aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/BranchFolding.cpp
blob: 455916eeb82fbd199e89dbbc7f2c8a025a094318 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
//===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass forwards branches to unconditional branches to make them branch
// directly to the target block.  This pass often results in dead MBB's, which
// it then removes.
//
// Note that this pass must be run after register allocation, it cannot handle
// SSA form. It also must handle virtual registers for targets that emit virtual
// ISA (e.g. NVPTX).
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <numeric>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "branch-folder"

STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumBranchOpts, "Number of branches optimized");
STATISTIC(NumTailMerge , "Number of block tails merged");
STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
STATISTIC(NumTailCalls,  "Number of tail calls optimized");

static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
                              cl::init(cl::BOU_UNSET), cl::Hidden);

// Throttle for huge numbers of predecessors (compile speed problems)
static cl::opt<unsigned>
TailMergeThreshold("tail-merge-threshold",
          cl::desc("Max number of predecessors to consider tail merging"),
          cl::init(150), cl::Hidden);

// Heuristic for tail merging (and, inversely, tail duplication).
// TODO: This should be replaced with a target query.
static cl::opt<unsigned>
TailMergeSize("tail-merge-size",
              cl::desc("Min number of instructions to consider tail merging"),
              cl::init(3), cl::Hidden);

namespace {

  /// BranchFolderPass - Wrap branch folder in a machine function pass.
  class BranchFolderPass : public MachineFunctionPass {
  public:
    static char ID;

    explicit BranchFolderPass(): MachineFunctionPass(ID) {}

    bool runOnMachineFunction(MachineFunction &MF) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<TargetPassConfig>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };

} // end anonymous namespace

char BranchFolderPass::ID = 0;

char &llvm::BranchFolderPassID = BranchFolderPass::ID;

INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
                "Control Flow Optimizer", false, false)

bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
  // TailMerge can create jump into if branches that make CFG irreducible for
  // HW that requires structurized CFG.
  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
                         PassConfig->getEnableTailMerge();
  BranchFolder::MBFIWrapper MBBFreqInfo(
      getAnalysis<MachineBlockFrequencyInfo>());
  BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
                      getAnalysis<MachineBranchProbabilityInfo>());
  auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
  return Folder.OptimizeFunction(
      MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
      MMIWP ? &MMIWP->getMMI() : nullptr);
}

BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
                           MBFIWrapper &FreqInfo,
                           const MachineBranchProbabilityInfo &ProbInfo,
                           unsigned MinTailLength)
    : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
      MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
  if (MinCommonTailLength == 0)
    MinCommonTailLength = TailMergeSize;
  switch (FlagEnableTailMerge) {
  case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
  case cl::BOU_TRUE: EnableTailMerge = true; break;
  case cl::BOU_FALSE: EnableTailMerge = false; break;
  }
}

void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
  assert(MBB->pred_empty() && "MBB must be dead!");
  LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);

  MachineFunction *MF = MBB->getParent();
  // drop all successors.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_end()-1);

  // Avoid matching if this pointer gets reused.
  TriedMerging.erase(MBB);

  // Update call site info.
  std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
    if (MI.isCall(MachineInstr::IgnoreBundle))
      MF->eraseCallSiteInfo(&MI);
  });
  // Remove the block.
  MF->erase(MBB);
  EHScopeMembership.erase(MBB);
  if (MLI)
    MLI->removeBlock(MBB);
}

bool BranchFolder::OptimizeFunction(MachineFunction &MF,
                                    const TargetInstrInfo *tii,
                                    const TargetRegisterInfo *tri,
                                    MachineModuleInfo *mmi,
                                    MachineLoopInfo *mli, bool AfterPlacement) {
  if (!tii) return false;

  TriedMerging.clear();

  MachineRegisterInfo &MRI = MF.getRegInfo();
  AfterBlockPlacement = AfterPlacement;
  TII = tii;
  TRI = tri;
  MMI = mmi;
  MLI = mli;
  this->MRI = &MRI;

  UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
  if (!UpdateLiveIns)
    MRI.invalidateLiveness();

  // Fix CFG.  The later algorithms expect it to be right.
  bool MadeChange = false;
  for (MachineBasicBlock &MBB : MF) {
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 4> Cond;
    if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
      MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
  }

  // Recalculate EH scope membership.
  EHScopeMembership = getEHScopeMembership(MF);

  bool MadeChangeThisIteration = true;
  while (MadeChangeThisIteration) {
    MadeChangeThisIteration    = TailMergeBlocks(MF);
    // No need to clean up if tail merging does not change anything after the
    // block placement.
    if (!AfterBlockPlacement || MadeChangeThisIteration)
      MadeChangeThisIteration |= OptimizeBranches(MF);
    if (EnableHoistCommonCode)
      MadeChangeThisIteration |= HoistCommonCode(MF);
    MadeChange |= MadeChangeThisIteration;
  }

  // See if any jump tables have become dead as the code generator
  // did its thing.
  MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
  if (!JTI)
    return MadeChange;

  // Walk the function to find jump tables that are live.
  BitVector JTIsLive(JTI->getJumpTables().size());
  for (const MachineBasicBlock &BB : MF) {
    for (const MachineInstr &I : BB)
      for (const MachineOperand &Op : I.operands()) {
        if (!Op.isJTI()) continue;

        // Remember that this JT is live.
        JTIsLive.set(Op.getIndex());
      }
  }

  // Finally, remove dead jump tables.  This happens when the
  // indirect jump was unreachable (and thus deleted).
  for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
    if (!JTIsLive.test(i)) {
      JTI->RemoveJumpTable(i);
      MadeChange = true;
    }

  return MadeChange;
}

//===----------------------------------------------------------------------===//
//  Tail Merging of Blocks
//===----------------------------------------------------------------------===//

/// HashMachineInstr - Compute a hash value for MI and its operands.
static unsigned HashMachineInstr(const MachineInstr &MI) {
  unsigned Hash = MI.getOpcode();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &Op = MI.getOperand(i);

    // Merge in bits from the operand if easy. We can't use MachineOperand's
    // hash_code here because it's not deterministic and we sort by hash value
    // later.
    unsigned OperandHash = 0;
    switch (Op.getType()) {
    case MachineOperand::MO_Register:
      OperandHash = Op.getReg();
      break;
    case MachineOperand::MO_Immediate:
      OperandHash = Op.getImm();
      break;
    case MachineOperand::MO_MachineBasicBlock:
      OperandHash = Op.getMBB()->getNumber();
      break;
    case MachineOperand::MO_FrameIndex:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      OperandHash = Op.getIndex();
      break;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      // Global address / external symbol are too hard, don't bother, but do
      // pull in the offset.
      OperandHash = Op.getOffset();
      break;
    default:
      break;
    }

    Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
  }
  return Hash;
}

/// HashEndOfMBB - Hash the last instruction in the MBB.
static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
  MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  return HashMachineInstr(*I);
}

///  Whether MI should be counted as an instruction when calculating common tail.
static bool countsAsInstruction(const MachineInstr &MI) {
  return !(MI.isDebugInstr() || MI.isCFIInstruction());
}

