aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/LoopInfo.cpp
blob: a85869b1633378199d2c403eb5b43b398599633f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG.  Note that the
// loops identified may actually be several natural loops that share the same
// header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfoImpl.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PrintPasses.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;

// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
template class llvm::LoopBase<BasicBlock, Loop>;
template class llvm::LoopInfoBase<BasicBlock, Loop>;

// Always verify loopinfo if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
bool llvm::VerifyLoopInfo = true;
#else
bool llvm::VerifyLoopInfo = false;
#endif
static cl::opt<bool, true>
    VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
                    cl::Hidden, cl::desc("Verify loop info (time consuming)"));

//===----------------------------------------------------------------------===//
// Loop implementation
//

bool Loop::isLoopInvariant(const Value *V) const {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return !contains(I);
  return true; // All non-instructions are loop invariant
}

bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
  return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
}

bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
                             MemorySSAUpdater *MSSAU) const {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
  return true; // All non-instructions are loop-invariant.
}

bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
                             Instruction *InsertPt,
                             MemorySSAUpdater *MSSAU) const {
  // Test if the value is already loop-invariant.
  if (isLoopInvariant(I))
    return true;
  if (!isSafeToSpeculativelyExecute(I))
    return false;
  if (I->mayReadFromMemory())
    return false;
  // EH block instructions are immobile.
  if (I->isEHPad())
    return false;
  // Determine the insertion point, unless one was given.
  if (!InsertPt) {
    BasicBlock *Preheader = getLoopPreheader();
    // Without a preheader, hoisting is not feasible.
    if (!Preheader)
      return false;
    InsertPt = Preheader->getTerminator();
  }
  // Don't hoist instructions with loop-variant operands.
  for (Value *Operand : I->operands())
    if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
      return false;

  // Hoist.
  I->moveBefore(InsertPt);
  if (MSSAU)
    if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
      MSSAU->moveToPlace(MUD, InsertPt->getParent(),
                         MemorySSA::BeforeTerminator);

  // There is possibility of hoisting this instruction above some arbitrary
  // condition. Any metadata defined on it can be control dependent on this
  // condition. Conservatively strip it here so that we don't give any wrong
  // information to the optimizer.
  I->dropUnknownNonDebugMetadata();

  Changed = true;
  return true;
}

bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
                                  BasicBlock *&Backedge) const {
  BasicBlock *H = getHeader();

  Incoming = nullptr;
  Backedge = nullptr;
  pred_iterator PI = pred_begin(H);
  assert(PI != pred_end(H) && "Loop must have at least one backedge!");
  Backedge = *PI++;
  if (PI == pred_end(H))
    return false; // dead loop
  Incoming = *PI++;
  if (PI != pred_end(H))
    return false; // multiple backedges?

  if (contains(Incoming)) {
    if (contains(Backedge))
      return false;
    std::swap(Incoming, Backedge);
  } else if (!contains(Backedge))
    return false;

  assert(Incoming && Backedge && "expected non-null incoming and backedges");
  return true;
}

PHINode *Loop::getCanonicalInductionVariable() const {
  BasicBlock *H = getHeader();

  BasicBlock *Incoming = nullptr, *Backedge = nullptr;
  if (!getIncomingAndBackEdge(Incoming, Backedge))
    return nullptr;

  // Loop over all of the PHI nodes, looking for a canonical indvar.
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (ConstantInt *CI =
            dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
      if (CI->isZero())
        if (Instruction *Inc =
                dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
          if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
              if (CI->isOne())
                return PN;
  }
  return nullptr;
}

/// Get the latch condition instruction.
static ICmpInst *getLatchCmpInst(const Loop &L) {
  if (BasicBlock *Latch = L.getLoopLatch())
    if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
      if (BI->isConditional())
        return dyn_cast<ICmpInst>(BI->getCondition());

  return nullptr;
}

/// Return the final value of the loop induction variable if found.
static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
                               const Instruction &StepInst) {
  ICmpInst *LatchCmpInst = getLatchCmpInst(L);
  if (!LatchCmpInst)
    return nullptr;

  Value *Op0 = LatchCmpInst->getOperand(0);
  Value *Op1 = LatchCmpInst->getOperand(1);
  if (Op0 == &IndVar || Op0 == &StepInst)
    return Op1;

  if (Op1 == &IndVar || Op1 == &StepInst)
    return Op0;

  return nullptr;
}

Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
                                                       PHINode &IndVar,
                                                       ScalarEvolution &SE) {
  InductionDescriptor IndDesc;
  if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
    return None;

