aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
blob: 2ffe8a7b046964a4bfab93546ad51c2223b882f6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
//===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing exception info into assembly files.
//
//===----------------------------------------------------------------------===//

#include "EHStreamer.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}

EHStreamer::~EHStreamer() = default;

/// How many leading type ids two landing pads have in common.
unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
                                   const LandingPadInfo *R) {
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
  return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
             .first -
         LIds.begin();
}

/// Compute the actions table and gather the first action index for each landing
/// pad site.
void EHStreamer::computeActionsTable(
    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    SmallVectorImpl<ActionEntry> &Actions,
    SmallVectorImpl<unsigned> &FirstActions) {
  // The action table follows the call-site table in the LSDA. The individual
  // records are of two types:
  //
  //   * Catch clause
  //   * Exception specification
  //
  // The two record kinds have the same format, with only small differences.
  // They are distinguished by the "switch value" field: Catch clauses
  // (TypeInfos) have strictly positive switch values, and exception
  // specifications (FilterIds) have strictly negative switch values. Value 0
  // indicates a catch-all clause.
  //
  // Negative type IDs index into FilterIds. Positive type IDs index into
  // TypeInfos.  The value written for a positive type ID is just the type ID
  // itself.  For a negative type ID, however, the value written is the
  // (negative) byte offset of the corresponding FilterIds entry.  The byte
  // offset is usually equal to the type ID (because the FilterIds entries are
  // written using a variable width encoding, which outputs one byte per entry
  // as long as the value written is not too large) but can differ.  This kind
  // of complication does not occur for positive type IDs because type infos are
  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
  // offset corresponding to FilterIds[i].

  const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
  SmallVector<int, 16> FilterOffsets;
  FilterOffsets.reserve(FilterIds.size());
  int Offset = -1;

  for (std::vector<unsigned>::const_iterator
         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
    FilterOffsets.push_back(Offset);
    Offset -= getULEB128Size(*I);
  }

  FirstActions.reserve(LandingPads.size());

  int FirstAction = 0;
  unsigned SizeActions = 0; // Total size of all action entries for a function
  const LandingPadInfo *PrevLPI = nullptr;

  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
    const LandingPadInfo *LPI = *I;
    const std::vector<int> &TypeIds = LPI->TypeIds;
    unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
    unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad

    if (NumShared < TypeIds.size()) {
      // Size of one action entry (typeid + next action)
      unsigned SizeActionEntry = 0;
      unsigned PrevAction = (unsigned)-1;

      if (NumShared) {
        unsigned SizePrevIds = PrevLPI->TypeIds.size();
        assert(Actions.size());
        PrevAction = Actions.size() - 1;
        SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
                          getSLEB128Size(Actions[PrevAction].ValueForTypeID);

        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
          SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
          SizeActionEntry += -Actions[PrevAction].NextAction;
          PrevAction = Actions[PrevAction].Previous;
        }
      }

      // Compute the actions.
      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
        int TypeID = TypeIds[J];
        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
        int ValueForTypeID =
            isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
        unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);

        int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
        SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
        SizeSiteActions += SizeActionEntry;

        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
        Actions.push_back(Action);
        PrevAction = Actions.size() - 1;
      }

      // Record the first action of the landing pad site.
      FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
    } // else identical - re-use previous FirstAction

    // Information used when creating the call-site table. The action record
    // field of the call site record is the offset of the first associated
    // action record, relative to the start of the actions table. This value is
    // biased by 1 (1 indicating the start of the actions table), and 0
    // indicates that there are no actions.
    FirstActions.push_back(FirstAction);

    // Compute this sites contribution to size.
    SizeActions += SizeSiteActions;

    PrevLPI = LPI;
  }
}

/// Return `true' if this is a call to a function marked `nounwind'. Return
/// `false' otherwise.
bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
  assert(MI->isCall() && "This should be a call instruction!");

  bool MarkedNoUnwind = false;
  bool SawFunc = false;

  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);

    if (!MO.isGlobal()) continue;

    const Function *F = dyn_cast<Function>(MO.getGlobal());
    if (!F) continue;

    if (SawFunc) {
      // Be conservative. If we have more than one function operand for this
      // call, then we can't make the assumption that it's the callee and
      // not a parameter to the call.
      //
      // FIXME: Determine if there's a way to say that `F' is the callee or
      // parameter.
      MarkedNoUnwind = false;
      break;
    }