/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
/// of instructions they actually have in common together at their end.  Return
/// iterators for the first shared instruction in each block.
static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
                                        MachineBasicBlock *MBB2,
                                        MachineBasicBlock::iterator &I1,
                                        MachineBasicBlock::iterator &I2) {
  I1 = MBB1->end();
  I2 = MBB2->end();

  unsigned TailLen = 0;
  while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
    --I1; --I2;
    // Skip debugging pseudos; necessary to avoid changing the code.
    while (!countsAsInstruction(*I1)) {
      if (I1==MBB1->begin()) {
        while (!countsAsInstruction(*I2)) {
          if (I2==MBB2->begin()) {
            // I1==DBG at begin; I2==DBG at begin
            goto SkipTopCFIAndReturn;
          }
          --I2;
        }
        ++I2;
        // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
        goto SkipTopCFIAndReturn;
      }
      --I1;
    }
    // I1==first (untested) non-DBG preceding known match
    while (!countsAsInstruction(*I2)) {
      if (I2==MBB2->begin()) {
        ++I1;
        // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
        goto SkipTopCFIAndReturn;
      }
      --I2;
    }
    // I1, I2==first (untested) non-DBGs preceding known match
    if (!I1->isIdenticalTo(*I2) ||
        // FIXME: This check is dubious. It's used to get around a problem where
        // people incorrectly expect inline asm directives to remain in the same
        // relative order. This is untenable because normal compiler
        // optimizations (like this one) may reorder and/or merge these
        // directives.
        I1->isInlineAsm()) {
      ++I1; ++I2;
      break;
    }
    ++TailLen;
  }
  // Back past possible debugging pseudos at beginning of block.  This matters
  // when one block differs from the other only by whether debugging pseudos
  // are present at the beginning. (This way, the various checks later for
  // I1==MBB1->begin() work as expected.)
  if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
    --I2;
    while (I2->isDebugInstr()) {
      if (I2 == MBB2->begin())
        return TailLen;
      --I2;
    }
    ++I2;
  }
  if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
    --I1;
    while (I1->isDebugInstr()) {
      if (I1 == MBB1->begin())
        return TailLen;
      --I1;
    }
    ++I1;
  }

SkipTopCFIAndReturn:
  // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
  // I1 and I2 are non-identical when compared and then one or both of them ends
  // up pointing to a CFI instruction after being incremented. For example:
  /*
    BB1:
    ...
    INSTRUCTION_A
    ADD32ri8  <- last common instruction
    ...
    BB2:
    ...
    INSTRUCTION_B
    CFI_INSTRUCTION
    ADD32ri8  <- last common instruction
    ...
  */
  // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
  // incrementing the iterators, I1 will point to ADD, however I2 will point to
  // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
  // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
  // instruction.
  while (I1 != MBB1->end() && I1->isCFIInstruction()) {
    ++I1;
  }

  while (I2 != MBB2->end() && I2->isCFIInstruction()) {
    ++I2;
  }

  return TailLen;
}

void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
                                           MachineBasicBlock &NewDest) {
  if (UpdateLiveIns) {
    // OldInst should always point to an instruction.
    MachineBasicBlock &OldMBB = *OldInst->getParent();
    LiveRegs.clear();
    LiveRegs.addLiveOuts(OldMBB);
    // Move backward to the place where will insert the jump.
    MachineBasicBlock::iterator I = OldMBB.end();
    do {
      --I;
      LiveRegs.stepBackward(*I);
    } while (I != OldInst);

    // Merging the tails may have switched some undef operand to non-undef ones.
    // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
    // register.
    for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
      // We computed the liveins with computeLiveIn earlier and should only see
      // full registers:
      assert(P.LaneMask == LaneBitmask::getAll() &&
             "Can only handle full register.");
      MCPhysReg Reg = P.PhysReg;
      if (!LiveRegs.available(*MRI, Reg))
        continue;
      DebugLoc DL;
      BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
    }
  }

  TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
  ++NumTailMerge;
}

MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
                                            MachineBasicBlock::iterator BBI1,
                                            const BasicBlock *BB) {
  if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
    return nullptr;

  MachineFunction &MF = *CurMBB.getParent();

  // Create the fall-through block.
  MachineFunction::iterator MBBI = CurMBB.getIterator();
  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
  CurMBB.getParent()->insert(++MBBI, NewMBB);

  // Move all the successors of this block to the specified block.
  NewMBB->transferSuccessors(&CurMBB);

  // Add an edge from CurMBB to NewMBB for the fall-through.
  CurMBB.addSuccessor(NewMBB);

  // Splice the code over.
  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());

  // NewMBB belongs to the same loop as CurMBB.
  if (MLI)
    if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
      ML->addBasicBlockToLoop(NewMBB, MLI->getBase());

  // NewMBB inherits CurMBB's block frequency.
  MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));

  if (UpdateLiveIns)
    computeAndAddLiveIns(LiveRegs, *NewMBB);

  // Add the new block to the EH scope.
  const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
  if (EHScopeI != EHScopeMembership.end()) {
    auto n = EHScopeI->second;
    EHScopeMembership[NewMBB] = n;
  }

  return NewMBB;
}

/// EstimateRuntime - Make a rough estimate for how long it will take to run
/// the specified code.
static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
                                MachineBasicBlock::iterator E) {
  unsigned Time = 0;
  for (; I != E; ++I) {
    if (!countsAsInstruction(*I))
      continue;
    if (I->isCall())
      Time += 10;
    else if (I->mayLoad() || I->mayStore())
      Time += 2;
    else
      ++Time;
  }
  return Time;
}

// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
// branches temporarily for tail merging).  In the case where CurMBB ends
// with a conditional branch to the next block, optimize by reversing the
// test and conditionally branching to SuccMBB instead.
static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
                    const TargetInstrInfo *TII) {
  MachineFunction *MF = CurMBB->getParent();
  MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  DebugLoc dl = CurMBB->findBranchDebugLoc();
  if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
    MachineBasicBlock *NextBB = &*I;
    if (TBB == NextBB && !Cond.empty() && !FBB) {
      if (!TII->reverseBranchCondition(Cond)) {
        TII->removeBranch(*CurMBB);
        TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
        return;
      }
    }
  }
  TII->insertBranch(*CurMBB, SuccBB, nullptr,
                    SmallVector<MachineOperand, 0>(), dl);
}

bool
BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
  if (getHash() < o.getHash())
    return true;
  if (getHash() > o.getHash())
    return false;
  if (getBlock()->getNumber() < o.getBlock()->getNumber())
    return true;
  if (getBlock()->getNumber() > o.getBlock()->getNumber())
    return false;
  // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
  // an object with itself.
#ifndef _GLIBCXX_DEBUG
  llvm_unreachable("Predecessor appears twice");
#else
  return false;
#endif
}

BlockFrequency
BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
  auto I = MergedBBFreq.find(MBB);

  if (I != MergedBBFreq.end())
    return I->second;

  return MBFI.getBlockFreq(MBB);
}

void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
                                             BlockFrequency F) {
  MergedBBFreq[MBB] = F;
}

raw_ostream &
BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
                                          const MachineBasicBlock *MBB) const {
  return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
}

raw_ostream &
BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
                                          const BlockFrequency Freq) const {
  return MBFI.printBlockFreq(OS, Freq);
}

void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
  MBFI.view(Name, isSimple);
}

uint64_t
BranchFolder::MBFIWrapper::getEntryFreq() const {
  return MBFI.getEntryFreq();
}

/// CountTerminators - Count the number of terminators in the given
/// block and set I to the position of the first non-terminator, if there
/// is one, or MBB->end() otherwise.
static unsigned CountTerminators(MachineBasicBlock *MBB,
                                 MachineBasicBlock::iterator &I) {
  I = MBB->end();
  unsigned NumTerms = 0;
  while (true) {
    if (I == MBB->begin()) {
      I = MBB->end();
      break;
    }
    --I;
    if (!I->isTerminator()) break;
    ++NumTerms;
  }
  return NumTerms;
}

/// A no successor, non-return block probably ends in unreachable and is cold.
/// Also consider a block that ends in an indirect branch to be a return block,
/// since many targets use plain indirect branches to return.
static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
  if (!MBB->succ_empty())
    return false;
  if (MBB->empty())
    return true;
  return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
}

