aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/CFLSteensAliasAnalysis.cpp
blob: 9467bb3c9b2dd2235e204a973bcb028ec1127a54 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//===- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a CFL-base, summary-based alias analysis algorithm. It
// does not depend on types. The algorithm is a mixture of the one described in
// "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
// algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
// Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
// graph of the uses of a variable, where each node is a memory location, and
// each edge is an action that happened on that memory location.  The "actions"
// can be one of Dereference, Reference, or Assign. The precision of this
// analysis is roughly the same as that of an one level context-sensitive
// Steensgaard's algorithm.
//
// Two variables are considered as aliasing iff you can reach one value's node
// from the other value's node and the language formed by concatenating all of
// the edge labels (actions) conforms to a context-free grammar.
//
// Because this algorithm requires a graph search on each query, we execute the
// algorithm outlined in "Fast algorithms..." (mentioned above)
// in order to transform the graph into sets of variables that may alias in
// ~nlogn time (n = number of variables), which makes queries take constant
// time.
//===----------------------------------------------------------------------===//

// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
// CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
// FunctionPasses are only allowed to inspect the Function that they're being
// run on. Realistically, this likely isn't a problem until we allow
// FunctionPasses to run concurrently.

#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "AliasAnalysisSummary.h"
#include "CFLGraph.h"
#include "StratifiedSets.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <memory>
#include <utility>

using namespace llvm;
using namespace llvm::cflaa;

#define DEBUG_TYPE "cfl-steens-aa"

CFLSteensAAResult::CFLSteensAAResult(
    std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
    : AAResultBase(), GetTLI(std::move(GetTLI)) {}
CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
    : AAResultBase(std::move(Arg)), GetTLI(std::move(Arg.GetTLI)) {}
CFLSteensAAResult::~CFLSteensAAResult() = default;

/// Information we have about a function and would like to keep around.
class CFLSteensAAResult::FunctionInfo {
  StratifiedSets<InstantiatedValue> Sets;
  AliasSummary Summary;

public:
  FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
               StratifiedSets<InstantiatedValue> S);

  const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
    return Sets;
  }

  const AliasSummary &getAliasSummary() const { return Summary; }
};

const StratifiedIndex StratifiedLink::SetSentinel =
    std::numeric_limits<StratifiedIndex>::max();

//===----------------------------------------------------------------------===//
// Function declarations that require types defined in the namespace above
//===----------------------------------------------------------------------===//

/// Determines whether it would be pointless to add the given Value to our sets.
static bool canSkipAddingToSets(Value *Val) {
  // Constants can share instances, which may falsely unify multiple
  // sets, e.g. in
  // store i32* null, i32** %ptr1
  // store i32* null, i32** %ptr2
  // clearly ptr1 and ptr2 should not be unified into the same set, so
  // we should filter out the (potentially shared) instance to
  // i32* null.
  if (isa<Constant>(Val)) {
    // TODO: Because all of these things are constant, we can determine whether
    // the data is *actually* mutable at graph building time. This will probably
    // come for free/cheap with offset awareness.
    bool CanStoreMutableData = isa<GlobalValue>(Val) ||
                               isa<ConstantExpr>(Val) ||
                               isa<ConstantAggregate>(Val);
    return !CanStoreMutableData;
  }

  return false;
}

CFLSteensAAResult::FunctionInfo::FunctionInfo(
    Function &Fn, const SmallVectorImpl<Value *> &RetVals,
    StratifiedSets<InstantiatedValue> S)
    : Sets(std::move(S)) {
  // Historically, an arbitrary upper-bound of 50 args was selected. We may want
  // to remove this if it doesn't really matter in practice.
  if (Fn.arg_size() > MaxSupportedArgsInSummary)
    return;

  DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;

  // Our intention here is to record all InterfaceValues that share the same
  // StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
  // have its StratifiedIndex scanned here and check if the index is presented
  // in InterfaceMap: if it is not, we add the correspondence to the map;
  // otherwise, an aliasing relation is found and we add it to
  // RetParamRelations.

  auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
                                    StratifiedIndex SetIndex) {
    unsigned Level = 0;
    while (true) {
      InterfaceValue CurrValue{InterfaceIndex, Level};

      auto Itr = InterfaceMap.find(SetIndex);
      if (Itr != InterfaceMap.end()) {
        if (CurrValue != Itr->second)
          Summary.RetParamRelations.push_back(
              ExternalRelation{CurrValue, Itr->second, UnknownOffset});
        break;
      }

      auto &Link = Sets.getLink(SetIndex);
      InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
      auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
      if (ExternalAttrs.any())
        Summary.RetParamAttributes.push_back(
            ExternalAttribute{CurrValue, ExternalAttrs});

      if (!Link.hasBelow())
        break;

      ++Level;
      SetIndex = Link.Below;
    }
  };

  // Populate RetParamRelations for return values
  for (auto *RetVal : RetVals) {
    assert(RetVal != nullptr);
    assert(RetVal->getType()->isPointerTy());
    auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
    if (RetInfo.hasValue())
      AddToRetParamRelations(0, RetInfo->Index);
  }

  // Populate RetParamRelations for parameters
  unsigned I = 0;
  for (auto &Param : Fn.args()) {
    if (Param.getType()->isPointerTy()) {
      auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
      if (ParamInfo.hasValue())
        AddToRetParamRelations(I + 1, ParamInfo->Index);
    }
    ++I;
  }
}

// Builds the graph + StratifiedSets for a function.
CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
  CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, GetTLI(*Fn), *Fn);
  StratifiedSetsBuilder<InstantiatedValue> SetBuilder;

