aboutsummaryrefslogtreecommitdiff
path: root/llvm/include/llvm/Transforms/Utils/Local.h
blob: d1dc0b3e46b9ce268b4ea8ff4fbc19bcbca5c1db (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
#define LLVM_TRANSFORMS_UTILS_LOCAL_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cstdint>
#include <limits>

namespace llvm {

class AllocaInst;
class AssumptionCache;
class BasicBlock;
class BranchInst;
class CallInst;
class DbgVariableIntrinsic;
class DbgValueInst;
class DIBuilder;
class Function;
class Instruction;
class LazyValueInfo;
class LoadInst;
class MDNode;
class MemorySSAUpdater;
class PHINode;
class StoreInst;
class TargetLibraryInfo;
class TargetTransformInfo;

/// A set of parameters used to control the transforms in the SimplifyCFG pass.
/// Options may change depending on the position in the optimization pipeline.
/// For example, canonical form that includes switches and branches may later be
/// replaced by lookup tables and selects.
struct SimplifyCFGOptions {
  int BonusInstThreshold;
  bool ForwardSwitchCondToPhi;
  bool ConvertSwitchToLookupTable;
  bool NeedCanonicalLoop;
  bool SinkCommonInsts;
  AssumptionCache *AC;

  SimplifyCFGOptions(unsigned BonusThreshold = 1,
                     bool ForwardSwitchCond = false,
                     bool SwitchToLookup = false, bool CanonicalLoops = true,
                     bool SinkCommon = false,
                     AssumptionCache *AssumpCache = nullptr)
      : BonusInstThreshold(BonusThreshold),
        ForwardSwitchCondToPhi(ForwardSwitchCond),
        ConvertSwitchToLookupTable(SwitchToLookup),
        NeedCanonicalLoop(CanonicalLoops),
        SinkCommonInsts(SinkCommon),
        AC(AssumpCache) {}

  // Support 'builder' pattern to set members by name at construction time.
  SimplifyCFGOptions &bonusInstThreshold(int I) {
    BonusInstThreshold = I;
    return *this;
  }
  SimplifyCFGOptions &forwardSwitchCondToPhi(bool B) {
    ForwardSwitchCondToPhi = B;
    return *this;
  }
  SimplifyCFGOptions &convertSwitchToLookupTable(bool B) {
    ConvertSwitchToLookupTable = B;
    return *this;
  }
  SimplifyCFGOptions &needCanonicalLoops(bool B) {
    NeedCanonicalLoop = B;
    return *this;
  }
  SimplifyCFGOptions &sinkCommonInsts(bool B) {
    SinkCommonInsts = B;
    return *this;
  }
  SimplifyCFGOptions &setAssumptionCache(AssumptionCache *Cache) {
    AC = Cache;
    return *this;
  }
};

//===----------------------------------------------------------------------===//
//  Local constant propagation.
//

/// If a terminator instruction is predicated on a constant value, convert it
/// into an unconditional branch to the constant destination.
/// This is a nontrivial operation because the successors of this basic block
/// must have their PHI nodes updated.
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
                            const TargetLibraryInfo *TLI = nullptr,
                            DomTreeUpdater *DTU = nullptr);

//===----------------------------------------------------------------------===//
//  Local dead code elimination.
//

/// Return true if the result produced by the instruction is not used, and the
/// instruction has no side effects.
bool isInstructionTriviallyDead(Instruction *I,
                                const TargetLibraryInfo *TLI = nullptr);

/// Return true if the result produced by the instruction would have no side
/// effects if it was not used. This is equivalent to checking whether
/// isInstructionTriviallyDead would be true if the use count was 0.
bool wouldInstructionBeTriviallyDead(Instruction *I,
                                     const TargetLibraryInfo *TLI = nullptr);

/// If the specified value is a trivially dead instruction, delete it.
/// If that makes any of its operands trivially dead, delete them too,
/// recursively. Return true if any instructions were deleted.
bool RecursivelyDeleteTriviallyDeadInstructions(
    Value *V, const TargetLibraryInfo *TLI = nullptr,
    MemorySSAUpdater *MSSAU = nullptr);

/// Delete all of the instructions in `DeadInsts`, and all other instructions
/// that deleting these in turn causes to be trivially dead.
///
/// The initial instructions in the provided vector must all have empty use
/// lists and satisfy `isInstructionTriviallyDead`.
///
/// `DeadInsts` will be used as scratch storage for this routine and will be
/// empty afterward.
void RecursivelyDeleteTriviallyDeadInstructions(
    SmallVectorImpl<Instruction *> &DeadInsts,
    const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr);