/// ProfitableToMerge - Check if two machine basic blocks have a common tail
/// and decide if it would be profitable to merge those tails.  Return the
/// length of the common tail and iterators to the first common instruction
/// in each block.
/// MBB1, MBB2      The blocks to check
/// MinCommonTailLength  Minimum size of tail block to be merged.
/// CommonTailLen   Out parameter to record the size of the shared tail between
///                 MBB1 and MBB2
/// I1, I2          Iterator references that will be changed to point to the first
///                 instruction in the common tail shared by MBB1,MBB2
/// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
///                 relative to SuccBB
/// PredBB          The layout predecessor of SuccBB, if any.
/// EHScopeMembership  map from block to EH scope #.
/// AfterPlacement  True if we are merging blocks after layout. Stricter
///                 thresholds apply to prevent undoing tail-duplication.
static bool
ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
                  unsigned MinCommonTailLength, unsigned &CommonTailLen,
                  MachineBasicBlock::iterator &I1,
                  MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
                  MachineBasicBlock *PredBB,
                  DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
                  bool AfterPlacement) {
  // It is never profitable to tail-merge blocks from two different EH scopes.
  if (!EHScopeMembership.empty()) {
    auto EHScope1 = EHScopeMembership.find(MBB1);
    assert(EHScope1 != EHScopeMembership.end());
    auto EHScope2 = EHScopeMembership.find(MBB2);
    assert(EHScope2 != EHScopeMembership.end());
    if (EHScope1->second != EHScope2->second)
      return false;
  }

  CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
  if (CommonTailLen == 0)
    return false;
  LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
                    << " and " << printMBBReference(*MBB2) << " is "
                    << CommonTailLen << '\n');

  // It's almost always profitable to merge any number of non-terminator
  // instructions with the block that falls through into the common successor.
  // This is true only for a single successor. For multiple successors, we are
  // trading a conditional branch for an unconditional one.
  // TODO: Re-visit successor size for non-layout tail merging.
  if ((MBB1 == PredBB || MBB2 == PredBB) &&
      (!AfterPlacement || MBB1->succ_size() == 1)) {
    MachineBasicBlock::iterator I;
    unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
    if (CommonTailLen > NumTerms)
      return true;
  }

  // If these are identical non-return blocks with no successors, merge them.
  // Such blocks are typically cold calls to noreturn functions like abort, and
  // are unlikely to become a fallthrough target after machine block placement.
  // Tail merging these blocks is unlikely to create additional unconditional
  // branches, and will reduce the size of this cold code.
  if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
      blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
    return true;

  // If one of the blocks can be completely merged and happens to be in
  // a position where the other could fall through into it, merge any number
  // of instructions, because it can be done without a branch.
  // TODO: If the blocks are not adjacent, move one of them so that they are?
  if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
    return true;
  if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
    return true;

  // If both blocks are identical and end in a branch, merge them unless they
  // both have a fallthrough predecessor and successor.
  // We can only do this after block placement because it depends on whether
  // there are fallthroughs, and we don't know until after layout.
  if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
    auto BothFallThrough = [](MachineBasicBlock *MBB) {
      if (MBB->succ_size() != 0 && !MBB->canFallThrough())
        return false;
      MachineFunction::iterator I(MBB);
      MachineFunction *MF = MBB->getParent();
      return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
    };
    if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
      return true;
  }

  // If both blocks have an unconditional branch temporarily stripped out,
  // count that as an additional common instruction for the following
  // heuristics. This heuristic is only accurate for single-succ blocks, so to
  // make sure that during layout merging and duplicating don't crash, we check
  // for that when merging during layout.
  unsigned EffectiveTailLen = CommonTailLen;
  if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
      (MBB1->succ_size() == 1 || !AfterPlacement) &&
      !MBB1->back().isBarrier() &&
      !MBB2->back().isBarrier())
    ++EffectiveTailLen;

  // Check if the common tail is long enough to be worthwhile.
  if (EffectiveTailLen >= MinCommonTailLength)
    return true;

  // If we are optimizing for code size, 2 instructions in common is enough if
  // we don't have to split a block.  At worst we will be introducing 1 new
  // branch instruction, which is likely to be smaller than the 2
  // instructions that would be deleted in the merge.
  MachineFunction *MF = MBB1->getParent();
  return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
         (I1 == MBB1->begin() || I2 == MBB2->begin());
}

unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
                                        unsigned MinCommonTailLength,
                                        MachineBasicBlock *SuccBB,
                                        MachineBasicBlock *PredBB) {
  unsigned maxCommonTailLength = 0U;
  SameTails.clear();
  MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
  MPIterator HighestMPIter = std::prev(MergePotentials.end());
  for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
                  B = MergePotentials.begin();
       CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
    for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
      unsigned CommonTailLen;
      if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
                            MinCommonTailLength,
                            CommonTailLen, TrialBBI1, TrialBBI2,
                            SuccBB, PredBB,
                            EHScopeMembership,
                            AfterBlockPlacement)) {
        if (CommonTailLen > maxCommonTailLength) {
          SameTails.clear();
          maxCommonTailLength = CommonTailLen;
          HighestMPIter = CurMPIter;
          SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
        }
        if (HighestMPIter == CurMPIter &&
            CommonTailLen == maxCommonTailLength)
          SameTails.push_back(SameTailElt(I, TrialBBI2));
      }
      if (I == B)
        break;
    }
  }
  return maxCommonTailLength;
}

void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
                                        MachineBasicBlock *SuccBB,
                                        MachineBasicBlock *PredBB) {
  MPIterator CurMPIter, B;
  for (CurMPIter = std::prev(MergePotentials.end()),
      B = MergePotentials.begin();
       CurMPIter->getHash() == CurHash; --CurMPIter) {
    // Put the unconditional branch back, if we need one.
    MachineBasicBlock *CurMBB = CurMPIter->getBlock();
    if (SuccBB && CurMBB != PredBB)
      FixTail(CurMBB, SuccBB, TII);
    if (CurMPIter == B)
      break;
  }
  if (CurMPIter->getHash() != CurHash)
    CurMPIter++;
  MergePotentials.erase(CurMPIter, MergePotentials.end());
}

bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
                                             MachineBasicBlock *SuccBB,
                                             unsigned maxCommonTailLength,
                                             unsigned &commonTailIndex) {
  commonTailIndex = 0;
  unsigned TimeEstimate = ~0U;
  for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
    // Use PredBB if possible; that doesn't require a new branch.
    if (SameTails[i].getBlock() == PredBB) {
      commonTailIndex = i;
      break;
    }
    // Otherwise, make a (fairly bogus) choice based on estimate of
    // how long it will take the various blocks to execute.
    unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
                                 SameTails[i].getTailStartPos());
    if (t <= TimeEstimate) {
      TimeEstimate = t;
      commonTailIndex = i;
    }
  }

  MachineBasicBlock::iterator BBI =
    SameTails[commonTailIndex].getTailStartPos();
  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();

  LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
                    << maxCommonTailLength);

  // If the split block unconditionally falls-thru to SuccBB, it will be
  // merged. In control flow terms it should then take SuccBB's name. e.g. If
  // SuccBB is an inner loop, the common tail is still part of the inner loop.
  const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
    SuccBB->getBasicBlock() : MBB->getBasicBlock();
  MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
  if (!newMBB) {
    LLVM_DEBUG(dbgs() << "... failed!");
    return false;
  }

  SameTails[commonTailIndex].setBlock(newMBB);
  SameTails[commonTailIndex].setTailStartPos(newMBB->begin());

  // If we split PredBB, newMBB is the new predecessor.
  if (PredBB == MBB)
    PredBB = newMBB;

  return true;
}

static void
mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
                MachineBasicBlock &MBBCommon) {
  MachineBasicBlock *MBB = MBBIStartPos->getParent();
  // Note CommonTailLen does not necessarily matches the size of
  // the common BB nor all its instructions because of debug
  // instructions differences.
  unsigned CommonTailLen = 0;
  for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
    ++CommonTailLen;

  MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
  MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
  MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
  MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();

  while (CommonTailLen--) {
    assert(MBBI != MBBIE && "Reached BB end within common tail length!");
    (void)MBBIE;

    if (!countsAsInstruction(*MBBI)) {
      ++MBBI;
      continue;
    }

    while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
      ++MBBICommon;

    assert(MBBICommon != MBBIECommon &&
           "Reached BB end within common tail length!");
    assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");

    // Merge MMOs from memory operations in the common block.
    if (MBBICommon->mayLoad() || MBBICommon->mayStore())
      MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
    // Drop undef flags if they aren't present in all merged instructions.
    for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
      MachineOperand &MO = MBBICommon->getOperand(I);
      if (MO.isReg() && MO.isUndef()) {
        const MachineOperand &OtherMO = MBBI->getOperand(I);
        if (!OtherMO.isUndef())
          MO.setIsUndef(false);
      }
    }

    ++MBBI;
    ++MBBICommon;
  }
}

void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();

  std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
  for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
    if (i != commonTailIndex) {
      NextCommonInsts[i] = SameTails[i].getTailStartPos();
      mergeOperations(SameTails[i].getTailStartPos(), *MBB);
    } else {
      assert(SameTails[i].getTailStartPos() == MBB->begin() &&
          "MBB is not a common tail only block");
    }
  }

  for (auto &MI : *MBB) {
    if (!countsAsInstruction(MI))
      continue;
    DebugLoc DL = MI.getDebugLoc();
    for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
      if (i == commonTailIndex)
        continue;

      auto &Pos = NextCommonInsts[i];
      assert(Pos != SameTails[i].getBlock()->end() &&
          "Reached BB end within common tail");
      while (!countsAsInstruction(*Pos)) {
        ++Pos;
        assert(Pos != SameTails[i].getBlock()->end() &&
            "Reached BB end within common tail");
      }
      assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
      DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
      NextCommonInsts[i] = ++Pos;
    }
    MI.setDebugLoc(DL);
  }

  if (UpdateLiveIns) {
    LivePhysRegs NewLiveIns(*TRI);
    computeLiveIns(NewLiveIns, *MBB);
    LiveRegs.init(*TRI);

    // The flag merging may lead to some register uses no longer using the
    // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
    for (MachineBasicBlock *Pred : MBB->predecessors()) {
      LiveRegs.clear();
      LiveRegs.addLiveOuts(*Pred);
      MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
      for (unsigned Reg : NewLiveIns) {
        if (!LiveRegs.available(*MRI, Reg))
          continue;
        DebugLoc DL;
        BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
                Reg);
      }
    }

    MBB->clearLiveIns();
    addLiveIns(*MBB, NewLiveIns);
  }
}

// See if any of the blocks in MergePotentials (which all have SuccBB as a
// successor, or all have no successor if it is null) can be tail-merged.
// If there is a successor, any blocks in MergePotentials that are not
// tail-merged and are not immediately before Succ must have an unconditional
// branch to Succ added (but the predecessor/successor lists need no
// adjustment). The lone predecessor of Succ that falls through into Succ,
// if any, is given in PredBB.
// MinCommonTailLength - Except for the special cases below, tail-merge if
// there are at least this many instructions in common.
bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
                                      MachineBasicBlock *PredBB,
                                      unsigned MinCommonTailLength) {
  bool MadeChange = false;

  LLVM_DEBUG(
      dbgs() << "\nTryTailMergeBlocks: ";
      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
      << printMBBReference(*MergePotentials[i].getBlock())
      << (i == e - 1 ? "" : ", ");
      dbgs() << "\n"; if (SuccBB) {
        dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
        if (PredBB)
          dbgs() << "  which has fall-through from "
                 << printMBBReference(*PredBB) << "\n";
      } dbgs() << "Looking for common tails of at least "
               << MinCommonTailLength << " instruction"
               << (MinCommonTailLength == 1 ? "" : "s") << '\n';);

  // Sort by hash value so that blocks with identical end sequences sort
  // together.
  array_pod_sort(MergePotentials.begin(), MergePotentials.end());

  // Walk through equivalence sets looking for actual exact matches.
  while (MergePotentials.size() > 1) {
    unsigned CurHash = MergePotentials.back().getHash();

    // Build SameTails, identifying the set of blocks with this hash code
    // and with the maximum number of instructions in common.
    unsigned maxCommonTailLength = ComputeSameTails(CurHash,
                                                    MinCommonTailLength,
                                                    SuccBB, PredBB);

    // If we didn't find any pair that has at least MinCommonTailLength
    // instructions in common, remove all blocks with this hash code and retry.
    if (SameTails.empty()) {
      RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
      continue;
    }

    // If one of the blocks is the entire common tail (and not the entry
    // block, which we can't jump to), we can treat all blocks with this same
    // tail at once.  Use PredBB if that is one of the possibilities, as that
    // will not introduce any extra branches.
    MachineBasicBlock *EntryBB =
        &MergePotentials.front().getBlock()->getParent()->front();
    unsigned commonTailIndex = SameTails.size();
    // If there are two blocks, check to see if one can be made to fall through
    // into the other.
    if (SameTails.size() == 2 &&
        SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
        SameTails[1].tailIsWholeBlock())
      commonTailIndex = 1;
    else if (SameTails.size() == 2 &&
             SameTails[1].getBlock()->isLayoutSuccessor(
                                                     SameTails[0].getBlock()) &&
             SameTails[0].tailIsWholeBlock())
      commonTailIndex = 0;
    else {
      // Otherwise just pick one, favoring the fall-through predecessor if
      // there is one.
      for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
        MachineBasicBlock *MBB = SameTails[i].getBlock();
        if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
          continue;
        if (MBB == PredBB) {
          commonTailIndex = i;
          break;
        }
        if (SameTails[i].tailIsWholeBlock())
          commonTailIndex = i;
      }
    }

    if (commonTailIndex == SameTails.size() ||
        (SameTails[commonTailIndex].getBlock() == PredBB &&
         !SameTails[commonTailIndex].tailIsWholeBlock())) {
      // None of the blocks consist entirely of the common tail.
      // Split a block so that one does.
      if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
                                     maxCommonTailLength, commonTailIndex)) {
        RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
        continue;
      }
    }

    MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();

    // Recompute common tail MBB's edge weights and block frequency.
    setCommonTailEdgeWeights(*MBB);

    // Merge debug locations, MMOs and undef flags across identical instructions
    // for common tail.
    mergeCommonTails(commonTailIndex);

    // MBB is common tail.  Adjust all other BB's to jump to this one.
    // Traversal must be forwards so erases work.
    LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
                      << " for ");
    for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
      if (commonTailIndex == i)
        continue;
      LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
                        << (i == e - 1 ? "" : ", "));
      // Hack the end off BB i, making it jump to BB commonTailIndex instead.
      replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
      // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
      MergePotentials.erase(SameTails[i].getMPIter());
    }
    LLVM_DEBUG(dbgs() << "\n");
    // We leave commonTailIndex in the worklist in case there are other blocks
    // that match it with a smaller number of instructions.
    MadeChange = true;
  }
  return MadeChange;
}

bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
  bool MadeChange = false;
  if (!EnableTailMerge)
    return MadeChange;

  // First find blocks with no successors.
  // Block placement may create new tail merging opportunities for these blocks.
  MergePotentials.clear();
  for (MachineBasicBlock &MBB : MF) {
    if (MergePotentials.size() == TailMergeThreshold)
      break;
    if (!TriedMerging.count(&MBB) && MBB.succ_empty())
      MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
  }

  // If this is a large problem, avoid visiting the same basic blocks
  // multiple times.
  if (MergePotentials.size() == TailMergeThreshold)
    for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
      TriedMerging.insert(MergePotentials[i].getBlock());

  // See if we can do any tail merging on those.
  if (MergePotentials.size() >= 2)
    MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);

  // Look at blocks (IBB) with multiple predecessors (PBB).
  // We change each predecessor to a canonical form, by
  // (1) temporarily removing any unconditional branch from the predecessor
  // to IBB, and
  // (2) alter conditional branches so they branch to the other block
  // not IBB; this may require adding back an unconditional branch to IBB
  // later, where there wasn't one coming in.  E.g.
  //   Bcc IBB
  //   fallthrough to QBB
  // here becomes
  //   Bncc QBB
  // with a conceptual B to IBB after that, which never actually exists.
  // With those changes, we see whether the predecessors' tails match,
  // and merge them if so.  We change things out of canonical form and
  // back to the way they were later in the process.  (OptimizeBranches
  // would undo some of this, but we can't use it, because we'd get into
  // a compile-time infinite loop repeatedly doing and undoing the same
  // transformations.)