    MarkedNoUnwind = F->doesNotThrow();
    SawFunc = true;
  }

  return MarkedNoUnwind;
}

void EHStreamer::computePadMap(
    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    RangeMapType &PadMap) {
  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
  // try-ranges for them need be deduced so we can put them in the LSDA.
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LandingPad = LandingPads[i];
    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
      PadRange P = { i, j };
      PadMap[BeginLabel] = P;
    }
  }
}

/// Compute the call-site table.  The entry for an invoke has a try-range
/// containing the call, a non-zero landing pad, and an appropriate action.  The
/// entry for an ordinary call has a try-range containing the call and zero for
/// the landing pad and the action.  Calls marked 'nounwind' have no entry and
/// must not be contained in the try-range of any entry - they form gaps in the
/// table.  Entries must be ordered by try-range address.
///
/// Call-sites are split into one or more call-site ranges associated with
/// different sections of the function.
///
///   - Without -basic-block-sections, all call-sites are grouped into one
///     call-site-range corresponding to the function section.
///
///   - With -basic-block-sections, one call-site range is created for each
///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
//      set to the beginning and ending of the corresponding section and its
//      ExceptionLabel set to the exception symbol dedicated for this section.
//      Later, one LSDA header will be emitted for each call-site range with its
//      call-sites following. The action table and type info table will be
//      shared across all ranges.
void EHStreamer::computeCallSiteTable(
    SmallVectorImpl<CallSiteEntry> &CallSites,
    SmallVectorImpl<CallSiteRange> &CallSiteRanges,
    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    const SmallVectorImpl<unsigned> &FirstActions) {
  RangeMapType PadMap;
  computePadMap(LandingPads, PadMap);

  // The end label of the previous invoke or nounwind try-range.
  MCSymbol *LastLabel = Asm->getFunctionBegin();

  // Whether there is a potentially throwing instruction (currently this means
  // an ordinary call) between the end of the previous try-range and now.
  bool SawPotentiallyThrowing = false;

  // Whether the last CallSite entry was for an invoke.
  bool PreviousIsInvoke = false;

  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;

  // Visit all instructions in order of address.
  for (const auto &MBB : *Asm->MF) {
    if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
      // We start a call-site range upon function entry and at the beginning of
      // every basic block section.
      CallSiteRanges.push_back(
          {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
           Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
           Asm->getMBBExceptionSym(MBB), CallSites.size()});
      PreviousIsInvoke = false;
      SawPotentiallyThrowing = false;
      LastLabel = nullptr;
    }

    if (MBB.isEHPad())
      CallSiteRanges.back().IsLPRange = true;

    for (const auto &MI : MBB) {
      if (!MI.isEHLabel()) {
        if (MI.isCall())
          SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
        continue;
      }

      // End of the previous try-range?
      MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
      if (BeginLabel == LastLabel)
        SawPotentiallyThrowing = false;

      // Beginning of a new try-range?
      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
      if (L == PadMap.end())
        // Nope, it was just some random label.
        continue;

      const PadRange &P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
             "Inconsistent landing pad map!");

      // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
      // If some instruction between the previous try-range and this one may
      // throw, create a call-site entry with no landing pad for the region
      // between the try-ranges.
      if (SawPotentiallyThrowing &&
          (Asm->MAI->usesCFIForEH() ||
           Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
        CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
        PreviousIsInvoke = false;
      }

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      assert(BeginLabel && LastLabel && "Invalid landing pad!");

      if (!LandingPad->LandingPadLabel) {
        // Create a gap.
        PreviousIsInvoke = false;
      } else {
        // This try-range is for an invoke.
        CallSiteEntry Site = {
          BeginLabel,
          LastLabel,
          LandingPad,
          FirstActions[P.PadIndex]
        };

        // Try to merge with the previous call-site. SJLJ doesn't do this
        if (PreviousIsInvoke && !IsSJLJ) {
          CallSiteEntry &Prev = CallSites.back();
          if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
            // Extend the range of the previous entry.
            Prev.EndLabel = Site.EndLabel;
            continue;
          }
        }

