aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/VectorUtils.cpp
blob: 0a14a143293440a0b211028b3f200c7ce265d038 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines vectorizer utilities.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/VectorUtils.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/CommandLine.h"

#define DEBUG_TYPE "vectorutils"

using namespace llvm;
using namespace llvm::PatternMatch;

/// Maximum factor for an interleaved memory access.
static cl::opt<unsigned> MaxInterleaveGroupFactor(
    "max-interleave-group-factor", cl::Hidden,
    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
    cl::init(8));

/// Return true if all of the intrinsic's arguments and return type are scalars
/// for the scalar form of the intrinsic, and vectors for the vector form of the
/// intrinsic (except operands that are marked as always being scalar by
/// hasVectorInstrinsicScalarOpd).
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
  switch (ID) {
  case Intrinsic::abs:   // Begin integer bit-manipulation.
  case Intrinsic::bswap:
  case Intrinsic::bitreverse:
  case Intrinsic::ctpop:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::fshl:
  case Intrinsic::fshr:
  case Intrinsic::smax:
  case Intrinsic::smin:
  case Intrinsic::umax:
  case Intrinsic::umin:
  case Intrinsic::sadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::usub_sat:
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat:
  case Intrinsic::sqrt: // Begin floating-point.
  case Intrinsic::sin:
  case Intrinsic::cos:
  case Intrinsic::exp:
  case Intrinsic::exp2:
  case Intrinsic::log:
  case Intrinsic::log10:
  case Intrinsic::log2:
  case Intrinsic::fabs:
  case Intrinsic::minnum:
  case Intrinsic::maxnum:
  case Intrinsic::minimum:
  case Intrinsic::maximum:
  case Intrinsic::copysign:
  case Intrinsic::floor:
  case Intrinsic::ceil:
  case Intrinsic::trunc:
  case Intrinsic::rint:
  case Intrinsic::nearbyint:
  case Intrinsic::round:
  case Intrinsic::roundeven:
  case Intrinsic::pow:
  case Intrinsic::fma:
  case Intrinsic::fmuladd:
  case Intrinsic::powi:
  case Intrinsic::canonicalize:
    return true;
  default:
    return false;
  }
}

/// Identifies if the vector form of the intrinsic has a scalar operand.
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
                                        unsigned ScalarOpdIdx) {
  switch (ID) {
  case Intrinsic::abs:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::powi:
    return (ScalarOpdIdx == 1);
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat:
    return (ScalarOpdIdx == 2);
  default:
    return false;
  }
}

bool llvm::hasVectorInstrinsicOverloadedScalarOpd(Intrinsic::ID ID,
                                                  unsigned ScalarOpdIdx) {
  switch (ID) {
  case Intrinsic::powi:
    return (ScalarOpdIdx == 1);
  default:
    return false;
  }
}

/// Returns intrinsic ID for call.
/// For the input call instruction it finds mapping intrinsic and returns
/// its ID, in case it does not found it return not_intrinsic.
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
                                                const TargetLibraryInfo *TLI) {
  Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
  if (ID == Intrinsic::not_intrinsic)
    return Intrinsic::not_intrinsic;

  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
      ID == Intrinsic::experimental_noalias_scope_decl ||
      ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
    return ID;
  return Intrinsic::not_intrinsic;
}

/// Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
  const DataLayout &DL = Gep->getModule()->getDataLayout();
  unsigned LastOperand = Gep->getNumOperands() - 1;
  TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());

  // Walk backwards and try to peel off zeros.
  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
    // Find the type we're currently indexing into.
    gep_type_iterator GEPTI = gep_type_begin(Gep);
    std::advance(GEPTI, LastOperand - 2);

    // If it's a type with the same allocation size as the result of the GEP we
    // can peel off the zero index.
    if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
      break;
    --LastOperand;
  }

  return LastOperand;
}

/// If the argument is a GEP, then returns the operand identified by
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
/// operand, it returns that instead.
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP)
    return Ptr;

  unsigned InductionOperand = getGEPInductionOperand(GEP);

  // Check that all of the gep indices are uniform except for our induction
  // operand.
  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
    if (i != InductionOperand &&
        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
      return Ptr;
  return GEP->getOperand(InductionOperand);
}

/// If a value has only one user that is a CastInst, return it.
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
  Value *UniqueCast = nullptr;
  for (User *U : Ptr->users()) {
    CastInst *CI = dyn_cast<CastInst>(U);
    if (CI && CI->getType() == Ty) {
      if (!UniqueCast)
        UniqueCast = CI;
      else
        return nullptr;
    }
  }
  return UniqueCast;
}

/// Get the stride of a pointer access in a loop. Looks for symbolic
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
  if (!PtrTy || PtrTy->isAggregateType())
    return nullptr;

  // Try to remove a gep instruction to make the pointer (actually index at this
  // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
  // pointer, otherwise, we are analyzing the index.
  Value *OrigPtr = Ptr;

  // The size of the pointer access.
  int64_t PtrAccessSize = 1;

