aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp
blob: 68a4bfba42a7034c209476834bd48423d2c042b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Common functionality for different debug information format backends.
// LLVM currently supports DWARF and CodeView.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/DebugHandlerBase.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"

using namespace llvm;

#define DEBUG_TYPE "dwarfdebug"

/// If true, we drop variable location ranges which exist entirely outside the
/// variable's lexical scope instruction ranges.
static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));

Optional<DbgVariableLocation>
DbgVariableLocation::extractFromMachineInstruction(
    const MachineInstr &Instruction) {
  DbgVariableLocation Location;
  if (!Instruction.isDebugValue())
    return None;
  if (!Instruction.getDebugOperand(0).isReg())
    return None;
  Location.Register = Instruction.getDebugOperand(0).getReg();
  Location.FragmentInfo.reset();
  // We only handle expressions generated by DIExpression::appendOffset,
  // which doesn't require a full stack machine.
  int64_t Offset = 0;
  const DIExpression *DIExpr = Instruction.getDebugExpression();
  auto Op = DIExpr->expr_op_begin();
  while (Op != DIExpr->expr_op_end()) {
    switch (Op->getOp()) {
    case dwarf::DW_OP_constu: {
      int Value = Op->getArg(0);
      ++Op;
      if (Op != DIExpr->expr_op_end()) {
        switch (Op->getOp()) {
        case dwarf::DW_OP_minus:
          Offset -= Value;
          break;
        case dwarf::DW_OP_plus:
          Offset += Value;
          break;
        default:
          continue;
        }
      }
    } break;
    case dwarf::DW_OP_plus_uconst:
      Offset += Op->getArg(0);
      break;
    case dwarf::DW_OP_LLVM_fragment:
      Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
      break;
    case dwarf::DW_OP_deref:
      Location.LoadChain.push_back(Offset);
      Offset = 0;
      break;
    default:
      return None;
    }
    ++Op;
  }

  // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
  // instruction.
  // FIXME: Replace these with DIExpression.
  if (Instruction.isIndirectDebugValue())
    Location.LoadChain.push_back(Offset);

  return Location;
}

DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}

void DebugHandlerBase::beginModule(Module *M) {
  if (M->debug_compile_units().empty())
    Asm = nullptr;
}

// Each LexicalScope has first instruction and last instruction to mark
// beginning and end of a scope respectively. Create an inverse map that list
// scopes starts (and ends) with an instruction. One instruction may start (or
// end) multiple scopes. Ignore scopes that are not reachable.
void DebugHandlerBase::identifyScopeMarkers() {
  SmallVector<LexicalScope *, 4> WorkList;
  WorkList.push_back(LScopes.getCurrentFunctionScope());
  while (!WorkList.empty()) {
    LexicalScope *S = WorkList.pop_back_val();

    const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
    if (!Children.empty())
      WorkList.append(Children.begin(), Children.end());

    if (S->isAbstractScope())
      continue;

    for (const InsnRange &R : S->getRanges()) {
      assert(R.first && "InsnRange does not have first instruction!");
      assert(R.second && "InsnRange does not have second instruction!");
      requestLabelBeforeInsn(R.first);
      requestLabelAfterInsn(R.second);
    }
  }
}

// Return Label preceding the instruction.
MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
  MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
  assert(Label && "Didn't insert label before instruction");
  return Label;
}

// Return Label immediately following the instruction.
MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
  return LabelsAfterInsn.lookup(MI);
}

/// If this type is derived from a base type then return base type size.
uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
  assert(Ty);
  const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
  if (!DDTy)
    return Ty->getSizeInBits();

  unsigned Tag = DDTy->getTag();

  if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
      Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
      Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type)
    return DDTy->getSizeInBits();

  DIType *BaseType = DDTy->getBaseType();

  if (!BaseType)
    return 0;