  Value *InitialIVValue = IndDesc.getStartValue();
  Instruction *StepInst = IndDesc.getInductionBinOp();
  if (!InitialIVValue || !StepInst)
    return None;

  const SCEV *Step = IndDesc.getStep();
  Value *StepInstOp1 = StepInst->getOperand(1);
  Value *StepInstOp0 = StepInst->getOperand(0);
  Value *StepValue = nullptr;
  if (SE.getSCEV(StepInstOp1) == Step)
    StepValue = StepInstOp1;
  else if (SE.getSCEV(StepInstOp0) == Step)
    StepValue = StepInstOp0;

  Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
  if (!FinalIVValue)
    return None;

  return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
                    SE);
}

using Direction = Loop::LoopBounds::Direction;

ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
  BasicBlock *Latch = L.getLoopLatch();
  assert(Latch && "Expecting valid latch");

  BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
  assert(BI && BI->isConditional() && "Expecting conditional latch branch");

  ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
  assert(LatchCmpInst &&
         "Expecting the latch compare instruction to be a CmpInst");

  // Need to inverse the predicate when first successor is not the loop
  // header
  ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
                                 ? LatchCmpInst->getPredicate()
                                 : LatchCmpInst->getInversePredicate();

  if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
    Pred = ICmpInst::getSwappedPredicate(Pred);

  // Need to flip strictness of the predicate when the latch compare instruction
  // is not using StepInst
  if (LatchCmpInst->getOperand(0) == &getStepInst() ||
      LatchCmpInst->getOperand(1) == &getStepInst())
    return Pred;

  // Cannot flip strictness of NE and EQ
  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
    return ICmpInst::getFlippedStrictnessPredicate(Pred);

  Direction D = getDirection();
  if (D == Direction::Increasing)
    return ICmpInst::ICMP_SLT;

  if (D == Direction::Decreasing)
    return ICmpInst::ICMP_SGT;

  // If cannot determine the direction, then unable to find the canonical
  // predicate
  return ICmpInst::BAD_ICMP_PREDICATE;
}

Direction Loop::LoopBounds::getDirection() const {
  if (const SCEVAddRecExpr *StepAddRecExpr =
          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
    if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
      if (SE.isKnownPositive(StepRecur))
        return Direction::Increasing;
      if (SE.isKnownNegative(StepRecur))
        return Direction::Decreasing;
    }

  return Direction::Unknown;
}

Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
  if (PHINode *IndVar = getInductionVariable(SE))
    return LoopBounds::getBounds(*this, *IndVar, SE);

  return None;
}

PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
  if (!isLoopSimplifyForm())
    return nullptr;

  BasicBlock *Header = getHeader();
  assert(Header && "Expected a valid loop header");
  ICmpInst *CmpInst = getLatchCmpInst(*this);
  if (!CmpInst)
    return nullptr;

  Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
  Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));

  for (PHINode &IndVar : Header->phis()) {
    InductionDescriptor IndDesc;
    if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
      continue;

    Instruction *StepInst = IndDesc.getInductionBinOp();

    // case 1:
    // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
    // StepInst = IndVar + step
    // cmp = StepInst < FinalValue
    if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
      return &IndVar;

    // case 2:
    // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
    // StepInst = IndVar + step
    // cmp = IndVar < FinalValue
    if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
      return &IndVar;
  }

  return nullptr;
}

bool Loop::getInductionDescriptor(ScalarEvolution &SE,
                                  InductionDescriptor &IndDesc) const {
  if (PHINode *IndVar = getInductionVariable(SE))
    return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);

  return false;
}

bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
                                        ScalarEvolution &SE) const {
  // Located in the loop header
  BasicBlock *Header = getHeader();
  if (AuxIndVar.getParent() != Header)
    return false;

  // No uses outside of the loop
  for (User *U : AuxIndVar.users())
    if (const Instruction *I = dyn_cast<Instruction>(U))
      if (!contains(I))
        return false;

  InductionDescriptor IndDesc;
  if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
    return false;

  // The step instruction opcode should be add or sub.
  if (IndDesc.getInductionOpcode() != Instruction::Add &&
      IndDesc.getInductionOpcode() != Instruction::Sub)
    return false;