  Ptr = stripGetElementPtr(Ptr, SE, Lp);
  const SCEV *V = SE->getSCEV(Ptr);

  if (Ptr != OrigPtr)
    // Strip off casts.
    while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
      V = C->getOperand();

  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
  if (!S)
    return nullptr;

  V = S->getStepRecurrence(*SE);
  if (!V)
    return nullptr;

  // Strip off the size of access multiplication if we are still analyzing the
  // pointer.
  if (OrigPtr == Ptr) {
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
      if (M->getOperand(0)->getSCEVType() != scConstant)
        return nullptr;

      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();

      // Huge step value - give up.
      if (APStepVal.getBitWidth() > 64)
        return nullptr;

      int64_t StepVal = APStepVal.getSExtValue();
      if (PtrAccessSize != StepVal)
        return nullptr;
      V = M->getOperand(1);
    }
  }

  // Strip off casts.
  Type *StripedOffRecurrenceCast = nullptr;
  if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
    StripedOffRecurrenceCast = C->getType();
    V = C->getOperand();
  }

  // Look for the loop invariant symbolic value.
  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
  if (!U)
    return nullptr;

  Value *Stride = U->getValue();
  if (!Lp->isLoopInvariant(Stride))
    return nullptr;

  // If we have stripped off the recurrence cast we have to make sure that we
  // return the value that is used in this loop so that we can replace it later.
  if (StripedOffRecurrenceCast)
    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);

  return Stride;
}

/// Given a vector and an element number, see if the scalar value is
/// already around as a register, for example if it were inserted then extracted
/// from the vector.
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
  VectorType *VTy = cast<VectorType>(V->getType());
  // For fixed-length vector, return undef for out of range access.
  if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
    unsigned Width = FVTy->getNumElements();
    if (EltNo >= Width)
      return UndefValue::get(FVTy->getElementType());
  }

  if (Constant *C = dyn_cast<Constant>(V))
    return C->getAggregateElement(EltNo);

  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert to a variable element, we don't know what it is.
    if (!isa<ConstantInt>(III->getOperand(2)))
      return nullptr;
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();

    // If this is an insert to the element we are looking for, return the
    // inserted value.
    if (EltNo == IIElt)
      return III->getOperand(1);

    // Guard against infinite loop on malformed, unreachable IR.
    if (III == III->getOperand(0))
      return nullptr;

    // Otherwise, the insertelement doesn't modify the value, recurse on its
    // vector input.
    return findScalarElement(III->getOperand(0), EltNo);
  }

  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
  // Restrict the following transformation to fixed-length vector.
  if (SVI && isa<FixedVectorType>(SVI->getType())) {
    unsigned LHSWidth =
        cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
    int InEl = SVI->getMaskValue(EltNo);
    if (InEl < 0)
      return UndefValue::get(VTy->getElementType());
    if (InEl < (int)LHSWidth)
      return findScalarElement(SVI->getOperand(0), InEl);
    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
  }

  // Extract a value from a vector add operation with a constant zero.
  // TODO: Use getBinOpIdentity() to generalize this.
  Value *Val; Constant *C;
  if (match(V, m_Add(m_Value(Val), m_Constant(C))))
    if (Constant *Elt = C->getAggregateElement(EltNo))
      if (Elt->isNullValue())
        return findScalarElement(Val, EltNo);

  // Otherwise, we don't know.
  return nullptr;
}

int llvm::getSplatIndex(ArrayRef<int> Mask) {
  int SplatIndex = -1;
  for (int M : Mask) {
    // Ignore invalid (undefined) mask elements.
    if (M < 0)
      continue;

    // There can be only 1 non-negative mask element value if this is a splat.
    if (SplatIndex != -1 && SplatIndex != M)
      return -1;

    // Initialize the splat index to the 1st non-negative mask element.
    SplatIndex = M;
  }
  assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
  return SplatIndex;
}

/// Get splat value if the input is a splat vector or return nullptr.
/// This function is not fully general. It checks only 2 cases:
/// the input value is (1) a splat constant vector or (2) a sequence
/// of instructions that broadcasts a scalar at element 0.
Value *llvm::getSplatValue(const Value *V) {
  if (isa<VectorType>(V->getType()))
    if (auto *C = dyn_cast<Constant>(V))
      return C->getSplatValue();

  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
  Value *Splat;
  if (match(V,
            m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
                      m_Value(), m_ZeroMask())))
    return Splat;

  return nullptr;
}

bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");

  if (isa<VectorType>(V->getType())) {
    if (isa<UndefValue>(V))
      return true;
    // FIXME: We can allow undefs, but if Index was specified, we may want to
    //        check that the constant is defined at that index.
    if (auto *C = dyn_cast<Constant>(V))
      return C->getSplatValue() != nullptr;
  }

  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
    // FIXME: We can safely allow undefs here. If Index was specified, we will
    //        check that the mask elt is defined at the required index.
    if (!is_splat(Shuf->getShuffleMask()))
      return false;

    // Match any index.
    if (Index == -1)
      return true;

