUDiv(LHS, RHS) : B.CreateSDiv(LHS, RHS));
  }

  /// Extracts the element at (\p RowIdx, \p ColumnIdx) from \p Matrix.
  Value *CreateExtractElement(Value *Matrix, Value *RowIdx, Value *ColumnIdx,
                              unsigned NumRows, Twine const &Name = "") {

    unsigned MaxWidth = std::max(RowIdx->getType()->getScalarSizeInBits(),
                                 ColumnIdx->getType()->getScalarSizeInBits());
    Type *IntTy = IntegerType::get(RowIdx->getType()->getContext(), MaxWidth);
    RowIdx = B.CreateZExt(RowIdx, IntTy);
    ColumnIdx = B.CreateZExt(ColumnIdx, IntTy);
    Value *NumRowsV = B.getIntN(MaxWidth, NumRows);
    return B.CreateExtractElement(
        Matrix, B.CreateAdd(B.CreateMul(ColumnIdx, NumRowsV), RowIdx),
        "matext");
  }
};

} // end namespace llvm

#endif // LLVM_IR_MATRIXBUILDER_H