  // Incremented by a loop invariant step for each loop iteration
  return SE.isLoopInvariant(IndDesc.getStep(), this);
}

BranchInst *Loop::getLoopGuardBranch() const {
  if (!isLoopSimplifyForm())
    return nullptr;

  BasicBlock *Preheader = getLoopPreheader();
  assert(Preheader && getLoopLatch() &&
         "Expecting a loop with valid preheader and latch");

  // Loop should be in rotate form.
  if (!isRotatedForm())
    return nullptr;

  // Disallow loops with more than one unique exit block, as we do not verify
  // that GuardOtherSucc post dominates all exit blocks.
  BasicBlock *ExitFromLatch = getUniqueExitBlock();
  if (!ExitFromLatch)
    return nullptr;

  BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
  if (!ExitFromLatchSucc)
    return nullptr;

  BasicBlock *GuardBB = Preheader->getUniquePredecessor();
  if (!GuardBB)
    return nullptr;

  assert(GuardBB->getTerminator() && "Expecting valid guard terminator");

  BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
  if (!GuardBI || GuardBI->isUnconditional())
    return nullptr;

  BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
                                   ? GuardBI->getSuccessor(1)
                                   : GuardBI->getSuccessor(0);
  return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
}

bool Loop::isCanonical(ScalarEvolution &SE) const {
  InductionDescriptor IndDesc;
  if (!getInductionDescriptor(SE, IndDesc))
    return false;

  ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
  if (!Init || !Init->isZero())
    return false;

  if (IndDesc.getInductionOpcode() != Instruction::Add)
    return false;

  ConstantInt *Step = IndDesc.getConstIntStepValue();
  if (!Step || !Step->isOne())
    return false;

  return true;
}

// Check that 'BB' doesn't have any uses outside of the 'L'
static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
                               const DominatorTree &DT) {
  for (const Instruction &I : BB) {
    // Tokens can't be used in PHI nodes and live-out tokens prevent loop
    // optimizations, so for the purposes of considered LCSSA form, we
    // can ignore them.
    if (I.getType()->isTokenTy())
      continue;

    for (const Use &U : I.uses()) {
      const Instruction *UI = cast<Instruction>(U.getUser());
      const BasicBlock *UserBB = UI->getParent();

      // For practical purposes, we consider that the use in a PHI
      // occurs in the respective predecessor block. For more info,
      // see the `phi` doc in LangRef and the LCSSA doc.
      if (const PHINode *P = dyn_cast<PHINode>(UI))
        UserBB = P->getIncomingBlock(U);

      // Check the current block, as a fast-path, before checking whether
      // the use is anywhere in the loop.  Most values are used in the same
      // block they are defined in.  Also, blocks not reachable from the
      // entry are special; uses in them don't need to go through PHIs.
      if (UserBB != &BB && !L.contains(UserBB) &&
          DT.isReachableFromEntry(UserBB))
        return false;
    }
  }
  return true;
}

bool Loop::isLCSSAForm(const DominatorTree &DT) const {
  // For each block we check that it doesn't have any uses outside of this loop.
  return all_of(this->blocks(), [&](const BasicBlock *BB) {
    return isBlockInLCSSAForm(*this, *BB, DT);
  });
}

bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT,
                                  const LoopInfo &LI) const {
  // For each block we check that it doesn't have any uses outside of its
  // innermost loop. This process will transitively guarantee that the current
  // loop and all of the nested loops are in LCSSA form.
  return all_of(this->blocks(), [&](const BasicBlock *BB) {
    return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
  });
}

bool Loop::isLoopSimplifyForm() const {
  // Normal-form loops have a preheader, a single backedge, and all of their
  // exits have all their predecessors inside the loop.
  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
}

// Routines that reform the loop CFG and split edges often fail on indirectbr.
bool Loop::isSafeToClone() const {
  // Return false if any loop blocks contain indirectbrs, or there are any calls
  // to noduplicate functions.
  // FIXME: it should be ok to clone CallBrInst's if we correctly update the
  // operand list to reflect the newly cloned labels.
  for (BasicBlock *BB : this->blocks()) {
    if (isa<IndirectBrInst>(BB->getTerminator()) ||
        isa<CallBrInst>(BB->getTerminator()))
      return false;

    for (Instruction &I : *BB)
      if (auto *CB = dyn_cast<CallBase>(&I))
        if (CB->cannotDuplicate())
          return false;
  }
  return true;
}