  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ++I) {
    if (I->pred_size() < 2) continue;
    SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
    MachineBasicBlock *IBB = &*I;
    MachineBasicBlock *PredBB = &*std::prev(I);
    MergePotentials.clear();
    MachineLoop *ML;

    // Bail if merging after placement and IBB is the loop header because
    // -- If merging predecessors that belong to the same loop as IBB, the
    // common tail of merged predecessors may become the loop top if block
    // placement is called again and the predecessors may branch to this common
    // tail and require more branches. This can be relaxed if
    // MachineBlockPlacement::findBestLoopTop is more flexible.
    // --If merging predecessors that do not belong to the same loop as IBB, the
    // loop info of IBB's loop and the other loops may be affected. Calling the
    // block placement again may make big change to the layout and eliminate the
    // reason to do tail merging here.
    if (AfterBlockPlacement && MLI) {
      ML = MLI->getLoopFor(IBB);
      if (ML && IBB == ML->getHeader())
        continue;
    }

    for (MachineBasicBlock *PBB : I->predecessors()) {
      if (MergePotentials.size() == TailMergeThreshold)
        break;

      if (TriedMerging.count(PBB))
        continue;

      // Skip blocks that loop to themselves, can't tail merge these.
      if (PBB == IBB)
        continue;

      // Visit each predecessor only once.
      if (!UniquePreds.insert(PBB).second)
        continue;

      // Skip blocks which may jump to a landing pad. Can't tail merge these.
      if (PBB->hasEHPadSuccessor())
        continue;

      // After block placement, only consider predecessors that belong to the
      // same loop as IBB.  The reason is the same as above when skipping loop
      // header.
      if (AfterBlockPlacement && MLI)
        if (ML != MLI->getLoopFor(PBB))
          continue;

      MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
      SmallVector<MachineOperand, 4> Cond;
      if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
        // Failing case: IBB is the target of a cbr, and we cannot reverse the
        // branch.
        SmallVector<MachineOperand, 4> NewCond(Cond);
        if (!Cond.empty() && TBB == IBB) {
          if (TII->reverseBranchCondition(NewCond))
            continue;
          // This is the QBB case described above
          if (!FBB) {
            auto Next = ++PBB->getIterator();
            if (Next != MF.end())
              FBB = &*Next;
          }
        }

        // Remove the unconditional branch at the end, if any.
        if (TBB && (Cond.empty() || FBB)) {
          DebugLoc dl = PBB->findBranchDebugLoc();
          TII->removeBranch(*PBB);
          if (!Cond.empty())
            // reinsert conditional branch only, for now
            TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
                              NewCond, dl);
        }

        MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
      }
    }

    // If this is a large problem, avoid visiting the same basic blocks multiple
    // times.
    if (MergePotentials.size() == TailMergeThreshold)
      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
        TriedMerging.insert(MergePotentials[i].getBlock());

    if (MergePotentials.size() >= 2)
      MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);

    // Reinsert an unconditional branch if needed. The 1 below can occur as a
    // result of removing blocks in TryTailMergeBlocks.
    PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
    if (MergePotentials.size() == 1 &&
        MergePotentials.begin()->getBlock() != PredBB)
      FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
  }

  return MadeChange;
}

void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
  SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
  BlockFrequency AccumulatedMBBFreq;

  // Aggregate edge frequency of successor edge j:
  //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
  //  where bb is a basic block that is in SameTails.
  for (const auto &Src : SameTails) {
    const MachineBasicBlock *SrcMBB = Src.getBlock();
    BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
    AccumulatedMBBFreq += BlockFreq;

    // It is not necessary to recompute edge weights if TailBB has less than two
    // successors.
    if (TailMBB.succ_size() <= 1)
      continue;

    auto EdgeFreq = EdgeFreqLs.begin();

    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
         SuccI != SuccE; ++SuccI, ++EdgeFreq)
      *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
  }

  MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);

  if (TailMBB.succ_size() <= 1)
    return;

  auto SumEdgeFreq =
      std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
          .getFrequency();
  auto EdgeFreq = EdgeFreqLs.begin();

  if (SumEdgeFreq > 0) {
    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
         SuccI != SuccE; ++SuccI, ++EdgeFreq) {
      auto Prob = BranchProbability::getBranchProbability(
          EdgeFreq->getFrequency(), SumEdgeFreq);
      TailMBB.setSuccProbability(SuccI, Prob);
    }
  }
}

//===----------------------------------------------------------------------===//
//  Branch Optimization
//===----------------------------------------------------------------------===//

bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
  bool MadeChange = false;

  // Make sure blocks are numbered in order
  MF.RenumberBlocks();
  // Renumbering blocks alters EH scope membership, recalculate it.
  EHScopeMembership = getEHScopeMembership(MF);

  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ) {
    MachineBasicBlock *MBB = &*I++;
    MadeChange |= OptimizeBlock(MBB);

    // If it is dead, remove it.
    if (MBB->pred_empty()) {
      RemoveDeadBlock(MBB);
      MadeChange = true;
      ++NumDeadBlocks;
    }
  }

  return MadeChange;
}

// Blocks should be considered empty if they contain only debug info;
// else the debug info would affect codegen.
static bool IsEmptyBlock(MachineBasicBlock *MBB) {
  return MBB->getFirstNonDebugInstr() == MBB->end();
}

// Blocks with only debug info and branches should be considered the same
// as blocks with only branches.
static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
  MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
  assert(I != MBB->end() && "empty block!");
  return I->isBranch();
}

/// IsBetterFallthrough - Return true if it would be clearly better to
/// fall-through to MBB1 than to fall through into MBB2.  This has to return
/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
/// result in infinite loops.
static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
                                MachineBasicBlock *MBB2) {
  assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");

  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
  // optimize branches that branch to either a return block or an assert block
  // into a fallthrough to the return.
  MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
  MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
  if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
    return false;

  // If there is a clear successor ordering we make sure that one block
  // will fall through to the next
  if (MBB1->isSuccessor(MBB2)) return true;
  if (MBB2->isSuccessor(MBB1)) return false;

  return MBB2I->isCall() && !MBB1I->isCall();
}

/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
/// instructions on the block.
static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I != MBB.end() && I->isBranch())
    return I->getDebugLoc();
  return DebugLoc();
}

static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
                                       MachineBasicBlock &MBB,
                                       MachineBasicBlock &PredMBB) {
  auto InsertBefore = PredMBB.getFirstTerminator();
  for (MachineInstr &MI : MBB.instrs())
    if (MI.isDebugInstr()) {
      TII->duplicate(PredMBB, InsertBefore, MI);
      LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
                        << MI);
    }
}

static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
                                     MachineBasicBlock &MBB,
                                     MachineBasicBlock &SuccMBB) {
  auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
  for (MachineInstr &MI : MBB.instrs())
    if (MI.isDebugInstr()) {
      TII->duplicate(SuccMBB, InsertBefore, MI);
      LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
                        << MI);
    }
}

// Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
// a basic block is removed we would lose the debug information unless we have
// copied the information to a predecessor/successor.
//
// TODO: This function only handles some simple cases. An alternative would be
// to run a heavier analysis, such as the LiveDebugValues pass, before we do
// branch folding.
static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
                                           MachineBasicBlock &MBB) {
  assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
  // If this MBB is the only predecessor of a successor it is legal to copy
  // DBG_VALUE instructions to the beginning of the successor.
  for (MachineBasicBlock *SuccBB : MBB.successors())
    if (SuccBB->pred_size() == 1)
      copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
  // If this MBB is the only successor of a predecessor it is legal to copy the
  // DBG_VALUE instructions to the end of the predecessor (just before the
  // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
  for (MachineBasicBlock *PredBB : MBB.predecessors())
    if (PredBB->succ_size() == 1)
      copyDebugInfoToPredecessor(TII, MBB, *PredBB);
}

bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
  bool MadeChange = false;
  MachineFunction &MF = *MBB->getParent();
ReoptimizeBlock:

  MachineFunction::iterator FallThrough = MBB->getIterator();
  ++FallThrough;

  // Make sure MBB and FallThrough belong to the same EH scope.
  bool SameEHScope = true;
  if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
    auto MBBEHScope = EHScopeMembership.find(MBB);
    assert(MBBEHScope != EHScopeMembership.end());
    auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
    assert(FallThroughEHScope != EHScopeMembership.end());
    SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
  }

  // If this block is empty, make everyone use its fall-through, not the block
  // explicitly.  Landing pads should not do this since the landing-pad table
  // points to this block.  Blocks with their addresses taken shouldn't be
  // optimized away.
  if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
      SameEHScope) {
    salvageDebugInfoFromEmptyBlock(TII, *MBB);
    // Dead block?  Leave for cleanup later.
    if (MBB->pred_empty()) return MadeChange;

    if (FallThrough == MF.end()) {
      // TODO: Simplify preds to not branch here if possible!
    } else if (FallThrough->isEHPad()) {
      // Don't rewrite to a landing pad fallthough.  That could lead to the case
      // where a BB jumps to more than one landing pad.
      // TODO: Is it ever worth rewriting predecessors which don't already
      // jump to a landing pad, and so can safely jump to the fallthrough?
    } else if (MBB->isSuccessor(&*FallThrough)) {
      // Rewrite all predecessors of the old block to go to the fallthrough
      // instead.
      while (!MBB->pred_empty()) {
        MachineBasicBlock *Pred = *(MBB->pred_end()-1);
        Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
      }
      // If MBB was the target of a jump table, update jump tables to go to the
      // fallthrough instead.
      if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
        MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
      MadeChange = true;
    }
    return MadeChange;
  }

  // Check to see if we can simplify the terminator of the block before this
  // one.
  MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));

  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
  SmallVector<MachineOperand, 4> PriorCond;
  bool PriorUnAnalyzable =
      TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
  if (!PriorUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
                                              !PriorCond.empty());

    // If the previous branch is conditional and both conditions go to the same
    // destination, remove the branch, replacing it with an unconditional one or
    // a fall-through.
    if (PriorTBB && PriorTBB == PriorFBB) {
      DebugLoc dl = getBranchDebugLoc(PrevBB);
      TII->removeBranch(PrevBB);
      PriorCond.clear();
      if (PriorTBB != MBB)
        TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }

    // If the previous block unconditionally falls through to this block and
    // this block has no other predecessors, move the contents of this block
    // into the prior block. This doesn't usually happen when SimplifyCFG
    // has been used, but it can happen if tail merging splits a fall-through
    // predecessor of a block.
    // This has to check PrevBB->succ_size() because EH edges are ignored by
    // AnalyzeBranch.
    if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
        PrevBB.succ_size() == 1 &&
        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
      LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
                        << "From MBB: " << *MBB);
      // Remove redundant DBG_VALUEs first.
      if (PrevBB.begin() != PrevBB.end()) {
        MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
        --PrevBBIter;
        MachineBasicBlock::iterator MBBIter = MBB->begin();
        // Check if DBG_VALUE at the end of PrevBB is identical to the
        // DBG_VALUE at the beginning of MBB.
        while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
               && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
          if (!MBBIter->isIdenticalTo(*PrevBBIter))
            break;
          MachineInstr &DuplicateDbg = *MBBIter;
          ++MBBIter; -- PrevBBIter;
          DuplicateDbg.eraseFromParent();
        }
      }
      PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
      PrevBB.removeSuccessor(PrevBB.succ_begin());
      assert(PrevBB.succ_empty());
      PrevBB.transferSuccessors(MBB);
      MadeChange = true;
      return MadeChange;
    }

    // If the previous branch *only* branches to *this* block (conditional or
    // not) remove the branch.
    if (PriorTBB == MBB && !PriorFBB) {
      TII->removeBranch(PrevBB);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }

    // If the prior block branches somewhere else on the condition and here if
    // the condition is false, remove the uncond second branch.
    if (PriorFBB == MBB) {
      DebugLoc dl = getBranchDebugLoc(PrevBB);
      TII->removeBranch(PrevBB);
      TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }

    // If the prior block branches here on true and somewhere else on false, and
    // if the branch condition is reversible, reverse the branch to create a
    // fall-through.
    if (PriorTBB == MBB) {
      SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
      if (!TII->reverseBranchCondition(NewPriorCond)) {
        DebugLoc dl = getBranchDebugLoc(PrevBB);
        TII->removeBranch(PrevBB);
        TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
        MadeChange = true;
        ++NumBranchOpts;
        goto ReoptimizeBlock;
      }
    }

    // If this block has no successors (e.g. it is a return block or ends with
    // a call to a no-return function like abort or __cxa_throw) and if the pred
    // falls through into this block, and if it would otherwise fall through
    // into the block after this, move this block to the end of the function.
    //
    // We consider it more likely that execution will stay in the function (e.g.
    // due to loops) than it is to exit it.  This asserts in loops etc, moving
    // the assert condition out of the loop body.
    if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
        MachineFunction::iterator(PriorTBB) == FallThrough &&
        !MBB->canFallThrough()) {
      bool DoTransform = true;

      // We have to be careful that the succs of PredBB aren't both no-successor
      // blocks.  If neither have successors and if PredBB is the second from
      // last block in the function, we'd just keep swapping the two blocks for
      // last.  Only do the swap if one is clearly better to fall through than
      // the other.
      if (FallThrough == --MF.end() &&
          !IsBetterFallthrough(PriorTBB, MBB))
        DoTransform = false;

      if (DoTransform) {
        // Reverse the branch so we will fall through on the previous true cond.
        SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
        if (!TII->reverseBranchCondition(NewPriorCond)) {
          LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
                            << "To make fallthrough to: " << *PriorTBB << "\n");

          DebugLoc dl = getBranchDebugLoc(PrevBB);
          TII->removeBranch(PrevBB);
          TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);

          // Move this block to the end of the function.
          MBB->moveAfter(&MF.back());
          MadeChange = true;
          ++NumBranchOpts;
          return MadeChange;
        }
      }
    }
  }

  if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
      MF.getFunction().hasOptSize()) {
    // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
    // direction, thereby defeating careful block placement and regressing
    // performance. Therefore, only consider this for optsize functions.
    MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
    if (TII->isUnconditionalTailCall(TailCall)) {
      MachineBasicBlock *Pred = *MBB->pred_begin();
      MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
      SmallVector<MachineOperand, 4> PredCond;
      bool PredAnalyzable =
          !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);

      if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
          PredTBB != PredFBB) {
        // The predecessor has a conditional branch to this block which consists
        // of only a tail call. Try to fold the tail call into the conditional
        // branch.
        if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
          // TODO: It would be nice if analyzeBranch() could provide a pointer
          // to the branch instruction so replaceBranchWithTailCall() doesn't
          // have to search for it.
          TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
          ++NumTailCalls;
          Pred->removeSuccessor(MBB);
          MadeChange = true;
          return MadeChange;
        }
      }
      // If the predecessor is falling through to this block, we could reverse
      // the branch condition and fold the tail call into that. However, after
      // that we might have to re-arrange the CFG to fall through to the other
      // block and there is a high risk of regressing code size rather than
      // improving it.
    }
  }

