aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/LoopCacheAnalysis.cpp
blob: cf68596bfbc3152f6b4bfaafe28123a949077e44 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
//
//                     The LLVM Compiler Infrastructure
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the implementation for the loop cache analysis.
/// The implementation is largely based on the following paper:
///
///       Compiler Optimizations for Improving Data Locality
///       By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
///       http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
///
/// The general approach taken to estimate the number of cache lines used by the
/// memory references in an inner loop is:
///    1. Partition memory references that exhibit temporal or spacial reuse
///       into reference groups.
///    2. For each loop L in the a loop nest LN:
///       a. Compute the cost of the reference group
///       b. Compute the loop cost by summing up the reference groups costs
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopCacheAnalysis.h"
#include "llvm/ADT/BreadthFirstIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "loop-cache-cost"

static cl::opt<unsigned> DefaultTripCount(
    "default-trip-count", cl::init(100), cl::Hidden,
    cl::desc("Use this to specify the default trip count of a loop"));

// In this analysis two array references are considered to exhibit temporal
// reuse if they access either the same memory location, or a memory location
// with distance smaller than a configurable threshold.
static cl::opt<unsigned> TemporalReuseThreshold(
    "temporal-reuse-threshold", cl::init(2), cl::Hidden,
    cl::desc("Use this to specify the max. distance between array elements "
             "accessed in a loop so that the elements are classified to have "
             "temporal reuse"));

/// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
/// nullptr if any loops in the loop vector supplied has more than one sibling.
/// The loop vector is expected to contain loops collected in breadth-first
/// order.
static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
  assert(!Loops.empty() && "Expecting a non-empy loop vector");

  Loop *LastLoop = Loops.back();
  Loop *ParentLoop = LastLoop->getParentLoop();

  if (ParentLoop == nullptr) {
    assert(Loops.size() == 1 && "Expecting a single loop");
    return LastLoop;
  }

  return (llvm::is_sorted(Loops,
                          [](const Loop *L1, const Loop *L2) {
                            return L1->getLoopDepth() < L2->getLoopDepth();
                          }))
             ? LastLoop
             : nullptr;
}

static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
                                  const Loop &L, ScalarEvolution &SE) {
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
  if (!AR || !AR->isAffine())
    return false;

  assert(AR->getLoop() && "AR should have a loop");

  // Check that start and increment are not add recurrences.
  const SCEV *Start = AR->getStart();
  const SCEV *Step = AR->getStepRecurrence(SE);
  if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
    return false;

  // Check that start and increment are both invariant in the loop.
  if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
    return false;

  const SCEV *StepRec = AR->getStepRecurrence(SE);
  if (StepRec && SE.isKnownNegative(StepRec))
    StepRec = SE.getNegativeSCEV(StepRec);

  return StepRec == &ElemSize;
}

/// Compute the trip count for the given loop \p L. Return the SCEV expression
/// for the trip count or nullptr if it cannot be computed.
static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
      !isa<SCEVConstant>(BackedgeTakenCount))
    return nullptr;

  return SE.getAddExpr(BackedgeTakenCount,
                       SE.getOne(BackedgeTakenCount->getType()));
}

//===----------------------------------------------------------------------===//
// IndexedReference implementation
//
raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
  if (!R.IsValid) {
    OS << R.StoreOrLoadInst;
    OS << ", IsValid=false.";
    return OS;
  }

  OS << *R.BasePointer;
  for (const SCEV *Subscript : R.Subscripts)
    OS << "[" << *Subscript << "]";

  OS << ", Sizes: ";
  for (const SCEV *Size : R.Sizes)
    OS << "[" << *Size << "]";

  return OS;
}

IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
                                   const LoopInfo &LI, ScalarEvolution &SE)
    : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
  assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
         "Expecting a load or store instruction");

  IsValid = delinearize(LI);
  if (IsValid)
    LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
                                << "\n");
}

Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
                                                 unsigned CLS,
                                                 AAResults &AA) const {
  assert(IsValid && "Expecting a valid reference");

  if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
    LLVM_DEBUG(dbgs().indent(2)
               << "No spacial reuse: different base pointers\n");
    return false;
  }

  unsigned NumSubscripts = getNumSubscripts();
  if (NumSubscripts != Other.getNumSubscripts()) {
    LLVM_DEBUG(dbgs().indent(2)
               << "No spacial reuse: different number of subscripts\n");
    return false;
  }