MDNode *Loop::getLoopID() const {
  MDNode *LoopID = nullptr;

  // Go through the latch blocks and check the terminator for the metadata.
  SmallVector<BasicBlock *, 4> LatchesBlocks;
  getLoopLatches(LatchesBlocks);
  for (BasicBlock *BB : LatchesBlocks) {
    Instruction *TI = BB->getTerminator();
    MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);

    if (!MD)
      return nullptr;

    if (!LoopID)
      LoopID = MD;
    else if (MD != LoopID)
      return nullptr;
  }
  if (!LoopID || LoopID->getNumOperands() == 0 ||
      LoopID->getOperand(0) != LoopID)
    return nullptr;
  return LoopID;
}

void Loop::setLoopID(MDNode *LoopID) const {
  assert((!LoopID || LoopID->getNumOperands() > 0) &&
         "Loop ID needs at least one operand");
  assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
         "Loop ID should refer to itself");

  SmallVector<BasicBlock *, 4> LoopLatches;
  getLoopLatches(LoopLatches);
  for (BasicBlock *BB : LoopLatches)
    BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
}

void Loop::setLoopAlreadyUnrolled() {
  LLVMContext &Context = getHeader()->getContext();

  MDNode *DisableUnrollMD =
      MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
  MDNode *LoopID = getLoopID();
  MDNode *NewLoopID = makePostTransformationMetadata(
      Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
  setLoopID(NewLoopID);
}

void Loop::setLoopMustProgress() {
  LLVMContext &Context = getHeader()->getContext();

  MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress");

  if (MustProgress)
    return;

  MDNode *MustProgressMD =
      MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress"));
  MDNode *LoopID = getLoopID();
  MDNode *NewLoopID =
      makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD});
  setLoopID(NewLoopID);
}

bool Loop::isAnnotatedParallel() const {
  MDNode *DesiredLoopIdMetadata = getLoopID();

  if (!DesiredLoopIdMetadata)
    return false;

  MDNode *ParallelAccesses =
      findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
  SmallPtrSet<MDNode *, 4>
      ParallelAccessGroups; // For scalable 'contains' check.
  if (ParallelAccesses) {
    for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) {
      MDNode *AccGroup = cast<MDNode>(MD.get());
      assert(isValidAsAccessGroup(AccGroup) &&
             "List item must be an access group");
      ParallelAccessGroups.insert(AccGroup);
    }
  }

  // The loop branch contains the parallel loop metadata. In order to ensure
  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
  // dependencies (thus converted the loop back to a sequential loop), check
  // that all the memory instructions in the loop belong to an access group that
  // is parallel to this loop.
  for (BasicBlock *BB : this->blocks()) {
    for (Instruction &I : *BB) {
      if (!I.mayReadOrWriteMemory())
        continue;

      if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
        auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
          if (AG->getNumOperands() == 0) {
            assert(isValidAsAccessGroup(AG) && "Item must be an access group");
            return ParallelAccessGroups.count(AG);
          }

          for (const MDOperand &AccessListItem : AG->operands()) {
            MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
            assert(isValidAsAccessGroup(AccGroup) &&
                   "List item must be an access group");
            if (ParallelAccessGroups.count(AccGroup))
              return true;
          }
          return false;
        };

        if (ContainsAccessGroup(AccessGroup))
          continue;
      }

      // The memory instruction can refer to the loop identifier metadata
      // directly or indirectly through another list metadata (in case of
      // nested parallel loops). The loop identifier metadata refers to
      // itself so we can check both cases with the same routine.
      MDNode *LoopIdMD =
          I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);

      if (!LoopIdMD)
        return false;

      bool LoopIdMDFound = false;
      for (const MDOperand &MDOp : LoopIdMD->operands()) {
        if (MDOp == DesiredLoopIdMetadata) {
          LoopIdMDFound = true;
          break;
        }
      }

      if (!LoopIdMDFound)
        return false;
    }
  }
  return true;
}

DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }

Loop::LocRange Loop::getLocRange() const {
  // If we have a debug location in the loop ID, then use it.
  if (MDNode *LoopID = getLoopID()) {
    DebugLoc Start;
    // We use the first DebugLoc in the header as the start location of the loop
    // and if there is a second DebugLoc in the header we use it as end location
    // of the loop.
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
        if (!Start)
          Start = DebugLoc(L);
        else
          return LocRange(Start, DebugLoc(L));
      }
    }

    if (Start)
      return LocRange(Start);
  }

  // Try the pre-header first.
  if (BasicBlock *PHeadBB = getLoopPreheader())
    if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
      return LocRange(DL);