    // Match a specific element. The mask should be defined at and match the
    // specified index.
    return Shuf->getMaskValue(Index) == Index;
  }

  // The remaining tests are all recursive, so bail out if we hit the limit.
  if (Depth++ == MaxAnalysisRecursionDepth)
    return false;

  // If both operands of a binop are splats, the result is a splat.
  Value *X, *Y, *Z;
  if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);

  // If all operands of a select are splats, the result is a splat.
  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
           isSplatValue(Z, Index, Depth);

  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).

  return false;
}

void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
                                 SmallVectorImpl<int> &ScaledMask) {
  assert(Scale > 0 && "Unexpected scaling factor");

  // Fast-path: if no scaling, then it is just a copy.
  if (Scale == 1) {
    ScaledMask.assign(Mask.begin(), Mask.end());
    return;
  }

  ScaledMask.clear();
  for (int MaskElt : Mask) {
    if (MaskElt >= 0) {
      assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
             "Overflowed 32-bits");
    }
    for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
      ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
  }
}

bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
                                SmallVectorImpl<int> &ScaledMask) {
  assert(Scale > 0 && "Unexpected scaling factor");

  // Fast-path: if no scaling, then it is just a copy.
  if (Scale == 1) {
    ScaledMask.assign(Mask.begin(), Mask.end());
    return true;
  }

  // We must map the original elements down evenly to a type with less elements.
  int NumElts = Mask.size();
  if (NumElts % Scale != 0)
    return false;

  ScaledMask.clear();
  ScaledMask.reserve(NumElts / Scale);

  // Step through the input mask by splitting into Scale-sized slices.
  do {
    ArrayRef<int> MaskSlice = Mask.take_front(Scale);
    assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");

    // The first element of the slice determines how we evaluate this slice.
    int SliceFront = MaskSlice.front();
    if (SliceFront < 0) {
      // Negative values (undef or other "sentinel" values) must be equal across
      // the entire slice.
      if (!is_splat(MaskSlice))
        return false;
      ScaledMask.push_back(SliceFront);
    } else {
      // A positive mask element must be cleanly divisible.
      if (SliceFront % Scale != 0)
        return false;
      // Elements of the slice must be consecutive.
      for (int i = 1; i < Scale; ++i)
        if (MaskSlice[i] != SliceFront + i)
          return false;
      ScaledMask.push_back(SliceFront / Scale);
    }
    Mask = Mask.drop_front(Scale);
  } while (!Mask.empty());

  assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");

  // All elements of the original mask can be scaled down to map to the elements
  // of a mask with wider elements.
  return true;
}

MapVector<Instruction *, uint64_t>
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
                               const TargetTransformInfo *TTI) {

  // DemandedBits will give us every value's live-out bits. But we want
  // to ensure no extra casts would need to be inserted, so every DAG
  // of connected values must have the same minimum bitwidth.
  EquivalenceClasses<Value *> ECs;
  SmallVector<Value *, 16> Worklist;
  SmallPtrSet<Value *, 4> Roots;
  SmallPtrSet<Value *, 16> Visited;
  DenseMap<Value *, uint64_t> DBits;
  SmallPtrSet<Instruction *, 4> InstructionSet;
  MapVector<Instruction *, uint64_t> MinBWs;

  // Determine the roots. We work bottom-up, from truncs or icmps.
  bool SeenExtFromIllegalType = false;
  for (auto *BB : Blocks)
    for (auto &I : *BB) {
      InstructionSet.insert(&I);

      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
          !TTI->isTypeLegal(I.getOperand(0)->getType()))
        SeenExtFromIllegalType = true;

      // Only deal with non-vector integers up to 64-bits wide.
      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
          !I.getType()->isVectorTy() &&
          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
        // Don't make work for ourselves. If we know the loaded type is legal,
        // don't add it to the worklist.
        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
          continue;

        Worklist.push_back(&I);
        Roots.insert(&I);
      }
    }
  // Early exit.
  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
    return MinBWs;

  // Now proceed breadth-first, unioning values together.
  while (!Worklist.empty()) {
    Value *Val = Worklist.pop_back_val();
    Value *Leader = ECs.getOrInsertLeaderValue(Val);

    if (Visited.count(Val))
      continue;
    Visited.insert(Val);

    // Non-instructions terminate a chain successfully.
    if (!isa<Instruction>(Val))
      continue;
    Instruction *I = cast<Instruction>(Val);

    // If we encounter a type that is larger than 64 bits, we can't represent
    // it so bail out.
    if (DB.getDemandedBits(I).getBitWidth() > 64)
      return MapVector<Instruction *, uint64_t>();

    uint64_t V = DB.getDemandedBits(I).getZExtValue();
    DBits[Leader] |= V;
    DBits[I] = V;

    // Casts, loads and instructions outside of our range terminate a chain
    // successfully.
    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
        !InstructionSet.count(I))
      continue;

    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
    // transform anything that relies on them.
    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
        !I->getType()->isIntegerTy()) {
      DBits[Leader] |= ~0ULL;
      continue;
    }