        // Otherwise, create a new call-site.
        if (!IsSJLJ)
          CallSites.push_back(Site);
        else {
          // SjLj EH must maintain the call sites in the order assigned
          // to them by the SjLjPrepare pass.
          unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
          if (CallSites.size() < SiteNo)
            CallSites.resize(SiteNo);
          CallSites[SiteNo - 1] = Site;
        }
        PreviousIsInvoke = true;
      }
    }

    // We end the call-site range upon function exit and at the end of every
    // basic block section.
    if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
      // If some instruction between the previous try-range and the end of the
      // function may throw, create a call-site entry with no landing pad for
      // the region following the try-range.
      if (SawPotentiallyThrowing && !IsSJLJ) {
        CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
                              nullptr, 0};
        CallSites.push_back(Site);
        SawPotentiallyThrowing = false;
      }
      CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
    }
  }
}

/// Emit landing pads and actions.
///
/// The general organization of the table is complex, but the basic concepts are
/// easy.  First there is a header which describes the location and organization
/// of the three components that follow.
///
///  1. The landing pad site information describes the range of code covered by
///     the try.  In our case it's an accumulation of the ranges covered by the
///     invokes in the try.  There is also a reference to the landing pad that
///     handles the exception once processed.  Finally an index into the actions
///     table.
///  2. The action table, in our case, is composed of pairs of type IDs and next
///     action offset.  Starting with the action index from the landing pad
///     site, each type ID is checked for a match to the current exception.  If
///     it matches then the exception and type id are passed on to the landing
///     pad.  Otherwise the next action is looked up.  This chain is terminated
///     with a next action of zero.  If no type id is found then the frame is
///     unwound and handling continues.
///  3. Type ID table contains references to all the C++ typeinfo for all
///     catches in the function.  This tables is reverse indexed base 1.
///
/// Returns the starting symbol of an exception table.
MCSymbol *EHStreamer::emitExceptionTable() {
  const MachineFunction *MF = Asm->MF;
  const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MF->getFilterIds();
  const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();

  // Sort the landing pads in order of their type ids.  This is used to fold
  // duplicate actions.
  SmallVector<const LandingPadInfo *, 64> LandingPads;
  LandingPads.reserve(PadInfos.size());

  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    LandingPads.push_back(&PadInfos[i]);

  // Order landing pads lexicographically by type id.
  llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
    return L->TypeIds < R->TypeIds;
  });

  // Compute the actions table and gather the first action index for each
  // landing pad site.
  SmallVector<ActionEntry, 32> Actions;
  SmallVector<unsigned, 64> FirstActions;
  computeActionsTable(LandingPads, Actions, FirstActions);

  // Compute the call-site table and call-site ranges. Normally, there is only
  // one call-site-range which covers the whole funciton. With
  // -basic-block-sections, there is one call-site-range per basic block
  // section.
  SmallVector<CallSiteEntry, 64> CallSites;
  SmallVector<CallSiteRange, 4> CallSiteRanges;
  computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);

  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
  bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
  bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
  unsigned CallSiteEncoding =
      IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
               Asm->getObjFileLowering().getCallSiteEncoding();
  bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();

  // Type infos.
  MCSection *LSDASection =
      Asm->getObjFileLowering().getSectionForLSDA(MF->getFunction(), Asm->TM);
  unsigned TTypeEncoding;

  if (!HaveTTData) {
    // If there is no TypeInfo, then we just explicitly say that we're omitting
    // that bit.
    TTypeEncoding = dwarf::DW_EH_PE_omit;
  } else {
    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
    // pick a type encoding for them.  We're about to emit a list of pointers to
    // typeinfo objects at the end of the LSDA.  However, unless we're in static
    // mode, this reference will require a relocation by the dynamic linker.
    //
    // Because of this, we have a couple of options:
    //
    //   1) If we are in -static mode, we can always use an absolute reference
    //      from the LSDA, because the static linker will resolve it.
    //
    //   2) Otherwise, if the LSDA section is writable, we can output the direct
    //      reference to the typeinfo and allow the dynamic linker to relocate
    //      it.  Since it is in a writable section, the dynamic linker won't
    //      have a problem.
    //
    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
    //      we need to use some form of indirection.  For example, on Darwin,
    //      we can output a statically-relocatable reference to a dyld stub. The
    //      offset to the stub is constant, but the contents are in a section
    //      that is updated by the dynamic linker.  This is easy enough, but we
    //      need to tell the personality function of the unwinder to indirect
    //      through the dyld stub.
    //
    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
    // somewhere.  This predicate should be moved to a shared location that is
    // in target-independent code.
    //
    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
  }