  // If we have no pre-header or there are no instructions with debug
  // info in it, try the header.
  if (BasicBlock *HeadBB = getHeader())
    return LocRange(HeadBB->getTerminator()->getDebugLoc());

  return LocRange();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }

LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
  print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
}
#endif

//===----------------------------------------------------------------------===//
// UnloopUpdater implementation
//

namespace {
/// Find the new parent loop for all blocks within the "unloop" whose last
/// backedges has just been removed.
class UnloopUpdater {
  Loop &Unloop;
  LoopInfo *LI;

  LoopBlocksDFS DFS;

  // Map unloop's immediate subloops to their nearest reachable parents. Nested
  // loops within these subloops will not change parents. However, an immediate
  // subloop's new parent will be the nearest loop reachable from either its own
  // exits *or* any of its nested loop's exits.
  DenseMap<Loop *, Loop *> SubloopParents;

  // Flag the presence of an irreducible backedge whose destination is a block
  // directly contained by the original unloop.
  bool FoundIB;

public:
  UnloopUpdater(Loop *UL, LoopInfo *LInfo)
      : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}

  void updateBlockParents();

  void removeBlocksFromAncestors();

  void updateSubloopParents();

protected:
  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
};
} // end anonymous namespace

/// Update the parent loop for all blocks that are directly contained within the
/// original "unloop".
void UnloopUpdater::updateBlockParents() {
  if (Unloop.getNumBlocks()) {
    // Perform a post order CFG traversal of all blocks within this loop,
    // propagating the nearest loop from successors to predecessors.
    LoopBlocksTraversal Traversal(DFS, LI);
    for (BasicBlock *POI : Traversal) {

      Loop *L = LI->getLoopFor(POI);
      Loop *NL = getNearestLoop(POI, L);

      if (NL != L) {
        // For reducible loops, NL is now an ancestor of Unloop.
        assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
               "uninitialized successor");
        LI->changeLoopFor(POI, NL);
      } else {
        // Or the current block is part of a subloop, in which case its parent
        // is unchanged.
        assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
      }
    }
  }
  // Each irreducible loop within the unloop induces a round of iteration using
  // the DFS result cached by Traversal.
  bool Changed = FoundIB;
  for (unsigned NIters = 0; Changed; ++NIters) {
    assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");

    // Iterate over the postorder list of blocks, propagating the nearest loop
    // from successors to predecessors as before.
    Changed = false;
    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
                                   POE = DFS.endPostorder();
         POI != POE; ++POI) {

      Loop *L = LI->getLoopFor(*POI);
      Loop *NL = getNearestLoop(*POI, L);
      if (NL != L) {
        assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
               "uninitialized successor");
        LI->changeLoopFor(*POI, NL);
        Changed = true;
      }
    }
  }
}

/// Remove unloop's blocks from all ancestors below their new parents.
void UnloopUpdater::removeBlocksFromAncestors() {
  // Remove all unloop's blocks (including those in nested subloops) from
  // ancestors below the new parent loop.
  for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
       BI != BE; ++BI) {
    Loop *OuterParent = LI->getLoopFor(*BI);
    if (Unloop.contains(OuterParent)) {
      while (OuterParent->getParentLoop() != &Unloop)
        OuterParent = OuterParent->getParentLoop();
      OuterParent = SubloopParents[OuterParent];
    }
    // Remove blocks from former Ancestors except Unloop itself which will be
    // deleted.
    for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
         OldParent = OldParent->getParentLoop()) {
      assert(OldParent && "new loop is not an ancestor of the original");
      OldParent->removeBlockFromLoop(*BI);
    }
  }
}

/// Update the parent loop for all subloops directly nested within unloop.
void UnloopUpdater::updateSubloopParents() {
  while (!Unloop.isInnermost()) {
    Loop *Subloop = *std::prev(Unloop.end());
    Unloop.removeChildLoop(std::prev(Unloop.end()));

    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    if (Loop *Parent = SubloopParents[Subloop])
      Parent->addChildLoop(Subloop);
    else
      LI->addTopLevelLoop(Subloop);
  }
}