    // We don't modify the types of PHIs. Reductions will already have been
    // truncated if possible, and inductions' sizes will have been chosen by
    // indvars.
    if (isa<PHINode>(I))
      continue;

    if (DBits[Leader] == ~0ULL)
      // All bits demanded, no point continuing.
      continue;

    for (Value *O : cast<User>(I)->operands()) {
      ECs.unionSets(Leader, O);
      Worklist.push_back(O);
    }
  }

  // Now we've discovered all values, walk them to see if there are
  // any users we didn't see. If there are, we can't optimize that
  // chain.
  for (auto &I : DBits)
    for (auto *U : I.first->users())
      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;

  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
    uint64_t LeaderDemandedBits = 0;
    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
      LeaderDemandedBits |= DBits[M];

    uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
                     llvm::countLeadingZeros(LeaderDemandedBits);
    // Round up to a power of 2
    if (!isPowerOf2_64((uint64_t)MinBW))
      MinBW = NextPowerOf2(MinBW);

    // We don't modify the types of PHIs. Reductions will already have been
    // truncated if possible, and inductions' sizes will have been chosen by
    // indvars.
    // If we are required to shrink a PHI, abandon this entire equivalence class.
    bool Abort = false;
    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
      if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
        Abort = true;
        break;
      }
    if (Abort)
      continue;

    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
      if (!isa<Instruction>(M))
        continue;
      Type *Ty = M->getType();
      if (Roots.count(M))
        Ty = cast<Instruction>(M)->getOperand(0)->getType();
      if (MinBW < Ty->getScalarSizeInBits())
        MinBWs[cast<Instruction>(M)] = MinBW;
    }
  }

  return MinBWs;
}

/// Add all access groups in @p AccGroups to @p List.
template <typename ListT>
static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
  // Interpret an access group as a list containing itself.
  if (AccGroups->getNumOperands() == 0) {
    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
    List.insert(AccGroups);
    return;
  }

  for (auto &AccGroupListOp : AccGroups->operands()) {
    auto *Item = cast<MDNode>(AccGroupListOp.get());
    assert(isValidAsAccessGroup(Item) && "List item must be an access group");
    List.insert(Item);
  }
}

MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
  if (!AccGroups1)
    return AccGroups2;
  if (!AccGroups2)
    return AccGroups1;
  if (AccGroups1 == AccGroups2)
    return AccGroups1;

  SmallSetVector<Metadata *, 4> Union;
  addToAccessGroupList(Union, AccGroups1);
  addToAccessGroupList(Union, AccGroups2);

  if (Union.size() == 0)
    return nullptr;
  if (Union.size() == 1)
    return cast<MDNode>(Union.front());

  LLVMContext &Ctx = AccGroups1->getContext();
  return MDNode::get(Ctx, Union.getArrayRef());
}

MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
                                    const Instruction *Inst2) {
  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();

  if (!MayAccessMem1 && !MayAccessMem2)
    return nullptr;
  if (!MayAccessMem1)
    return Inst2->getMetadata(LLVMContext::MD_access_group);
  if (!MayAccessMem2)
    return Inst1->getMetadata(LLVMContext::MD_access_group);

  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
  if (!MD1 || !MD2)
    return nullptr;
  if (MD1 == MD2)
    return MD1;

  // Use set for scalable 'contains' check.
  SmallPtrSet<Metadata *, 4> AccGroupSet2;
  addToAccessGroupList(AccGroupSet2, MD2);

  SmallVector<Metadata *, 4> Intersection;
  if (MD1->getNumOperands() == 0) {
    assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
    if (AccGroupSet2.count(MD1))
      Intersection.push_back(MD1);
  } else {
    for (const MDOperand &Node : MD1->operands()) {
      auto *Item = cast<MDNode>(Node.get());
      assert(isValidAsAccessGroup(Item) && "List item must be an access group");
      if (AccGroupSet2.count(Item))
        Intersection.push_back(Item);
    }
  }

  if (Intersection.size() == 0)
    return nullptr;
  if (Intersection.size() == 1)
    return cast<MDNode>(Intersection.front());

  LLVMContext &Ctx = Inst1->getContext();
  return MDNode::get(Ctx, Intersection);
}

/// \returns \p I after propagating metadata from \p VL.
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
  if (VL.empty())
    return Inst;
  Instruction *I0 = cast<Instruction>(VL[0]);
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
  I0->getAllMetadataOtherThanDebugLoc(Metadata);

  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
                    LLVMContext::MD_access_group}) {
    MDNode *MD = I0->getMetadata(Kind);