  // Analyze the branch in the current block.
  MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
  SmallVector<MachineOperand, 4> CurCond;
  bool CurUnAnalyzable =
      TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
  if (!CurUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());

    // If this is a two-way branch, and the FBB branches to this block, reverse
    // the condition so the single-basic-block loop is faster.  Instead of:
    //    Loop: xxx; jcc Out; jmp Loop
    // we want:
    //    Loop: xxx; jncc Loop; jmp Out
    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
      SmallVector<MachineOperand, 4> NewCond(CurCond);
      if (!TII->reverseBranchCondition(NewCond)) {
        DebugLoc dl = getBranchDebugLoc(*MBB);
        TII->removeBranch(*MBB);
        TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
        MadeChange = true;
        ++NumBranchOpts;
        goto ReoptimizeBlock;
      }
    }

    // If this branch is the only thing in its block, see if we can forward
    // other blocks across it.
    if (CurTBB && CurCond.empty() && !CurFBB &&
        IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
      DebugLoc dl = getBranchDebugLoc(*MBB);
      // This block may contain just an unconditional branch.  Because there can
      // be 'non-branch terminators' in the block, try removing the branch and
      // then seeing if the block is empty.
      TII->removeBranch(*MBB);
      // If the only things remaining in the block are debug info, remove these
      // as well, so this will behave the same as an empty block in non-debug
      // mode.
      if (IsEmptyBlock(MBB)) {
        // Make the block empty, losing the debug info (we could probably
        // improve this in some cases.)
        MBB->erase(MBB->begin(), MBB->end());
      }
      // If this block is just an unconditional branch to CurTBB, we can
      // usually completely eliminate the block.  The only case we cannot
      // completely eliminate the block is when the block before this one
      // falls through into MBB and we can't understand the prior block's branch
      // condition.
      if (MBB->empty()) {
        bool PredHasNoFallThrough = !PrevBB.canFallThrough();
        if (PredHasNoFallThrough || !PriorUnAnalyzable ||
            !PrevBB.isSuccessor(MBB)) {
          // If the prior block falls through into us, turn it into an
          // explicit branch to us to make updates simpler.
          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
              PriorTBB != MBB && PriorFBB != MBB) {
            if (!PriorTBB) {
              assert(PriorCond.empty() && !PriorFBB &&
                     "Bad branch analysis");
              PriorTBB = MBB;
            } else {
              assert(!PriorFBB && "Machine CFG out of date!");
              PriorFBB = MBB;
            }
            DebugLoc pdl = getBranchDebugLoc(PrevBB);
            TII->removeBranch(PrevBB);
            TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
          }

          // Iterate through all the predecessors, revectoring each in-turn.
          size_t PI = 0;
          bool DidChange = false;
          bool HasBranchToSelf = false;
          while(PI != MBB->pred_size()) {
            MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
            if (PMBB == MBB) {
              // If this block has an uncond branch to itself, leave it.
              ++PI;
              HasBranchToSelf = true;
            } else {
              DidChange = true;
              PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
              // If this change resulted in PMBB ending in a conditional
              // branch where both conditions go to the same destination,
              // change this to an unconditional branch (and fix the CFG).
              MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
              SmallVector<MachineOperand, 4> NewCurCond;
              bool NewCurUnAnalyzable = TII->analyzeBranch(
                  *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
              if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
                DebugLoc pdl = getBranchDebugLoc(*PMBB);
                TII->removeBranch(*PMBB);
                NewCurCond.clear();
                TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
                MadeChange = true;
                ++NumBranchOpts;
                PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
              }
            }
          }

          // Change any jumptables to go to the new MBB.
          if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
            MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
          if (DidChange) {
            ++NumBranchOpts;
            MadeChange = true;
            if (!HasBranchToSelf) return MadeChange;
          }
        }
      }

      // Add the branch back if the block is more than just an uncond branch.
      TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
    }
  }

  // If the prior block doesn't fall through into this block, and if this
  // block doesn't fall through into some other block, see if we can find a
  // place to move this block where a fall-through will happen.
  if (!PrevBB.canFallThrough()) {
    // Now we know that there was no fall-through into this block, check to
    // see if it has a fall-through into its successor.
    bool CurFallsThru = MBB->canFallThrough();

    if (!MBB->isEHPad()) {
      // Check all the predecessors of this block.  If one of them has no fall
      // throughs, move this block right after it.
      for (MachineBasicBlock *PredBB : MBB->predecessors()) {
        // Analyze the branch at the end of the pred.
        MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
        SmallVector<MachineOperand, 4> PredCond;
        if (PredBB != MBB && !PredBB->canFallThrough() &&
            !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
            (!CurFallsThru || !CurTBB || !CurFBB) &&
            (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
          // If the current block doesn't fall through, just move it.
          // If the current block can fall through and does not end with a
          // conditional branch, we need to append an unconditional jump to
          // the (current) next block.  To avoid a possible compile-time
          // infinite loop, move blocks only backward in this case.
          // Also, if there are already 2 branches here, we cannot add a third;
          // this means we have the case
          // Bcc next
          // B elsewhere
          // next:
          if (CurFallsThru) {
            MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
            CurCond.clear();
            TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
          }
          MBB->moveAfter(PredBB);
          MadeChange = true;
          goto ReoptimizeBlock;
        }
      }
    }

    if (!CurFallsThru) {
      // Check all successors to see if we can move this block before it.
      for (MachineBasicBlock *SuccBB : MBB->successors()) {
        // Analyze the branch at the end of the block before the succ.
        MachineFunction::iterator SuccPrev = --SuccBB->getIterator();

        // If this block doesn't already fall-through to that successor, and if
        // the succ doesn't already have a block that can fall through into it,
        // and if the successor isn't an EH destination, we can arrange for the
        // fallthrough to happen.
        if (SuccBB != MBB && &*SuccPrev != MBB &&
            !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
            !SuccBB->isEHPad()) {
          MBB->moveBefore(SuccBB);
          MadeChange = true;
          goto ReoptimizeBlock;
        }
      }

      // Okay, there is no really great place to put this block.  If, however,
      // the block before this one would be a fall-through if this block were
      // removed, move this block to the end of the function. There is no real
      // advantage in "falling through" to an EH block, so we don't want to
      // perform this transformation for that case.
      //
      // Also, Windows EH introduced the possibility of an arbitrary number of
      // successors to a given block.  The analyzeBranch call does not consider
      // exception handling and so we can get in a state where a block
      // containing a call is followed by multiple EH blocks that would be
      // rotated infinitely at the end of the function if the transformation
      // below were performed for EH "FallThrough" blocks.  Therefore, even if
      // that appears not to be happening anymore, we should assume that it is
      // possible and not remove the "!FallThrough()->isEHPad" condition below.
      MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
      SmallVector<MachineOperand, 4> PrevCond;
      if (FallThrough != MF.end() &&
          !FallThrough->isEHPad() &&
          !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
          PrevBB.isSuccessor(&*FallThrough)) {
        MBB->moveAfter(&MF.back());
        MadeChange = true;
        return MadeChange;
      }
    }
  }

  return MadeChange;
}

//===----------------------------------------------------------------------===//
//  Hoist Common Code
//===----------------------------------------------------------------------===//

bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
  bool MadeChange = false;
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
    MachineBasicBlock *MBB = &*I++;
    MadeChange |= HoistCommonCodeInSuccs(MBB);
  }

  return MadeChange;
}

/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
/// its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
                                         MachineBasicBlock *TrueBB) {
  for (MachineBasicBlock *SuccBB : BB->successors())
    if (SuccBB != TrueBB)
      return SuccBB;
  return nullptr;
}

template <class Container>
static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
                                Container &Set) {
  if (Register::isPhysicalRegister(Reg)) {
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
      Set.insert(*AI);
  } else {
    Set.insert(Reg);
  }
}