/// Return the nearest parent loop among this block's successors. If a successor
/// is a subloop header, consider its parent to be the nearest parent of the
/// subloop's exits.
///
/// For subloop blocks, simply update SubloopParents and return NULL.
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {

  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
  // is considered uninitialized.
  Loop *NearLoop = BBLoop;

  Loop *Subloop = nullptr;
  if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
    Subloop = NearLoop;
    // Find the subloop ancestor that is directly contained within Unloop.
    while (Subloop->getParentLoop() != &Unloop) {
      Subloop = Subloop->getParentLoop();
      assert(Subloop && "subloop is not an ancestor of the original loop");
    }
    // Get the current nearest parent of the Subloop exits, initially Unloop.
    NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
  }

  succ_iterator I = succ_begin(BB), E = succ_end(BB);
  if (I == E) {
    assert(!Subloop && "subloop blocks must have a successor");
    NearLoop = nullptr; // unloop blocks may now exit the function.
  }
  for (; I != E; ++I) {
    if (*I == BB)
      continue; // self loops are uninteresting

    Loop *L = LI->getLoopFor(*I);
    if (L == &Unloop) {
      // This successor has not been processed. This path must lead to an
      // irreducible backedge.
      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
      FoundIB = true;
    }
    if (L != &Unloop && Unloop.contains(L)) {
      // Successor is in a subloop.
      if (Subloop)
        continue; // Branching within subloops. Ignore it.

      // BB branches from the original into a subloop header.
      assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");

      // Get the current nearest parent of the Subloop's exits.
      L = SubloopParents[L];
      // L could be Unloop if the only exit was an irreducible backedge.
    }
    if (L == &Unloop) {
      continue;
    }
    // Handle critical edges from Unloop into a sibling loop.
    if (L && !L->contains(&Unloop)) {
      L = L->getParentLoop();
    }
    // Remember the nearest parent loop among successors or subloop exits.
    if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
      NearLoop = L;
  }
  if (Subloop) {
    SubloopParents[Subloop] = NearLoop;
    return BBLoop;
  }
  return NearLoop;
}

LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }

bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                          FunctionAnalysisManager::Invalidator &) {
  // Check whether the analysis, all analyses on functions, or the function's
  // CFG have been preserved.
  auto PAC = PA.getChecker<LoopAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
           PAC.preservedSet<CFGAnalyses>());
}

void LoopInfo::erase(Loop *Unloop) {
  assert(!Unloop->isInvalid() && "Loop has already been erased!");

  auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });

  // First handle the special case of no parent loop to simplify the algorithm.
  if (Unloop->isOutermost()) {
    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    for (Loop::block_iterator I = Unloop->block_begin(),
                              E = Unloop->block_end();
         I != E; ++I) {

      // Don't reparent blocks in subloops.
      if (getLoopFor(*I) != Unloop)
        continue;

      // Blocks no longer have a parent but are still referenced by Unloop until
      // the Unloop object is deleted.
      changeLoopFor(*I, nullptr);
    }

    // Remove the loop from the top-level LoopInfo object.
    for (iterator I = begin();; ++I) {
      assert(I != end() && "Couldn't find loop");
      if (*I == Unloop) {
        removeLoop(I);
        break;
      }
    }

    // Move all of the subloops to the top-level.
    while (!Unloop->isInnermost())
      addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));

    return;
  }

  // Update the parent loop for all blocks within the loop. Blocks within
  // subloops will not change parents.
  UnloopUpdater Updater(Unloop, this);
  Updater.updateBlockParents();

  // Remove blocks from former ancestor loops.
  Updater.removeBlocksFromAncestors();

  // Add direct subloops as children in their new parent loop.
  Updater.updateSubloopParents();

  // Remove unloop from its parent loop.
  Loop *ParentLoop = Unloop->getParentLoop();
  for (Loop::iterator I = ParentLoop->begin();; ++I) {
    assert(I != ParentLoop->end() && "Couldn't find loop");
    if (*I == Unloop) {
      ParentLoop->removeChildLoop(I);
      break;
    }
  }
}

AnalysisKey LoopAnalysis::Key;

LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
  // FIXME: Currently we create a LoopInfo from scratch for every function.
  // This may prove to be too wasteful due to deallocating and re-allocating
  // memory each time for the underlying map and vector datastructures. At some
  // point it may prove worthwhile to use a freelist and recycle LoopInfo
  // objects. I don't want to add that kind of complexity until the scope of
  // the problem is better understood.
  LoopInfo LI;
  LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
  return LI;
}