    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
      const Instruction *IJ = cast<Instruction>(VL[J]);
      MDNode *IMD = IJ->getMetadata(Kind);
      switch (Kind) {
      case LLVMContext::MD_tbaa:
        MD = MDNode::getMostGenericTBAA(MD, IMD);
        break;
      case LLVMContext::MD_alias_scope:
        MD = MDNode::getMostGenericAliasScope(MD, IMD);
        break;
      case LLVMContext::MD_fpmath:
        MD = MDNode::getMostGenericFPMath(MD, IMD);
        break;
      case LLVMContext::MD_noalias:
      case LLVMContext::MD_nontemporal:
      case LLVMContext::MD_invariant_load:
        MD = MDNode::intersect(MD, IMD);
        break;
      case LLVMContext::MD_access_group:
        MD = intersectAccessGroups(Inst, IJ);
        break;
      default:
        llvm_unreachable("unhandled metadata");
      }
    }

    Inst->setMetadata(Kind, MD);
  }

  return Inst;
}

Constant *
llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
                           const InterleaveGroup<Instruction> &Group) {
  // All 1's means mask is not needed.
  if (Group.getNumMembers() == Group.getFactor())
    return nullptr;

  // TODO: support reversed access.
  assert(!Group.isReverse() && "Reversed group not supported.");

  SmallVector<Constant *, 16> Mask;
  for (unsigned i = 0; i < VF; i++)
    for (unsigned j = 0; j < Group.getFactor(); ++j) {
      unsigned HasMember = Group.getMember(j) ? 1 : 0;
      Mask.push_back(Builder.getInt1(HasMember));
    }

  return ConstantVector::get(Mask);
}

llvm::SmallVector<int, 16>
llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
  SmallVector<int, 16> MaskVec;
  for (unsigned i = 0; i < VF; i++)
    for (unsigned j = 0; j < ReplicationFactor; j++)
      MaskVec.push_back(i);

  return MaskVec;
}

llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
                                                      unsigned NumVecs) {
  SmallVector<int, 16> Mask;
  for (unsigned i = 0; i < VF; i++)
    for (unsigned j = 0; j < NumVecs; j++)
      Mask.push_back(j * VF + i);

  return Mask;
}

llvm::SmallVector<int, 16>
llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
  SmallVector<int, 16> Mask;
  for (unsigned i = 0; i < VF; i++)
    Mask.push_back(Start + i * Stride);

  return Mask;
}

llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
                                                      unsigned NumInts,
                                                      unsigned NumUndefs) {
  SmallVector<int, 16> Mask;
  for (unsigned i = 0; i < NumInts; i++)
    Mask.push_back(Start + i);

  for (unsigned i = 0; i < NumUndefs; i++)
    Mask.push_back(-1);

  return Mask;
}

/// A helper function for concatenating vectors. This function concatenates two
/// vectors having the same element type. If the second vector has fewer
/// elements than the first, it is padded with undefs.
static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
                                    Value *V2) {
  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
  assert(VecTy1 && VecTy2 &&
         VecTy1->getScalarType() == VecTy2->getScalarType() &&
         "Expect two vectors with the same element type");

  unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
  unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");

  if (NumElts1 > NumElts2) {
    // Extend with UNDEFs.
    V2 = Builder.CreateShuffleVector(
        V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
  }

  return Builder.CreateShuffleVector(
      V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
}

Value *llvm::concatenateVectors(IRBuilderBase &Builder,
                                ArrayRef<Value *> Vecs) {
  unsigned NumVecs = Vecs.size();
  assert(NumVecs > 1 && "Should be at least two vectors");

  SmallVector<Value *, 8> ResList;
  ResList.append(Vecs.begin(), Vecs.end());
  do {
    SmallVector<Value *, 8> TmpList;
    for (unsigned i = 0; i < NumVecs - 1; i += 2) {
      Value *V0 = ResList[i], *V1 = ResList[i + 1];
      assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
             "Only the last vector may have a different type");

      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
    }

    // Push the last vector if the total number of vectors is odd.
    if (NumVecs % 2 != 0)
      TmpList.push_back(ResList[NumVecs - 1]);

    ResList = TmpList;
    NumVecs = ResList.size();
  } while (NumVecs > 1);

  return ResList[0];
}

bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
  assert(isa<VectorType>(Mask->getType()) &&
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
             1 &&
         "Mask must be a vector of i1");

  auto *ConstMask = dyn_cast<Constant>(Mask);
  if (!ConstMask)
    return false;
  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
    return true;
  if (isa<ScalableVectorType>(ConstMask->getType()))
    return false;
  for (unsigned
           I = 0,
           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
       I != E; ++I) {
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
        continue;
    return false;
  }
  return true;
}

bool llvm::maskIsAllOneOrUndef(Value *Mask) {
  assert(isa<VectorType>(Mask->getType()) &&
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
             1 &&
         "Mask must be a vector of i1");

  auto *ConstMask = dyn_cast<Constant>(Mask);
  if (!ConstMask)
    return false;
  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
    return true;
  if (isa<ScalableVectorType>(ConstMask->getType()))
    return false;
  for (unsigned
           I = 0,
           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
       I != E; ++I) {
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
        continue;
    return false;
  }
  return true;
}