/// findHoistingInsertPosAndDeps - Find the location to move common instructions
/// in successors to. The location is usually just before the terminator,
/// however if the terminator is a conditional branch and its previous
/// instruction is the flag setting instruction, the previous instruction is
/// the preferred location. This function also gathers uses and defs of the
/// instructions from the insertion point to the end of the block. The data is
/// used by HoistCommonCodeInSuccs to ensure safety.
static
MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
                                                  const TargetInstrInfo *TII,
                                                  const TargetRegisterInfo *TRI,
                                                  SmallSet<unsigned,4> &Uses,
                                                  SmallSet<unsigned,4> &Defs) {
  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
  if (!TII->isUnpredicatedTerminator(*Loc))
    return MBB->end();

  for (const MachineOperand &MO : Loc->operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isUse()) {
      addRegAndItsAliases(Reg, TRI, Uses);
    } else {
      if (!MO.isDead())
        // Don't try to hoist code in the rare case the terminator defines a
        // register that is later used.
        return MBB->end();

      // If the terminator defines a register, make sure we don't hoist
      // the instruction whose def might be clobbered by the terminator.
      addRegAndItsAliases(Reg, TRI, Defs);
    }
  }

  if (Uses.empty())
    return Loc;
  // If the terminator is the only instruction in the block and Uses is not
  // empty (or we would have returned above), we can still safely hoist
  // instructions just before the terminator as long as the Defs/Uses are not
  // violated (which is checked in HoistCommonCodeInSuccs).
  if (Loc == MBB->begin())
    return Loc;

  // The terminator is probably a conditional branch, try not to separate the
  // branch from condition setting instruction.
  MachineBasicBlock::iterator PI =
    skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());

  bool IsDef = false;
  for (const MachineOperand &MO : PI->operands()) {
    // If PI has a regmask operand, it is probably a call. Separate away.
    if (MO.isRegMask())
      return Loc;
    if (!MO.isReg() || MO.isUse())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Uses.count(Reg)) {
      IsDef = true;
      break;
    }
  }
  if (!IsDef)
    // The condition setting instruction is not just before the conditional
    // branch.
    return Loc;

  // Be conservative, don't insert instruction above something that may have
  // side-effects. And since it's potentially bad to separate flag setting
  // instruction from the conditional branch, just abort the optimization
  // completely.
  // Also avoid moving code above predicated instruction since it's hard to
  // reason about register liveness with predicated instruction.
  bool DontMoveAcrossStore = true;
  if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
    return MBB->end();

  // Find out what registers are live. Note this routine is ignoring other live
  // registers which are only used by instructions in successor blocks.
  for (const MachineOperand &MO : PI->operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isUse()) {
      addRegAndItsAliases(Reg, TRI, Uses);
    } else {
      if (Uses.erase(Reg)) {
        if (Register::isPhysicalRegister(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
            Uses.erase(*SubRegs); // Use sub-registers to be conservative
        }
      }
      addRegAndItsAliases(Reg, TRI, Defs);
    }
  }

  return PI;
}

bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
    return false;

  if (!FBB) FBB = findFalseBlock(MBB, TBB);
  if (!FBB)
    // Malformed bcc? True and false blocks are the same?
    return false;

  // Restrict the optimization to cases where MBB is the only predecessor,
  // it is an obvious win.
  if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
    return false;

  // Find a suitable position to hoist the common instructions to. Also figure
  // out which registers are used or defined by instructions from the insertion
  // point to the end of the block.
  SmallSet<unsigned, 4> Uses, Defs;
  MachineBasicBlock::iterator Loc =
    findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
  if (Loc == MBB->end())
    return false;

  bool HasDups = false;
  SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
  MachineBasicBlock::iterator TIB = TBB->begin();
  MachineBasicBlock::iterator FIB = FBB->begin();
  MachineBasicBlock::iterator TIE = TBB->end();
  MachineBasicBlock::iterator FIE = FBB->end();
  while (TIB != TIE && FIB != FIE) {
    // Skip dbg_value instructions. These do not count.
    TIB = skipDebugInstructionsForward(TIB, TIE);
    FIB = skipDebugInstructionsForward(FIB, FIE);
    if (TIB == TIE || FIB == FIE)
      break;

    if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
      break;

    if (TII->isPredicated(*TIB))
      // Hard to reason about register liveness with predicated instruction.
      break;

    bool IsSafe = true;
    for (MachineOperand &MO : TIB->operands()) {
      // Don't attempt to hoist instructions with register masks.
      if (MO.isRegMask()) {
        IsSafe = false;
        break;
      }
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (!Reg)
        continue;
      if (MO.isDef()) {
        if (Uses.count(Reg)) {
          // Avoid clobbering a register that's used by the instruction at
          // the point of insertion.
          IsSafe = false;
          break;
        }

        if (Defs.count(Reg) && !MO.isDead()) {
          // Don't hoist the instruction if the def would be clobber by the
          // instruction at the point insertion. FIXME: This is overly
          // conservative. It should be possible to hoist the instructions
          // in BB2 in the following example:
          // BB1:
          // r1, eflag = op1 r2, r3
          // brcc eflag
          //
          // BB2:
          // r1 = op2, ...
          //    = op3, killed r1
          IsSafe = false;
          break;
        }
      } else if (!ActiveDefsSet.count(Reg)) {
        if (Defs.count(Reg)) {
          // Use is defined by the instruction at the point of insertion.
          IsSafe = false;
          break;
        }

        if (MO.isKill() && Uses.count(Reg))
          // Kills a register that's read by the instruction at the point of
          // insertion. Remove the kill marker.
          MO.setIsKill(false);
      }
    }
    if (!IsSafe)
      break;

    bool DontMoveAcrossStore = true;
    if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
      break;

    // Remove kills from ActiveDefsSet, these registers had short live ranges.
    for (const MachineOperand &MO : TIB->operands()) {
      if (!MO.isReg() || !MO.isUse() || !MO.isKill())
        continue;
      Register Reg = MO.getReg();
      if (!Reg)
        continue;
      if (!AllDefsSet.count(Reg)) {
        continue;
      }
      if (Register::isPhysicalRegister(Reg)) {
        for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
          ActiveDefsSet.erase(*AI);
      } else {
        ActiveDefsSet.erase(Reg);
      }
    }

    // Track local defs so we can update liveins.
    for (const MachineOperand &MO : TIB->operands()) {
      if (!MO.isReg() || !MO.isDef() || MO.isDead())
        continue;
      Register Reg = MO.getReg();
      if (!Reg || Register::isVirtualRegister(Reg))
        continue;
      addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
      addRegAndItsAliases(Reg, TRI, AllDefsSet);
    }

    HasDups = true;
    ++TIB;
    ++FIB;
  }

  if (!HasDups)
    return false;

  MBB->splice(Loc, TBB, TBB->begin(), TIB);
  FBB->erase(FBB->begin(), FIB);

  if (UpdateLiveIns) {
    recomputeLiveIns(*TBB);
    recomputeLiveIns(*FBB);
  }

  ++NumHoist;
  return true;
}