PreservedAnalyses LoopPrinterPass::run(Function &F,
                                       FunctionAnalysisManager &AM) {
  AM.getResult<LoopAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}

void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {

  if (forcePrintModuleIR()) {
    // handling -print-module-scope
    OS << Banner << " (loop: ";
    L.getHeader()->printAsOperand(OS, false);
    OS << ")\n";

    // printing whole module
    OS << *L.getHeader()->getModule();
    return;
  }

  OS << Banner;

  auto *PreHeader = L.getLoopPreheader();
  if (PreHeader) {
    OS << "\n; Preheader:";
    PreHeader->print(OS);
    OS << "\n; Loop:";
  }

  for (auto *Block : L.blocks())
    if (Block)
      Block->print(OS);
    else
      OS << "Printing <null> block";

  SmallVector<BasicBlock *, 8> ExitBlocks;
  L.getExitBlocks(ExitBlocks);
  if (!ExitBlocks.empty()) {
    OS << "\n; Exit blocks";
    for (auto *Block : ExitBlocks)
      if (Block)
        Block->print(OS);
      else
        OS << "Printing <null> block";
  }
}

MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
  // No loop metadata node, no loop properties.
  if (!LoopID)
    return nullptr;

  // First operand should refer to the metadata node itself, for legacy reasons.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  // Iterate over the metdata node operands and look for MDString metadata.
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD || MD->getNumOperands() < 1)
      continue;
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;
    // Return the operand node if MDString holds expected metadata.
    if (Name.equals(S->getString()))
      return MD;
  }

  // Loop property not found.
  return nullptr;
}

MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
  return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
}

bool llvm::isValidAsAccessGroup(MDNode *Node) {
  return Node->getNumOperands() == 0 && Node->isDistinct();
}

MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
                                             MDNode *OrigLoopID,
                                             ArrayRef<StringRef> RemovePrefixes,
                                             ArrayRef<MDNode *> AddAttrs) {
  // First remove any existing loop metadata related to this transformation.
  SmallVector<Metadata *, 4> MDs;

  // Reserve first location for self reference to the LoopID metadata node.
  MDs.push_back(nullptr);

  // Remove metadata for the transformation that has been applied or that became
  // outdated.
  if (OrigLoopID) {
    for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
      bool IsVectorMetadata = false;
      Metadata *Op = OrigLoopID->getOperand(i);
      if (MDNode *MD = dyn_cast<MDNode>(Op)) {
        const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
        if (S)
          IsVectorMetadata =
              llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
                return S->getString().startswith(Prefix);
              });
      }
      if (!IsVectorMetadata)
        MDs.push_back(Op);
    }
  }

  // Add metadata to avoid reapplying a transformation, such as
  // llvm.loop.unroll.disable and llvm.loop.isvectorized.
  MDs.append(AddAttrs.begin(), AddAttrs.end());

  MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
  // Replace the temporary node with a self-reference.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  return NewLoopID;
}

//===----------------------------------------------------------------------===//
// LoopInfo implementation
//

LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
  initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}

char LoopInfoWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
                      true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
                    true, true)

bool LoopInfoWrapperPass::runOnFunction(Function &) {
  releaseMemory();
  LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
  return false;
}

void LoopInfoWrapperPass::verifyAnalysis() const {
  // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
  // function each time verifyAnalysis is called is very expensive. The
  // -verify-loop-info option can enable this. In order to perform some
  // checking by default, LoopPass has been taught to call verifyLoop manually
  // during loop pass sequences.
  if (VerifyLoopInfo) {
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LI.verify(DT);
  }
}

void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
}

void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
  LI.print(OS);
}

PreservedAnalyses LoopVerifierPass::run(Function &F,
                                        FunctionAnalysisManager &AM) {
  LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  LI.verify(DT);
  return PreservedAnalyses::all();
}

//===----------------------------------------------------------------------===//
// LoopBlocksDFS implementation
//

/// Traverse the loop blocks and store the DFS result.
/// Useful for clients that just want the final DFS result and don't need to
/// visit blocks during the initial traversal.
void LoopBlocksDFS::perform(LoopInfo *LI) {
  LoopBlocksTraversal Traversal(*this, LI);
  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
                                        POE = Traversal.end();
       POI != POE; ++POI)
    ;
}