/// TODO: This is a lot like known bits, but for
/// vectors.  Is there something we can common this with?
APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
  assert(isa<FixedVectorType>(Mask->getType()) &&
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
             1 &&
         "Mask must be a fixed width vector of i1");

  const unsigned VWidth =
      cast<FixedVectorType>(Mask->getType())->getNumElements();
  APInt DemandedElts = APInt::getAllOnesValue(VWidth);
  if (auto *CV = dyn_cast<ConstantVector>(Mask))
    for (unsigned i = 0; i < VWidth; i++)
      if (CV->getAggregateElement(i)->isNullValue())
        DemandedElts.clearBit(i);
  return DemandedElts;
}

bool InterleavedAccessInfo::isStrided(int Stride) {
  unsigned Factor = std::abs(Stride);
  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
}

void InterleavedAccessInfo::collectConstStrideAccesses(
    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
    const ValueToValueMap &Strides) {
  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();

  // Since it's desired that the load/store instructions be maintained in
  // "program order" for the interleaved access analysis, we have to visit the
  // blocks in the loop in reverse postorder (i.e., in a topological order).
  // Such an ordering will ensure that any load/store that may be executed
  // before a second load/store will precede the second load/store in
  // AccessStrideInfo.
  LoopBlocksDFS DFS(TheLoop);
  DFS.perform(LI);
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
    for (auto &I : *BB) {
      Value *Ptr = getLoadStorePointerOperand(&I);
      if (!Ptr)
        continue;
      Type *ElementTy = getLoadStoreType(&I);

      // We don't check wrapping here because we don't know yet if Ptr will be
      // part of a full group or a group with gaps. Checking wrapping for all
      // pointers (even those that end up in groups with no gaps) will be overly
      // conservative. For full groups, wrapping should be ok since if we would
      // wrap around the address space we would do a memory access at nullptr
      // even without the transformation. The wrapping checks are therefore
      // deferred until after we've formed the interleaved groups.
      int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
                                    /*Assume=*/true, /*ShouldCheckWrap=*/false);

      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
      uint64_t Size = DL.getTypeAllocSize(ElementTy);
      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
                                              getLoadStoreAlignment(&I));
    }
}

// Analyze interleaved accesses and collect them into interleaved load and
// store groups.
//
// When generating code for an interleaved load group, we effectively hoist all
// loads in the group to the location of the first load in program order. When
// generating code for an interleaved store group, we sink all stores to the
// location of the last store. This code motion can change the order of load
// and store instructions and may break dependences.
//
// The code generation strategy mentioned above ensures that we won't violate
// any write-after-read (WAR) dependences.
//
// E.g., for the WAR dependence:  a = A[i];      // (1)
//                                A[i] = b;      // (2)
//
// The store group of (2) is always inserted at or below (2), and the load
// group of (1) is always inserted at or above (1). Thus, the instructions will
// never be reordered. All other dependences are checked to ensure the
// correctness of the instruction reordering.
//
// The algorithm visits all memory accesses in the loop in bottom-up program
// order. Program order is established by traversing the blocks in the loop in
// reverse postorder when collecting the accesses.
//
// We visit the memory accesses in bottom-up order because it can simplify the
// construction of store groups in the presence of write-after-write (WAW)
// dependences.
//
// E.g., for the WAW dependence:  A[i] = a;      // (1)
//                                A[i] = b;      // (2)
//                                A[i + 1] = c;  // (3)
//
// We will first create a store group with (3) and (2). (1) can't be added to
// this group because it and (2) are dependent. However, (1) can be grouped
// with other accesses that may precede it in program order. Note that a
// bottom-up order does not imply that WAW dependences should not be checked.
void InterleavedAccessInfo::analyzeInterleaving(
                                 bool EnablePredicatedInterleavedMemAccesses) {
  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
  const ValueToValueMap &Strides = LAI->getSymbolicStrides();

  // Holds all accesses with a constant stride.
  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
  collectConstStrideAccesses(AccessStrideInfo, Strides);

  if (AccessStrideInfo.empty())
    return;

  // Collect the dependences in the loop.
  collectDependences();

  // Holds all interleaved store groups temporarily.
  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
  // Holds all interleaved load groups temporarily.
  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;

  // Search in bottom-up program order for pairs of accesses (A and B) that can
  // form interleaved load or store groups. In the algorithm below, access A
  // precedes access B in program order. We initialize a group for B in the
  // outer loop of the algorithm, and then in the inner loop, we attempt to
  // insert each A into B's group if:
  //
  //  1. A and B have the same stride,
  //  2. A and B have the same memory object size, and
  //  3. A belongs in B's group according to its distance from B.
  //
  // Special care is taken to ensure group formation will not break any
  // dependences.
  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
       BI != E; ++BI) {
    Instruction *B = BI->first;
    StrideDescriptor DesB = BI->second;

    // Initialize a group for B if it has an allowable stride. Even if we don't
    // create a group for B, we continue with the bottom-up algorithm to ensure
    // we don't break any of B's dependences.
    InterleaveGroup<Instruction> *Group = nullptr;
    if (isStrided(DesB.Stride) &&
        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
      Group = getInterleaveGroup(B);
      if (!Group) {
        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
                          << '\n');
        Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
      }
      if (B->mayWriteToMemory())
        StoreGroups.insert(Group);
      else
        LoadGroups.insert(Group);
    }

    for (auto AI = std::next(BI); AI != E; ++AI) {
      Instruction *A = AI->first;
      StrideDescriptor DesA = AI->second;