  // If this is a derived type, go ahead and get the base type, unless it's a
  // reference then it's just the size of the field. Pointer types have no need
  // of this since they're a different type of qualification on the type.
  if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
      BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
    return Ty->getSizeInBits();

  return getBaseTypeSize(BaseType);
}

bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
  if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
    // FIXME: Enums without a fixed underlying type have unknown signedness
    // here, leading to incorrectly emitted constants.
    if (CTy->getTag() == dwarf::DW_TAG_enumeration_type)
      return false;

    // (Pieces of) aggregate types that get hacked apart by SROA may be
    // represented by a constant. Encode them as unsigned bytes.
    return true;
  }

  if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    dwarf::Tag T = (dwarf::Tag)Ty->getTag();
    // Encode pointer constants as unsigned bytes. This is used at least for
    // null pointer constant emission.
    // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
    // here, but accept them for now due to a bug in SROA producing bogus
    // dbg.values.
    if (T == dwarf::DW_TAG_pointer_type ||
        T == dwarf::DW_TAG_ptr_to_member_type ||
        T == dwarf::DW_TAG_reference_type ||
        T == dwarf::DW_TAG_rvalue_reference_type)
      return true;
    assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
           T == dwarf::DW_TAG_volatile_type ||
           T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type);
    assert(DTy->getBaseType() && "Expected valid base type");
    return isUnsignedDIType(DTy->getBaseType());
  }

  auto *BTy = cast<DIBasicType>(Ty);
  unsigned Encoding = BTy->getEncoding();
  assert((Encoding == dwarf::DW_ATE_unsigned ||
          Encoding == dwarf::DW_ATE_unsigned_char ||
          Encoding == dwarf::DW_ATE_signed ||
          Encoding == dwarf::DW_ATE_signed_char ||
          Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
          Encoding == dwarf::DW_ATE_boolean ||
          (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
           Ty->getName() == "decltype(nullptr)")) &&
         "Unsupported encoding");
  return Encoding == dwarf::DW_ATE_unsigned ||
         Encoding == dwarf::DW_ATE_unsigned_char ||
         Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
         Ty->getTag() == dwarf::DW_TAG_unspecified_type;
}

static bool hasDebugInfo(const MachineModuleInfo *MMI,
                         const MachineFunction *MF) {
  if (!MMI->hasDebugInfo())
    return false;
  auto *SP = MF->getFunction().getSubprogram();
  if (!SP)
    return false;
  assert(SP->getUnit());
  auto EK = SP->getUnit()->getEmissionKind();
  if (EK == DICompileUnit::NoDebug)
    return false;
  return true;
}

void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
  PrevInstBB = nullptr;

  if (!Asm || !hasDebugInfo(MMI, MF)) {
    skippedNonDebugFunction();
    return;
  }

  // Grab the lexical scopes for the function, if we don't have any of those
  // then we're not going to be able to do anything.
  LScopes.initialize(*MF);
  if (LScopes.empty()) {
    beginFunctionImpl(MF);
    return;
  }

  // Make sure that each lexical scope will have a begin/end label.
  identifyScopeMarkers();

  // Calculate history for local variables.
  assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
  assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
  calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
                            DbgValues, DbgLabels);
  InstOrdering.initialize(*MF);
  if (TrimVarLocs)
    DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
  LLVM_DEBUG(DbgValues.dump());

  // Request labels for the full history.
  for (const auto &I : DbgValues) {
    const auto &Entries = I.second;
    if (Entries.empty())
      continue;

    auto IsDescribedByReg = [](const MachineInstr *MI) {
      return MI->getDebugOperand(0).isReg() && MI->getDebugOperand(0).getReg();
    };