  // Begin the exception table.
  // Sometimes we want not to emit the data into separate section (e.g. ARM
  // EHABI). In this case LSDASection will be NULL.
  if (LSDASection)
    Asm->OutStreamer->SwitchSection(LSDASection);
  Asm->emitAlignment(Align(4));

  // Emit the LSDA.
  MCSymbol *GCCETSym =
    Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
                                      Twine(Asm->getFunctionNumber()));
  Asm->OutStreamer->emitLabel(GCCETSym);
  MCSymbol *CstEndLabel = Asm->createTempSymbol(
      CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");

  MCSymbol *TTBaseLabel = nullptr;
  if (HaveTTData)
    TTBaseLabel = Asm->createTempSymbol("ttbase");

  const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();

  // Helper for emitting references (offsets) for type table and the end of the
  // call-site table (which marks the beginning of the action table).
  //  * For Itanium, these references will be emitted for every callsite range.
  //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
  auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
    Asm->emitEncodingByte(TTypeEncoding, "@TType");
    if (HaveTTData) {
      // N.B.: There is a dependency loop between the size of the TTBase uleb128
      // here and the amount of padding before the aligned type table. The
      // assembler must sometimes pad this uleb128 or insert extra padding
      // before the type table. See PR35809 or GNU as bug 4029.
      MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
      Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
      Asm->OutStreamer->emitLabel(TTBaseRefLabel);
    }

    // The Action table follows the call-site table. So we emit the
    // label difference from here (start of the call-site table for SJLJ and
    // Wasm, and start of a call-site range for Itanium) to the end of the
    // whole call-site table (end of the last call-site range for Itanium).
    MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
    Asm->emitEncodingByte(CallSiteEncoding, "Call site");
    Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
    Asm->OutStreamer->emitLabel(CstBeginLabel);
  };

  // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
  // For some platforms, the system assembler does not accept the form of
  // `.uleb128 label2 - label1`. In those situations, we would need to calculate
  // the size between label1 and label2 manually.
  // In this case, we would need to calculate the LSDA size and the call
  // site table size.
  auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
    assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
           "Targets supporting .uleb128 do not need to take this path.");
    if (CallSiteRanges.size() > 1)
      report_fatal_error(
          "-fbasic-block-sections is not yet supported on "
          "platforms that do not have general LEB128 directive support.");

    uint64_t CallSiteTableSize = 0;
    const CallSiteRange &CSRange = CallSiteRanges.back();
    for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
         CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
      const CallSiteEntry &S = CallSites[CallSiteIdx];
      // Each call site entry consists of 3 udata4 fields (12 bytes) and
      // 1 ULEB128 field.
      CallSiteTableSize += 12 + getULEB128Size(S.Action);
      assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
    }

    Asm->emitEncodingByte(TTypeEncoding, "@TType");
    if (HaveTTData) {
      const unsigned ByteSizeOfCallSiteOffset =
          getULEB128Size(CallSiteTableSize);
      uint64_t ActionTableSize = 0;
      for (const ActionEntry &Action : Actions) {
        // Each action entry consists of two SLEB128 fields.
        ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
                           getSLEB128Size(Action.NextAction);
        assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
      }

      const unsigned TypeInfoSize =
          Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();

      const uint64_t LSDASizeBeforeAlign =
          1                          // Call site encoding byte.
          + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
          + CallSiteTableSize        // Call site table content.
          + ActionTableSize;         // Action table content.

      const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
      const unsigned ByteSizeOfLSDAWithoutAlign =
          getULEB128Size(LSDASizeWithoutAlign);
      const uint64_t DisplacementBeforeAlign =
          2 // LPStartEncoding and TypeTableEncoding.
          + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;

      // The type info area starts with 4 byte alignment.
      const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
      uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
      const unsigned ByteSizeOfLSDAWithAlign =
          getULEB128Size(LSDASizeWithAlign);

      // The LSDASizeWithAlign could use 1 byte less padding for alignment
      // when the data we use to represent the LSDA Size "needs" to be 1 byte
      // larger than the one previously calculated without alignment.
      if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
        LSDASizeWithAlign -= 1;

      Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
                                            ByteSizeOfLSDAWithAlign);
    }