  // all subscripts must be equal, except the leftmost one (the last one).
  for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
    if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
      LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
                                  << "\n\t" << *getSubscript(SubNum) << "\n\t"
                                  << *Other.getSubscript(SubNum) << "\n");
      return false;
    }
  }

  // the difference between the last subscripts must be less than the cache line
  // size.
  const SCEV *LastSubscript = getLastSubscript();
  const SCEV *OtherLastSubscript = Other.getLastSubscript();
  const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
      SE.getMinusSCEV(LastSubscript, OtherLastSubscript));

  if (Diff == nullptr) {
    LLVM_DEBUG(dbgs().indent(2)
               << "No spacial reuse, difference between subscript:\n\t"
               << *LastSubscript << "\n\t" << OtherLastSubscript
               << "\nis not constant.\n");
    return None;
  }

  bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);

  LLVM_DEBUG({
    if (InSameCacheLine)
      dbgs().indent(2) << "Found spacial reuse.\n";
    else
      dbgs().indent(2) << "No spacial reuse.\n";
  });

  return InSameCacheLine;
}

Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
                                                  unsigned MaxDistance,
                                                  const Loop &L,
                                                  DependenceInfo &DI,
                                                  AAResults &AA) const {
  assert(IsValid && "Expecting a valid reference");

  if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
    LLVM_DEBUG(dbgs().indent(2)
               << "No temporal reuse: different base pointer\n");
    return false;
  }

  std::unique_ptr<Dependence> D =
      DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);

  if (D == nullptr) {
    LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
    return false;
  }

  if (D->isLoopIndependent()) {
    LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
    return true;
  }

  // Check the dependence distance at every loop level. There is temporal reuse
  // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
  // it is zero at every other loop level.
  int LoopDepth = L.getLoopDepth();
  int Levels = D->getLevels();
  for (int Level = 1; Level <= Levels; ++Level) {
    const SCEV *Distance = D->getDistance(Level);
    const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);

    if (SCEVConst == nullptr) {
      LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
      return None;
    }

    const ConstantInt &CI = *SCEVConst->getValue();
    if (Level != LoopDepth && !CI.isZero()) {
      LLVM_DEBUG(dbgs().indent(2)
                 << "No temporal reuse: distance is not zero at depth=" << Level
                 << "\n");
      return false;
    } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
      LLVM_DEBUG(
          dbgs().indent(2)
          << "No temporal reuse: distance is greater than MaxDistance at depth="
          << Level << "\n");
      return false;
    }
  }

  LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
  return true;
}

CacheCostTy IndexedReference::computeRefCost(const Loop &L,
                                             unsigned CLS) const {
  assert(IsValid && "Expecting a valid reference");
  LLVM_DEBUG({
    dbgs().indent(2) << "Computing cache cost for:\n";
    dbgs().indent(4) << *this << "\n";
  });

  // If the indexed reference is loop invariant the cost is one.
  if (isLoopInvariant(L)) {
    LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
    return 1;
  }

  const SCEV *TripCount = computeTripCount(L, SE);
  if (!TripCount) {
    LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
                      << " could not be computed, using DefaultTripCount\n");
    const SCEV *ElemSize = Sizes.back();
    TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
  }
  LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");

  // If the indexed reference is 'consecutive' the cost is
  // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
  const SCEV *RefCost = TripCount;

  if (isConsecutive(L, CLS)) {
    const SCEV *Coeff = getLastCoefficient();
    const SCEV *ElemSize = Sizes.back();
    const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
    const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
    Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
    if (SE.isKnownNegative(Stride))
      Stride = SE.getNegativeSCEV(Stride);
    Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
    TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
    const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
    RefCost = SE.getUDivExpr(Numerator, CacheLineSize);

    LLVM_DEBUG(dbgs().indent(4)
               << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
               << *RefCost << "\n");
  } else
    LLVM_DEBUG(dbgs().indent(4)
               << "Access is not consecutive: RefCost=TripCount=" << *RefCost
               << "\n");

  // Attempt to fold RefCost into a constant.
  if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
    return ConstantCost->getValue()->getSExtValue();

  LLVM_DEBUG(dbgs().indent(4)
             << "RefCost is not a constant! Setting to RefCost=InvalidCost "
                "(invalid value).\n");

  return CacheCost::InvalidCost;
}

bool IndexedReference::delinearize(const LoopInfo &LI) {
  assert(Subscripts.empty() && "Subscripts should be empty");
  assert(Sizes.empty() && "Sizes should be empty");
  assert(!IsValid && "Should be called once from the constructor");
  LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");

  const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
  const BasicBlock *BB = StoreOrLoadInst.getParent();

  if (Loop *L = LI.getLoopFor(BB)) {
    const SCEV *AccessFn =
        SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);

    BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
    if (BasePointer == nullptr) {
      LLVM_DEBUG(
          dbgs().indent(2)
          << "ERROR: failed to delinearize, can't identify base pointer\n");
      return false;
    }

    AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);

    LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
                                << "', AccessFn: " << *AccessFn << "\n");

    SE.delinearize(AccessFn, Subscripts, Sizes,
                   SE.getElementSize(&StoreOrLoadInst));

    if (Subscripts.empty() || Sizes.empty() ||
        Subscripts.size() != Sizes.size()) {
      // Attempt to determine whether we have a single dimensional array access.
      // before giving up.
      if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
        LLVM_DEBUG(dbgs().indent(2)
                   << "ERROR: failed to delinearize reference\n");
        Subscripts.clear();
        Sizes.clear();
        return false;
      }

      // The array may be accessed in reverse, for example:
      //   for (i = N; i > 0; i--)
      //     A[i] = 0;
      // In this case, reconstruct the access function using the absolute value
      // of the step recurrence.
      const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
      const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;

      if (StepRec && SE.isKnownNegative(StepRec))
        AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
                                    SE.getNegativeSCEV(StepRec),
                                    AccessFnAR->getLoop(),
                                    AccessFnAR->getNoWrapFlags());
      const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
      Subscripts.push_back(Div);
      Sizes.push_back(ElemSize);
    }

    return all_of(Subscripts, [&](const SCEV *Subscript) {
      return isSimpleAddRecurrence(*Subscript, *L);
    });
  }

  return false;
}

bool IndexedReference::isLoopInvariant(const Loop &L) const {
  Value *Addr = getPointerOperand(&StoreOrLoadInst);
  assert(Addr != nullptr && "Expecting either a load or a store instruction");
  assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");

  if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
    return true;

  // The indexed reference is loop invariant if none of the coefficients use
  // the loop induction variable.
  bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
    return isCoeffForLoopZeroOrInvariant(*Subscript, L);
  });

  return allCoeffForLoopAreZero;
}

bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
  // The indexed reference is 'consecutive' if the only coefficient that uses
  // the loop induction variable is the last one...
  const SCEV *LastSubscript = Subscripts.back();
  for (const SCEV *Subscript : Subscripts) {
    if (Subscript == LastSubscript)
      continue;
    if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
      return false;
  }

  // ...and the access stride is less than the cache line size.
  const SCEV *Coeff = getLastCoefficient();
  const SCEV *ElemSize = Sizes.back();
  const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
  const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);

  Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
  return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
}

const SCEV *IndexedReference::getLastCoefficient() const {
  const SCEV *LastSubscript = getLastSubscript();
  assert(isa<SCEVAddRecExpr>(LastSubscript) &&
         "Expecting a SCEV add recurrence expression");
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
  return AR->getStepRecurrence(SE);
}

bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
                                                     const Loop &L) const {
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
  return (AR != nullptr) ? AR->getLoop() != &L
                         : SE.isLoopInvariant(&Subscript, &L);
}

bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
                                             const Loop &L) const {
  if (!isa<SCEVAddRecExpr>(Subscript))
    return false;

  const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
  assert(AR->getLoop() && "AR should have a loop");

  if (!AR->isAffine())
    return false;

  const SCEV *Start = AR->getStart();
  const SCEV *Step = AR->getStepRecurrence(SE);

  if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
    return false;

  return true;
}

bool IndexedReference::isAliased(const IndexedReference &Other,
                                 AAResults &AA) const {
  const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
  const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
  return AA.isMustAlias(Loc1, Loc2);
}

//===----------------------------------------------------------------------===//
// CacheCost implementation
//
raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
  for (const auto &LC : CC.LoopCosts) {
    const Loop *L = LC.first;
    OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
  }
  return OS;
}

CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
                     ScalarEvolution &SE, TargetTransformInfo &TTI,
                     AAResults &AA, DependenceInfo &DI,
                     Optional<unsigned> TRT)
    : Loops(Loops), TripCounts(), LoopCosts(),
      TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
      LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
  assert(!Loops.empty() && "Expecting a non-empty loop vector.");

  for (const Loop *L : Loops) {
    unsigned TripCount = SE.getSmallConstantTripCount(L);
    TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
    TripCounts.push_back({L, TripCount});
  }

  calculateCacheFootprint();
}

std::unique_ptr<CacheCost>
CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
                        DependenceInfo &DI, Optional<unsigned> TRT) {
  if (!Root.isOutermost()) {
    LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
    return nullptr;
  }