/// If the specified value is an effectively dead PHI node, due to being a
/// def-use chain of single-use nodes that either forms a cycle or is terminated
/// by a trivially dead instruction, delete it. If that makes any of its
/// operands trivially dead, delete them too, recursively. Return true if a
/// change was made.
bool RecursivelyDeleteDeadPHINode(PHINode *PN,
                                  const TargetLibraryInfo *TLI = nullptr);

/// Scan the specified basic block and try to simplify any instructions in it
/// and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool SimplifyInstructionsInBlock(BasicBlock *BB,
                                 const TargetLibraryInfo *TLI = nullptr);

/// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
/// undef. This is useful for signaling that a variable, e.g. has been
/// found dead and hence it's unavailable at a given program point.
/// Returns true if the dbg values have been changed.
bool replaceDbgUsesWithUndef(Instruction *I);

//===----------------------------------------------------------------------===//
//  Control Flow Graph Restructuring.
//

/// Like BasicBlock::removePredecessor, this method is called when we're about
/// to delete Pred as a predecessor of BB. If BB contains any PHI nodes, this
/// drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values.  For example, if we have:
///   x = phi(1, 0, 0, 0)
///   y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the 'and' to 0.
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
                                  DomTreeUpdater *DTU = nullptr);

/// BB is a block with one predecessor and its predecessor is known to have one
/// successor (BB!). Eliminate the edge between them, moving the instructions in
/// the predecessor into BB. This deletes the predecessor block.
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);

/// BB is known to contain an unconditional branch, and contains no instructions
/// other than PHI nodes, potential debug intrinsics and the branch. If
/// possible, eliminate BB by rewriting all the predecessors to branch to the
/// successor block and return true. If we can't transform, return false.
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
                                             DomTreeUpdater *DTU = nullptr);

/// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
/// to be clever about PHI nodes which differ only in the order of the incoming
/// values, but instcombine orders them so it usually won't matter.
bool EliminateDuplicatePHINodes(BasicBlock *BB);

/// This function is used to do simplification of a CFG.  For example, it
/// adjusts branches to branches to eliminate the extra hop, it eliminates
/// unreachable basic blocks, and does other peephole optimization of the CFG.
/// It returns true if a modification was made, possibly deleting the basic
/// block that was pointed to. LoopHeaders is an optional input parameter
/// providing the set of loop headers that SimplifyCFG should not eliminate.
bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
                 const SimplifyCFGOptions &Options = {},
                 SmallPtrSetImpl<BasicBlock *> *LoopHeaders = nullptr);

/// This function is used to flatten a CFG. For example, it uses parallel-and
/// and parallel-or mode to collapse if-conditions and merge if-regions with
/// identical statements.
bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);

/// If this basic block is ONLY a setcc and a branch, and if a predecessor
/// branches to us and one of our successors, fold the setcc into the
/// predecessor and use logical operations to pick the right destination.
bool FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU = nullptr,
                            unsigned BonusInstThreshold = 1);

/// This function takes a virtual register computed by an Instruction and
/// replaces it with a slot in the stack frame, allocated via alloca.
/// This allows the CFG to be changed around without fear of invalidating the
/// SSA information for the value. It returns the pointer to the alloca inserted
/// to create a stack slot for X.
AllocaInst *DemoteRegToStack(Instruction &X,
                             bool VolatileLoads = false,
                             Instruction *AllocaPoint = nullptr);

/// This function takes a virtual register computed by a phi node and replaces
/// it with a slot in the stack frame, allocated via alloca. The phi node is
/// deleted and it returns the pointer to the alloca inserted.
AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);

/// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
/// the owning object can be modified and has an alignment less than \p
/// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
/// cannot be increased, the known alignment of the value is returned.
///
/// It is not always possible to modify the alignment of the underlying object,
/// so if alignment is important, a more reliable approach is to simply align
/// all global variables and allocation instructions to their preferred
/// alignment from the beginning.
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
                                    const DataLayout &DL,
                                    const Instruction *CxtI = nullptr,
                                    AssumptionCache *AC = nullptr,
                                    const DominatorTree *DT = nullptr);

/// Try to infer an alignment for the specified pointer.
inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
                                  const Instruction *CxtI = nullptr,
                                  AssumptionCache *AC = nullptr,
                                  const DominatorTree *DT = nullptr) {
  return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
}