  // Add all CFLGraph nodes and all Dereference edges to StratifiedSets
  auto &Graph = GraphBuilder.getCFLGraph();
  for (const auto &Mapping : Graph.value_mappings()) {
    auto Val = Mapping.first;
    if (canSkipAddingToSets(Val))
      continue;
    auto &ValueInfo = Mapping.second;

    assert(ValueInfo.getNumLevels() > 0);
    SetBuilder.add(InstantiatedValue{Val, 0});
    SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
                              ValueInfo.getNodeInfoAtLevel(0).Attr);
    for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
      SetBuilder.add(InstantiatedValue{Val, I + 1});
      SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
                                ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
      SetBuilder.addBelow(InstantiatedValue{Val, I},
                          InstantiatedValue{Val, I + 1});
    }
  }

  // Add all assign edges to StratifiedSets
  for (const auto &Mapping : Graph.value_mappings()) {
    auto Val = Mapping.first;
    if (canSkipAddingToSets(Val))
      continue;
    auto &ValueInfo = Mapping.second;

    for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
      auto Src = InstantiatedValue{Val, I};
      for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
        SetBuilder.addWith(Src, Edge.Other);
    }
  }

  return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
}

void CFLSteensAAResult::scan(Function *Fn) {
  auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
  (void)InsertPair;
  assert(InsertPair.second &&
         "Trying to scan a function that has already been cached");

  // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
  // may get evaluated after operator[], potentially triggering a DenseMap
  // resize and invalidating the reference returned by operator[]
  auto FunInfo = buildSetsFrom(Fn);
  Cache[Fn] = std::move(FunInfo);

  Handles.emplace_front(Fn, this);
}

void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }

/// Ensures that the given function is available in the cache, and returns the
/// entry.
const Optional<CFLSteensAAResult::FunctionInfo> &
CFLSteensAAResult::ensureCached(Function *Fn) {
  auto Iter = Cache.find(Fn);
  if (Iter == Cache.end()) {
    scan(Fn);
    Iter = Cache.find(Fn);
    assert(Iter != Cache.end());
    assert(Iter->second.hasValue());
  }
  return Iter->second;
}

const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
  auto &FunInfo = ensureCached(&Fn);
  if (FunInfo.hasValue())
    return &FunInfo->getAliasSummary();
  else
    return nullptr;
}

AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
                                     const MemoryLocation &LocB) {
  auto *ValA = const_cast<Value *>(LocA.Ptr);
  auto *ValB = const_cast<Value *>(LocB.Ptr);

  if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
    return AliasResult::NoAlias;

  Function *Fn = nullptr;
  Function *MaybeFnA = const_cast<Function *>(parentFunctionOfValue(ValA));
  Function *MaybeFnB = const_cast<Function *>(parentFunctionOfValue(ValB));
  if (!MaybeFnA && !MaybeFnB) {
    // The only times this is known to happen are when globals + InlineAsm are
    // involved
    LLVM_DEBUG(
        dbgs()
        << "CFLSteensAA: could not extract parent function information.\n");
    return AliasResult::MayAlias;
  }

  if (MaybeFnA) {
    Fn = MaybeFnA;
    assert((!MaybeFnB || MaybeFnB == MaybeFnA) &&
           "Interprocedural queries not supported");
  } else {
    Fn = MaybeFnB;
  }

  assert(Fn != nullptr);
  auto &MaybeInfo = ensureCached(Fn);
  assert(MaybeInfo.hasValue());

  auto &Sets = MaybeInfo->getStratifiedSets();
  auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
  if (!MaybeA.hasValue())
    return AliasResult::MayAlias;

  auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
  if (!MaybeB.hasValue())
    return AliasResult::MayAlias;

  auto SetA = *MaybeA;
  auto SetB = *MaybeB;
  auto AttrsA = Sets.getLink(SetA.Index).Attrs;
  auto AttrsB = Sets.getLink(SetB.Index).Attrs;

  // If both values are local (meaning the corresponding set has attribute
  // AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
  // they may-alias each other if and only if they are in the same set.
  // If at least one value is non-local (meaning it either is global/argument or
  // it comes from unknown sources like integer cast), the situation becomes a
  // bit more interesting. We follow three general rules described below:
  // - Non-local values may alias each other
  // - AttrNone values do not alias any non-local values
  // - AttrEscaped do not alias globals/arguments, but they may alias
  // AttrUnknown values
  if (SetA.Index == SetB.Index)
    return AliasResult::MayAlias;
  if (AttrsA.none() || AttrsB.none())
    return AliasResult::NoAlias;
  if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
    return AliasResult::MayAlias;
  if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
    return AliasResult::MayAlias;
  return AliasResult::NoAlias;
}

AnalysisKey CFLSteensAA::Key;

CFLSteensAAResult CFLSteensAA::run(Function &F, FunctionAnalysisManager &AM) {
  auto GetTLI = [&AM](Function &F) -> const TargetLibraryInfo & {
    return AM.getResult<TargetLibraryAnalysis>(F);
  };
  return CFLSteensAAResult(GetTLI);
}

char CFLSteensAAWrapperPass::ID = 0;
INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
                "Unification-Based CFL Alias Analysis", false, true)

ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
  return new CFLSteensAAWrapperPass();
}

CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
  initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

void CFLSteensAAWrapperPass::initializePass() {
  auto GetTLI = [this](Function &F) -> const TargetLibraryInfo & {
    return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  };
  Result.reset(new CFLSteensAAResult(GetTLI));
}

void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
}