    Asm->emitEncodingByte(CallSiteEncoding, "Call site");
    Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
  };

  // SjLj / Wasm Exception handling
  if (IsSJLJ || IsWasm) {
    Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));

    // emit the LSDA header.
    Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
    EmitTypeTableRefAndCallSiteTableEndRef();

    unsigned idx = 0;
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
      const CallSiteEntry &S = *I;

      // Index of the call site entry.
      if (VerboseAsm) {
        Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
        Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
      }
      Asm->emitULEB128(idx);

      // Offset of the first associated action record, relative to the start of
      // the action table. This value is biased by 1 (1 indicates the start of
      // the action table), and 0 indicates that there are no actions.
      if (VerboseAsm) {
        if (S.Action == 0)
          Asm->OutStreamer->AddComment("  Action: cleanup");
        else
          Asm->OutStreamer->AddComment("  Action: " +
                                       Twine((S.Action - 1) / 2 + 1));
      }
      Asm->emitULEB128(S.Action);
    }
    Asm->OutStreamer->emitLabel(CstEndLabel);
  } else {
    // Itanium LSDA exception handling

    // The call-site table is a list of all call sites that may throw an
    // exception (including C++ 'throw' statements) in the procedure
    // fragment. It immediately follows the LSDA header. Each entry indicates,
    // for a given call, the first corresponding action record and corresponding
    // landing pad.
    //
    // The table begins with the number of bytes, stored as an LEB128
    // compressed, unsigned integer. The records immediately follow the record
    // count. They are sorted in increasing call-site address. Each record
    // indicates:
    //
    //   * The position of the call-site.
    //   * The position of the landing pad.
    //   * The first action record for that call site.
    //
    // A missing entry in the call-site table indicates that a call is not
    // supposed to throw.

    assert(CallSiteRanges.size() != 0 && "No call-site ranges!");

    // There should be only one call-site range which includes all the landing
    // pads. Find that call-site range here.
    const CallSiteRange *LandingPadRange = nullptr;
    for (const CallSiteRange &CSRange : CallSiteRanges) {
      if (CSRange.IsLPRange) {
        assert(LandingPadRange == nullptr &&
               "All landing pads must be in a single callsite range.");
        LandingPadRange = &CSRange;
      }
    }

    // The call-site table is split into its call-site ranges, each being
    // emitted as:
    //              [ LPStartEncoding | LPStart ]
    //              [ TypeTableEncoding | TypeTableOffset ]
    //              [ CallSiteEncoding | CallSiteTableEndOffset ]
    // cst_begin -> { call-site entries contained in this range }
    //
    // and is followed by the next call-site range.
    //
    // For each call-site range, CallSiteTableEndOffset is computed as the
    // difference between cst_begin of that range and the last call-site-table's
    // end label. This offset is used to find the action table.

    unsigned Entry = 0;
    for (const CallSiteRange &CSRange : CallSiteRanges) {
      if (CSRange.CallSiteBeginIdx != 0) {
        // Align the call-site range for all ranges except the first. The
        // first range is already aligned due to the exception table alignment.
        Asm->emitAlignment(Align(4));
      }
      Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);

      // Emit the LSDA header.
      // If only one call-site range exists, LPStart is omitted as it is the
      // same as the function entry.
      if (CallSiteRanges.size() == 1) {
        Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
      } else if (!Asm->isPositionIndependent()) {
        // For more than one call-site ranges, LPStart must be explicitly
        // specified.
        // For non-PIC we can simply use the absolute value.
        Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
        Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
                                          Asm->MAI->getCodePointerSize());
      } else {
        // For PIC mode, we Emit a PC-relative address for LPStart.
        Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
        MCContext &Context = Asm->OutStreamer->getContext();
        MCSymbol *Dot = Context.createTempSymbol();
        Asm->OutStreamer->emitLabel(Dot);
        Asm->OutStreamer->emitValue(
            MCBinaryExpr::createSub(
                MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
                                        Context),
                MCSymbolRefExpr::create(Dot, Context), Context),
            Asm->MAI->getCodePointerSize());
      }

      if (HasLEB128Directives)
        EmitTypeTableRefAndCallSiteTableEndRef();
      else
        EmitTypeTableOffsetAndCallSiteTableOffset();

      for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
           CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
        const CallSiteEntry &S = CallSites[CallSiteIdx];

        MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
        MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;

        MCSymbol *BeginLabel = S.BeginLabel;
        if (!BeginLabel)
          BeginLabel = EHFuncBeginSym;
        MCSymbol *EndLabel = S.EndLabel;
        if (!EndLabel)
          EndLabel = EHFuncEndSym;

        // Offset of the call site relative to the start of the procedure.
        if (VerboseAsm)
          Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
                                       " <<");
        Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
        if (VerboseAsm)
          Asm->OutStreamer->AddComment(Twine("  Call between ") +
                                       BeginLabel->getName() + " and " +
                                       EndLabel->getName());
        Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);

        // Offset of the landing pad relative to the start of the landing pad
        // fragment.
        if (!S.LPad) {
          if (VerboseAsm)
            Asm->OutStreamer->AddComment("    has no landing pad");
          Asm->emitCallSiteValue(0, CallSiteEncoding);
        } else {
          if (VerboseAsm)
            Asm->OutStreamer->AddComment(Twine("    jumps to ") +
                                         S.LPad->LandingPadLabel->getName());
          Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
                                  LandingPadRange->FragmentBeginLabel,
                                  CallSiteEncoding);
        }

        // Offset of the first associated action record, relative to the start
        // of the action table. This value is biased by 1 (1 indicates the start
        // of the action table), and 0 indicates that there are no actions.
        if (VerboseAsm) {
          if (S.Action == 0)
            Asm->OutStreamer->AddComment("  On action: cleanup");
          else
            Asm->OutStreamer->AddComment("  On action: " +
                                         Twine((S.Action - 1) / 2 + 1));
        }
        Asm->emitULEB128(S.Action);
      }
    }
    Asm->OutStreamer->emitLabel(CstEndLabel);
  }

  // Emit the Action Table.
  int Entry = 0;
  for (SmallVectorImpl<ActionEntry>::const_iterator
         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
    const ActionEntry &Action = *I;

    if (VerboseAsm) {
      // Emit comments that decode the action table.
      Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
    }

    // Type Filter
    //
    //   Used by the runtime to match the type of the thrown exception to the
    //   type of the catch clauses or the types in the exception specification.
    if (VerboseAsm) {
      if (Action.ValueForTypeID > 0)
        Asm->OutStreamer->AddComment("  Catch TypeInfo " +
                                     Twine(Action.ValueForTypeID));
      else if (Action.ValueForTypeID < 0)
        Asm->OutStreamer->AddComment("  Filter TypeInfo " +
                                     Twine(Action.ValueForTypeID));
      else
        Asm->OutStreamer->AddComment("  Cleanup");
    }
    Asm->emitSLEB128(Action.ValueForTypeID);

    // Action Record
    if (VerboseAsm) {
      if (Action.Previous == unsigned(-1)) {
        Asm->OutStreamer->AddComment("  No further actions");
      } else {
        Asm->OutStreamer->AddComment("  Continue to action " +
                                     Twine(Action.Previous + 1));
      }
    }
    Asm->emitSLEB128(Action.NextAction);
  }

  if (HaveTTData) {
    Asm->emitAlignment(Align(4));
    emitTypeInfos(TTypeEncoding, TTBaseLabel);
  }

  Asm->emitAlignment(Align(4));
  return GCCETSym;
}

void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
  const MachineFunction *MF = Asm->MF;
  const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MF->getFilterIds();

  const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();

  int Entry = 0;
  // Emit the Catch TypeInfos.
  if (VerboseAsm && !TypeInfos.empty()) {
    Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
    Asm->OutStreamer->AddBlankLine();
    Entry = TypeInfos.size();
  }

  for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
                                          TypeInfos.rend())) {
    if (VerboseAsm)
      Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
    Asm->emitTTypeReference(GV, TTypeEncoding);
  }

  Asm->OutStreamer->emitLabel(TTBaseLabel);

  // Emit the Exception Specifications.
  if (VerboseAsm && !FilterIds.empty()) {
    Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
    Asm->OutStreamer->AddBlankLine();
    Entry = 0;
  }
  for (std::vector<unsigned>::const_iterator
         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
    unsigned TypeID = *I;
    if (VerboseAsm) {
      --Entry;
      if (isFilterEHSelector(TypeID))
        Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
    }

    Asm->emitULEB128(TypeID);
  }
}