/// Create a call that matches the invoke \p II in terms of arguments,
/// attributes, debug information, etc. The call is not placed in a block and it
/// will not have a name. The invoke instruction is not removed, nor are the
/// uses replaced by the new call.
CallInst *createCallMatchingInvoke(InvokeInst *II);

/// This function converts the specified invoek into a normall call.
void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);

///===---------------------------------------------------------------------===//
///  Dbg Intrinsic utilities
///

/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
                                     StoreInst *SI, DIBuilder &Builder);

/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
                                     LoadInst *LI, DIBuilder &Builder);

/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
                                     PHINode *LI, DIBuilder &Builder);

/// Lowers llvm.dbg.declare intrinsics into appropriate set of
/// llvm.dbg.value intrinsics.
bool LowerDbgDeclare(Function &F);

/// Propagate dbg.value intrinsics through the newly inserted PHIs.
void insertDebugValuesForPHIs(BasicBlock *BB,
                              SmallVectorImpl<PHINode *> &InsertedPHIs);

/// Finds all intrinsics declaring local variables as living in the memory that
/// 'V' points to. This may include a mix of dbg.declare and
/// dbg.addr intrinsics.
TinyPtrVector<DbgVariableIntrinsic *> FindDbgAddrUses(Value *V);

/// Finds the llvm.dbg.value intrinsics describing a value.
void findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V);

/// Finds the debug info intrinsics describing a value.
void findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgInsts, Value *V);

/// Replaces llvm.dbg.declare instruction when the address it
/// describes is replaced with a new value. If Deref is true, an
/// additional DW_OP_deref is prepended to the expression. If Offset
/// is non-zero, a constant displacement is added to the expression
/// (between the optional Deref operations). Offset can be negative.
bool replaceDbgDeclare(Value *Address, Value *NewAddress,
                       Instruction *InsertBefore, DIBuilder &Builder,
                       uint8_t DIExprFlags, int Offset);

/// Replaces llvm.dbg.declare instruction when the alloca it describes
/// is replaced with a new value. If Deref is true, an additional
/// DW_OP_deref is prepended to the expression. If Offset is non-zero,
/// a constant displacement is added to the expression (between the
/// optional Deref operations). Offset can be negative. The new
/// llvm.dbg.declare is inserted immediately after AI.
bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
                                DIBuilder &Builder, uint8_t DIExprFlags,
                                int Offset);

/// Replaces multiple llvm.dbg.value instructions when the alloca it describes
/// is replaced with a new value. If Offset is non-zero, a constant displacement
/// is added to the expression (after the mandatory Deref). Offset can be
/// negative. New llvm.dbg.value instructions are inserted at the locations of
/// the instructions they replace.
void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
                              DIBuilder &Builder, int Offset = 0);

/// Finds alloca where the value comes from.
AllocaInst *findAllocaForValue(Value *V,
                               DenseMap<Value *, AllocaInst *> &AllocaForValue);

/// Assuming the instruction \p I is going to be deleted, attempt to salvage
/// debug users of \p I by writing the effect of \p I in a DIExpression.
/// Returns true if any debug users were updated.
bool salvageDebugInfo(Instruction &I);

/// Salvage all debug users of the instruction \p I or mark it as undef if it
/// cannot be salvaged.
void salvageDebugInfoOrMarkUndef(Instruction &I);

/// Implementation of salvageDebugInfo, applying only to instructions in
/// \p Insns, rather than all debug users of \p I.
bool salvageDebugInfoForDbgValues(Instruction &I,
                                  ArrayRef<DbgVariableIntrinsic *> Insns);

/// Given an instruction \p I and DIExpression \p DIExpr operating on it, write
/// the effects of \p I into the returned DIExpression, or return nullptr if
/// it cannot be salvaged. \p StackVal: whether DW_OP_stack_value should be
/// appended to the expression.
DIExpression *salvageDebugInfoImpl(Instruction &I, DIExpression *DIExpr,
                                   bool StackVal);

/// Point debug users of \p From to \p To or salvage them. Use this function
/// only when replacing all uses of \p From with \p To, with a guarantee that
/// \p From is going to be deleted.
///
/// Follow these rules to prevent use-before-def of \p To:
///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
///     \p To will be inserted after.
///   . If \p To is not an Instruction (e.g a Constant), the choice of
///     \p DomPoint is arbitrary. Pick \p From for simplicity.
///
/// If a debug user cannot be preserved without reordering variable updates or
/// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
/// or deleted. Returns true if any debug users were updated.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
                           DominatorTree &DT);