      // Our code motion strategy implies that we can't have dependences
      // between accesses in an interleaved group and other accesses located
      // between the first and last member of the group. Note that this also
      // means that a group can't have more than one member at a given offset.
      // The accesses in a group can have dependences with other accesses, but
      // we must ensure we don't extend the boundaries of the group such that
      // we encompass those dependent accesses.
      //
      // For example, assume we have the sequence of accesses shown below in a
      // stride-2 loop:
      //
      //  (1, 2) is a group | A[i]   = a;  // (1)
      //                    | A[i-1] = b;  // (2) |
      //                      A[i-3] = c;  // (3)
      //                      A[i]   = d;  // (4) | (2, 4) is not a group
      //
      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
      // but not with (4). If we did, the dependent access (3) would be within
      // the boundaries of the (2, 4) group.
      if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
        // If a dependence exists and A is already in a group, we know that A
        // must be a store since A precedes B and WAR dependences are allowed.
        // Thus, A would be sunk below B. We release A's group to prevent this
        // illegal code motion. A will then be free to form another group with
        // instructions that precede it.
        if (isInterleaved(A)) {
          InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);

          LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
                               "dependence between " << *A << " and "<< *B << '\n');

          StoreGroups.remove(StoreGroup);
          releaseGroup(StoreGroup);
        }

        // If a dependence exists and A is not already in a group (or it was
        // and we just released it), B might be hoisted above A (if B is a
        // load) or another store might be sunk below A (if B is a store). In
        // either case, we can't add additional instructions to B's group. B
        // will only form a group with instructions that it precedes.
        break;
      }

      // At this point, we've checked for illegal code motion. If either A or B
      // isn't strided, there's nothing left to do.
      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
        continue;

      // Ignore A if it's already in a group or isn't the same kind of memory
      // operation as B.
      // Note that mayReadFromMemory() isn't mutually exclusive to
      // mayWriteToMemory in the case of atomic loads. We shouldn't see those
      // here, canVectorizeMemory() should have returned false - except for the
      // case we asked for optimization remarks.
      if (isInterleaved(A) ||
          (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
          (A->mayWriteToMemory() != B->mayWriteToMemory()))
        continue;

      // Check rules 1 and 2. Ignore A if its stride or size is different from
      // that of B.
      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
        continue;

      // Ignore A if the memory object of A and B don't belong to the same
      // address space
      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
        continue;

      // Calculate the distance from A to B.
      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
      if (!DistToB)
        continue;
      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();

      // Check rule 3. Ignore A if its distance to B is not a multiple of the
      // size.
      if (DistanceToB % static_cast<int64_t>(DesB.Size))
        continue;

      // All members of a predicated interleave-group must have the same predicate,
      // and currently must reside in the same BB.
      BasicBlock *BlockA = A->getParent();
      BasicBlock *BlockB = B->getParent();
      if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
        continue;

      // The index of A is the index of B plus A's distance to B in multiples
      // of the size.
      int IndexA =
          Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);

      // Try to insert A into B's group.
      if (Group->insertMember(A, IndexA, DesA.Alignment)) {
        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
                          << "    into the interleave group with" << *B
                          << '\n');
        InterleaveGroupMap[A] = Group;

        // Set the first load in program order as the insert position.
        if (A->mayReadFromMemory())
          Group->setInsertPos(A);
      }
    } // Iteration over A accesses.
  }   // Iteration over B accesses.

  // Remove interleaved store groups with gaps.
  for (auto *Group : StoreGroups)
    if (Group->getNumMembers() != Group->getFactor()) {
      LLVM_DEBUG(
          dbgs() << "LV: Invalidate candidate interleaved store group due "
                    "to gaps.\n");
      releaseGroup(Group);
    }
  // Remove interleaved groups with gaps (currently only loads) whose memory
  // accesses may wrap around. We have to revisit the getPtrStride analysis,
  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
  // not check wrapping (see documentation there).
  // FORNOW we use Assume=false;
  // TODO: Change to Assume=true but making sure we don't exceed the threshold
  // of runtime SCEV assumptions checks (thereby potentially failing to
  // vectorize altogether).
  // Additional optional optimizations:
  // TODO: If we are peeling the loop and we know that the first pointer doesn't
  // wrap then we can deduce that all pointers in the group don't wrap.
  // This means that we can forcefully peel the loop in order to only have to
  // check the first pointer for no-wrap. When we'll change to use Assume=true
  // we'll only need at most one runtime check per interleaved group.
  for (auto *Group : LoadGroups) {
    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
    // load would wrap around the address space we would do a memory access at
    // nullptr even without the transformation.
    if (Group->getNumMembers() == Group->getFactor())
      continue;