  LoopVectorTy Loops;
  append_range(Loops, breadth_first(&Root));

  if (!getInnerMostLoop(Loops)) {
    LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
                         "than one innermost loop\n");
    return nullptr;
  }

  return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
}

void CacheCost::calculateCacheFootprint() {
  LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
  ReferenceGroupsTy RefGroups;
  if (!populateReferenceGroups(RefGroups))
    return;

  LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
  for (const Loop *L : Loops) {
    assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
                         [L](const LoopCacheCostTy &LCC) {
                           return LCC.first == L;
                         }) == LoopCosts.end()) &&
           "Should not add duplicate element");
    CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
    LoopCosts.push_back(std::make_pair(L, LoopCost));
  }

  sortLoopCosts();
  RefGroups.clear();
}

bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
  assert(RefGroups.empty() && "Reference groups should be empty");

  unsigned CLS = TTI.getCacheLineSize();
  Loop *InnerMostLoop = getInnerMostLoop(Loops);
  assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");

  for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
    for (Instruction &I : *BB) {
      if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
        continue;

      std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
      if (!R->isValid())
        continue;

      bool Added = false;
      for (ReferenceGroupTy &RefGroup : RefGroups) {
        const IndexedReference &Representative = *RefGroup.front().get();
        LLVM_DEBUG({
          dbgs() << "References:\n";
          dbgs().indent(2) << *R << "\n";
          dbgs().indent(2) << Representative << "\n";
        });


       // FIXME: Both positive and negative access functions will be placed
       // into the same reference group, resulting in a bi-directional array
       // access such as:
       //   for (i = N; i > 0; i--)
       //     A[i] = A[N - i];
       // having the same cost calculation as a single dimention access pattern
       //   for (i = 0; i < N; i++)
       //     A[i] = A[i];
       // when in actuality, depending on the array size, the first example
       // should have a cost closer to 2x the second due to the two cache
       // access per iteration from opposite ends of the array
        Optional<bool> HasTemporalReuse =
            R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
        Optional<bool> HasSpacialReuse =
            R->hasSpacialReuse(Representative, CLS, AA);

        if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
            (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
          RefGroup.push_back(std::move(R));
          Added = true;
          break;
        }
      }

      if (!Added) {
        ReferenceGroupTy RG;
        RG.push_back(std::move(R));
        RefGroups.push_back(std::move(RG));
      }
    }
  }

  if (RefGroups.empty())
    return false;

  LLVM_DEBUG({
    dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
    int n = 1;
    for (const ReferenceGroupTy &RG : RefGroups) {
      dbgs().indent(2) << "RefGroup " << n << ":\n";
      for (const auto &IR : RG)
        dbgs().indent(4) << *IR << "\n";
      n++;
    }
    dbgs() << "\n";
  });

  return true;
}

CacheCostTy
CacheCost::computeLoopCacheCost(const Loop &L,
                                const ReferenceGroupsTy &RefGroups) const {
  if (!L.isLoopSimplifyForm())
    return InvalidCost;

  LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
                    << "' as innermost loop.\n");

  // Compute the product of the trip counts of each other loop in the nest.
  CacheCostTy TripCountsProduct = 1;
  for (const auto &TC : TripCounts) {
    if (TC.first == &L)
      continue;
    TripCountsProduct *= TC.second;
  }

  CacheCostTy LoopCost = 0;
  for (const ReferenceGroupTy &RG : RefGroups) {
    CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
    LoopCost += RefGroupCost * TripCountsProduct;
  }

  LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
                              << "' has cost=" << LoopCost << "\n");

  return LoopCost;
}

CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
                                                const Loop &L) const {
  assert(!RG.empty() && "Reference group should have at least one member.");

  const IndexedReference *Representative = RG.front().get();
  return Representative->computeRefCost(L, TTI.getCacheLineSize());
}

//===----------------------------------------------------------------------===//
// LoopCachePrinterPass implementation
//
PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
                                            LoopStandardAnalysisResults &AR,
                                            LPMUpdater &U) {
  Function *F = L.getHeader()->getParent();
  DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);

  if (auto CC = CacheCost::getCacheCost(L, AR, DI))
    OS << *CC;

  return PreservedAnalyses::all();
}