/// Remove all instructions from a basic block other than it's terminator
/// and any present EH pad instructions.
unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);

/// Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap,
                             bool PreserveLCSSA = false,
                             DomTreeUpdater *DTU = nullptr,
                             MemorySSAUpdater *MSSAU = nullptr);

/// Convert the CallInst to InvokeInst with the specified unwind edge basic
/// block.  This also splits the basic block where CI is located, because
/// InvokeInst is a terminator instruction.  Returns the newly split basic
/// block.
BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
                                             BasicBlock *UnwindEdge);

/// Replace 'BB's terminator with one that does not have an unwind successor
/// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
/// successor.
///
/// \param BB  Block whose terminator will be replaced.  Its terminator must
///            have an unwind successor.
void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);

/// Remove all blocks that can not be reached from the function's entry.
///
/// Returns true if any basic block was removed.
bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
                             MemorySSAUpdater *MSSAU = nullptr);

/// Combine the metadata of two instructions so that K can replace J. Some
/// metadata kinds can only be kept if K does not move, meaning it dominated
/// J in the original IR.
///
/// Metadata not listed as known via KnownIDs is removed
void combineMetadata(Instruction *K, const Instruction *J,
                     ArrayRef<unsigned> KnownIDs, bool DoesKMove);

/// Combine the metadata of two instructions so that K can replace J. This
/// specifically handles the case of CSE-like transformations. Some
/// metadata can only be kept if K dominates J. For this to be correct,
/// K cannot be hoisted.
///
/// Unknown metadata is removed.
void combineMetadataForCSE(Instruction *K, const Instruction *J,
                           bool DoesKMove);

/// Copy the metadata from the source instruction to the destination (the
/// replacement for the source instruction).
void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);

/// Patch the replacement so that it is not more restrictive than the value
/// being replaced. It assumes that the replacement does not get moved from
/// its original position.
void patchReplacementInstruction(Instruction *I, Value *Repl);

// Replace each use of 'From' with 'To', if that use does not belong to basic
// block where 'From' is defined. Returns the number of replacements made.
unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);

/// Replace each use of 'From' with 'To' if that use is dominated by
/// the given edge.  Returns the number of replacements made.
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
                                  const BasicBlockEdge &Edge);
/// Replace each use of 'From' with 'To' if that use is dominated by
/// the end of the given BasicBlock. Returns the number of replacements made.
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
                                  const BasicBlock *BB);

/// Return true if this call calls a gc leaf function.
///
/// A leaf function is a function that does not safepoint the thread during its
/// execution.  During a call or invoke to such a function, the callers stack
/// does not have to be made parseable.
///
/// Most passes can and should ignore this information, and it is only used
/// during lowering by the GC infrastructure.
bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);

/// Copy a nonnull metadata node to a new load instruction.
///
/// This handles mapping it to range metadata if the new load is an integer
/// load instead of a pointer load.
void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);

/// Copy a range metadata node to a new load instruction.
///
/// This handles mapping it to nonnull metadata if the new load is a pointer
/// load instead of an integer load and the range doesn't cover null.
void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
                       LoadInst &NewLI);

/// Remove the debug intrinsic instructions for the given instruction.
void dropDebugUsers(Instruction &I);

/// Hoist all of the instructions in the \p IfBlock to the dominant block
/// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
///
/// The moved instructions receive the insertion point debug location values
/// (DILocations) and their debug intrinsic instructions are removed.
void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
                              BasicBlock *BB);

//===----------------------------------------------------------------------===//
//  Intrinsic pattern matching
//

/// Try to match a bswap or bitreverse idiom.
///
/// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
/// instructions are returned in \c InsertedInsts. They will all have been added
/// to a basic block.
///
/// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
/// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
/// to BW / 4 nodes to be searched, so is significantly faster.
///
/// This function returns true on a successful match or false otherwise.
bool recognizeBSwapOrBitReverseIdiom(
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
    SmallVectorImpl<Instruction *> &InsertedInsts);

//===----------------------------------------------------------------------===//
//  Sanitizer utilities
//

/// Given a CallInst, check if it calls a string function known to CodeGen,
/// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
/// to intercept string functions and want to avoid converting them to target
/// specific instructions.
void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
                                            const TargetLibraryInfo *TLI);

//===----------------------------------------------------------------------===//
//  Transform predicates
//

/// Given an instruction, is it legal to set operand OpIdx to a non-constant
/// value?
bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);

} // end namespace llvm

#endif // LLVM_TRANSFORMS_UTILS_LOCAL_H