    // Case 2: If first and last members of the group don't wrap this implies
    // that all the pointers in the group don't wrap.
    // So we check only group member 0 (which is always guaranteed to exist),
    // and group member Factor - 1; If the latter doesn't exist we rely on
    // peeling (if it is a non-reversed accsess -- see Case 3).
    Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
    if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
                      /*ShouldCheckWrap=*/true)) {
      LLVM_DEBUG(
          dbgs() << "LV: Invalidate candidate interleaved group due to "
                    "first group member potentially pointer-wrapping.\n");
      releaseGroup(Group);
      continue;
    }
    Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
    if (LastMember) {
      Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
      if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
                        /*ShouldCheckWrap=*/true)) {
        LLVM_DEBUG(
            dbgs() << "LV: Invalidate candidate interleaved group due to "
                      "last group member potentially pointer-wrapping.\n");
        releaseGroup(Group);
      }
    } else {
      // Case 3: A non-reversed interleaved load group with gaps: We need
      // to execute at least one scalar epilogue iteration. This will ensure
      // we don't speculatively access memory out-of-bounds. We only need
      // to look for a member at index factor - 1, since every group must have
      // a member at index zero.
      if (Group->isReverse()) {
        LLVM_DEBUG(
            dbgs() << "LV: Invalidate candidate interleaved group due to "
                      "a reverse access with gaps.\n");
        releaseGroup(Group);
        continue;
      }
      LLVM_DEBUG(
          dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
      RequiresScalarEpilogue = true;
    }
  }
}

void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
  // If no group had triggered the requirement to create an epilogue loop,
  // there is nothing to do.
  if (!requiresScalarEpilogue())
    return;

  bool ReleasedGroup = false;
  // Release groups requiring scalar epilogues. Note that this also removes them
  // from InterleaveGroups.
  for (auto *Group : make_early_inc_range(InterleaveGroups)) {
    if (!Group->requiresScalarEpilogue())
      continue;
    LLVM_DEBUG(
        dbgs()
        << "LV: Invalidate candidate interleaved group due to gaps that "
           "require a scalar epilogue (not allowed under optsize) and cannot "
           "be masked (not enabled). \n");
    releaseGroup(Group);
    ReleasedGroup = true;
  }
  assert(ReleasedGroup && "At least one group must be invalidated, as a "
                          "scalar epilogue was required");
  (void)ReleasedGroup;
  RequiresScalarEpilogue = false;
}

template <typename InstT>
void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
  llvm_unreachable("addMetadata can only be used for Instruction");
}

namespace llvm {
template <>
void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
  SmallVector<Value *, 4> VL;
  std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
                 [](std::pair<int, Instruction *> p) { return p.second; });
  propagateMetadata(NewInst, VL);
}
}

std::string VFABI::mangleTLIVectorName(StringRef VectorName,
                                       StringRef ScalarName, unsigned numArgs,
                                       ElementCount VF) {
  SmallString<256> Buffer;
  llvm::raw_svector_ostream Out(Buffer);
  Out << "_ZGV" << VFABI::_LLVM_ << "N";
  if (VF.isScalable())
    Out << 'x';
  else
    Out << VF.getFixedValue();
  for (unsigned I = 0; I < numArgs; ++I)
    Out << "v";
  Out << "_" << ScalarName << "(" << VectorName << ")";
  return std::string(Out.str());
}

void VFABI::getVectorVariantNames(
    const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
  const StringRef S =
      CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
          .getValueAsString();
  if (S.empty())
    return;

  SmallVector<StringRef, 8> ListAttr;
  S.split(ListAttr, ",");

  for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
#ifndef NDEBUG
    LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
    Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
    assert(Info.hasValue() && "Invalid name for a VFABI variant.");
    assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
           "Vector function is missing.");
#endif
    VariantMappings.push_back(std::string(S));
  }
}

bool VFShape::hasValidParameterList() const {
  for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
       ++Pos) {
    assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");

    switch (Parameters[Pos].ParamKind) {
    default: // Nothing to check.
      break;
    case VFParamKind::OMP_Linear:
    case VFParamKind::OMP_LinearRef:
    case VFParamKind::OMP_LinearVal:
    case VFParamKind::OMP_LinearUVal:
      // Compile time linear steps must be non-zero.
      if (Parameters[Pos].LinearStepOrPos == 0)
        return false;
      break;
    case VFParamKind::OMP_LinearPos:
    case VFParamKind::OMP_LinearRefPos:
    case VFParamKind::OMP_LinearValPos:
    case VFParamKind::OMP_LinearUValPos:
      // The runtime linear step must be referring to some other
      // parameters in the signature.
      if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
        return false;
      // The linear step parameter must be marked as uniform.
      if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
          VFParamKind::OMP_Uniform)
        return false;
      // The linear step parameter can't point at itself.
      if (Parameters[Pos].LinearStepOrPos == int(Pos))
        return false;
      break;
    case VFParamKind::GlobalPredicate:
      // The global predicate must be the unique. Can be placed anywhere in the
      // signature.
      for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
        if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
          return false;
      break;
    }
  }
  return true;
}