    // The first mention of a function argument gets the CurrentFnBegin label,
    // so arguments are visible when breaking at function entry.
    //
    // We do not change the label for values that are described by registers,
    // as that could place them above their defining instructions. We should
    // ideally not change the labels for constant debug values either, since
    // doing that violates the ranges that are calculated in the history map.
    // However, we currently do not emit debug values for constant arguments
    // directly at the start of the function, so this code is still useful.
    // FIXME: If the first mention of an argument is in a unique section basic
    // block, we cannot always assign the CurrentFnBeginLabel as it lies in a
    // different section.  Temporarily, we disable generating loc list
    // information or DW_AT_const_value when the block is in a different
    // section.
    const DILocalVariable *DIVar =
        Entries.front().getInstr()->getDebugVariable();
    if (DIVar->isParameter() &&
        getDISubprogram(DIVar->getScope())->describes(&MF->getFunction()) &&
        Entries.front().getInstr()->getParent()->sameSection(&MF->front())) {
      if (!IsDescribedByReg(Entries.front().getInstr()))
        LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
      if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
        // Mark all non-overlapping initial fragments.
        for (auto I = Entries.begin(); I != Entries.end(); ++I) {
          if (!I->isDbgValue())
            continue;
          const DIExpression *Fragment = I->getInstr()->getDebugExpression();
          if (std::any_of(Entries.begin(), I,
                          [&](DbgValueHistoryMap::Entry Pred) {
                            return Pred.isDbgValue() &&
                                   Fragment->fragmentsOverlap(
                                       Pred.getInstr()->getDebugExpression());
                          }))
            break;
          // The code that generates location lists for DWARF assumes that the
          // entries' start labels are monotonically increasing, and since we
          // don't change the label for fragments that are described by
          // registers, we must bail out when encountering such a fragment.
          if (IsDescribedByReg(I->getInstr()))
            break;
          LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
        }
      }
    }

    for (const auto &Entry : Entries) {
      if (Entry.isDbgValue())
        requestLabelBeforeInsn(Entry.getInstr());
      else
        requestLabelAfterInsn(Entry.getInstr());
    }
  }

  // Ensure there is a symbol before DBG_LABEL.
  for (const auto &I : DbgLabels) {
    const MachineInstr *MI = I.second;
    requestLabelBeforeInsn(MI);
  }

  PrevInstLoc = DebugLoc();
  PrevLabel = Asm->getFunctionBegin();
  beginFunctionImpl(MF);
}

void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
  if (!Asm || !MMI->hasDebugInfo())
    return;

  assert(CurMI == nullptr);
  CurMI = MI;

  // Insert labels where requested.
  DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
      LabelsBeforeInsn.find(MI);

  // No label needed.
  if (I == LabelsBeforeInsn.end())
    return;

  // Label already assigned.
  if (I->second)
    return;

  if (!PrevLabel) {
    PrevLabel = MMI->getContext().createTempSymbol();
    Asm->OutStreamer->emitLabel(PrevLabel);
  }
  I->second = PrevLabel;
}

void DebugHandlerBase::endInstruction() {
  if (!Asm || !MMI->hasDebugInfo())
    return;

  assert(CurMI != nullptr);
  // Don't create a new label after DBG_VALUE and other instructions that don't
  // generate code.
  if (!CurMI->isMetaInstruction()) {
    PrevLabel = nullptr;
    PrevInstBB = CurMI->getParent();
  }

  DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
      LabelsAfterInsn.find(CurMI);
  CurMI = nullptr;

  // No label needed.
  if (I == LabelsAfterInsn.end())
    return;

  // Label already assigned.
  if (I->second)
    return;

  // We need a label after this instruction.
  if (!PrevLabel) {
    PrevLabel = MMI->getContext().createTempSymbol();
    Asm->OutStreamer->emitLabel(PrevLabel);
  }
  I->second = PrevLabel;
}

void DebugHandlerBase::endFunction(const MachineFunction *MF) {
  if (Asm && hasDebugInfo(MMI, MF))
    endFunctionImpl(MF);
  DbgValues.clear();
  DbgLabels.clear();
  LabelsBeforeInsn.clear();
  LabelsAfterInsn.clear();
  InstOrdering.clear();
}

void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) {
  if (!MBB.isBeginSection())
    return;

  PrevLabel = MBB.getSymbol();
}

void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) {
  if (!MBB.isEndSection())
    return;

  PrevLabel = nullptr;
}