aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/LiveDebugVariables.cpp
blob: 54058a547928a2c1033afe379df4c674fb5265ed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//

#include "LiveDebugVariables.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "livedebugvars"

static cl::opt<bool>
EnableLDV("live-debug-variables", cl::init(true),
          cl::desc("Enable the live debug variables pass"), cl::Hidden);

STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");

char LiveDebugVariables::ID = 0;

INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)

void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}

enum : unsigned { UndefLocNo = ~0U };

namespace {
/// Describes a debug variable value by location number and expression along
/// with some flags about the original usage of the location.
class DbgVariableValue {
public:
  DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList,
                   const DIExpression &Expr)
      : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) {
    assert(!(WasIndirect && WasList) &&
           "DBG_VALUE_LISTs should not be indirect.");
    SmallVector<unsigned> LocNoVec;
    for (unsigned LocNo : NewLocs) {
      auto It = find(LocNoVec, LocNo);
      if (It == LocNoVec.end())
        LocNoVec.push_back(LocNo);
      else {
        // Loc duplicates an element in LocNos; replace references to Op
        // with references to the duplicating element.
        unsigned OpIdx = LocNoVec.size();
        unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It);
        Expression =
            DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx);
      }
    }
    // FIXME: Debug values referencing 64+ unique machine locations are rare and
    // currently unsupported for performance reasons. If we can verify that
    // performance is acceptable for such debug values, we can increase the
    // bit-width of LocNoCount to 14 to enable up to 16384 unique machine
    // locations. We will also need to verify that this does not cause issues
    // with LiveDebugVariables' use of IntervalMap.
    if (LocNoVec.size() < 64) {
      LocNoCount = LocNoVec.size();
      if (LocNoCount > 0) {
        LocNos = std::make_unique<unsigned[]>(LocNoCount);
        std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin());
      }
    } else {
      LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine "
                           "locations, dropping...\n");
      LocNoCount = 1;
      // Turn this into an undef debug value list; right now, the simplest form
      // of this is an expression with one arg, and an undef debug operand.
      Expression =
          DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0,
                                                dwarf::DW_OP_stack_value});
      if (auto FragmentInfoOpt = Expr.getFragmentInfo())
        Expression = *DIExpression::createFragmentExpression(
            Expression, FragmentInfoOpt->OffsetInBits,
            FragmentInfoOpt->SizeInBits);
      LocNos = std::make_unique<unsigned[]>(LocNoCount);
      LocNos[0] = UndefLocNo;
    }
  }

  DbgVariableValue() : LocNoCount(0), WasIndirect(0), WasList(0) {}
  DbgVariableValue(const DbgVariableValue &Other)
      : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()),
        WasList(Other.getWasList()), Expression(Other.getExpression()) {
    if (Other.getLocNoCount()) {
      LocNos.reset(new unsigned[Other.getLocNoCount()]);
      std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
    }
  }

  DbgVariableValue &operator=(const DbgVariableValue &Other) {
    if (this == &Other)
      return *this;
    if (Other.getLocNoCount()) {
      LocNos.reset(new unsigned[Other.getLocNoCount()]);
      std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
    } else {
      LocNos.release();
    }
    LocNoCount = Other.getLocNoCount();
    WasIndirect = Other.getWasIndirect();
    WasList = Other.getWasList();
    Expression = Other.getExpression();
    return *this;
  }

  const DIExpression *getExpression() const { return Expression; }
  uint8_t getLocNoCount() const { return LocNoCount; }
  bool containsLocNo(unsigned LocNo) const {
    return is_contained(loc_nos(), LocNo);
  }
  bool getWasIndirect() const { return WasIndirect; }
  bool getWasList() const { return WasList; }
  bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); }

  DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const {
    SmallVector<unsigned, 4> NewLocNos;
    for (unsigned LocNo : loc_nos())
      NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1
                                                               : LocNo);
    return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
  }

  DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const {
    SmallVector<unsigned> NewLocNos;
    for (unsigned LocNo : loc_nos())
      // Undef values don't exist in locations (and thus not in LocNoMap
      // either) so skip over them. See getLocationNo().
      NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]);
    return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
  }

  DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const {
    SmallVector<unsigned> NewLocNos;
    NewLocNos.assign(loc_nos_begin(), loc_nos_end());
    auto OldLocIt = find(NewLocNos, OldLocNo);
    assert(OldLocIt != NewLocNos.end() && "Old location must be present.");
    *OldLocIt = NewLocNo;
    return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
  }

  bool hasLocNoGreaterThan(unsigned LocNo) const {
    return any_of(loc_nos(),
                  [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; });
  }

  void printLocNos(llvm::raw_ostream &OS) const {
    for (const unsigned &Loc : loc_nos())
      OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc;
  }

  friend inline bool operator==(const DbgVariableValue &LHS,
                                const DbgVariableValue &RHS) {
    if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList,
                 LHS.Expression) !=
        std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression))
      return false;
    return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(),
                      RHS.loc_nos_begin());
  }

  friend inline bool operator!=(const DbgVariableValue &LHS,
                                const DbgVariableValue &RHS) {
    return !(LHS == RHS);
  }

  unsigned *loc_nos_begin() { return LocNos.get(); }
  const unsigned *loc_nos_begin() const { return LocNos.get(); }
  unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; }
  const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; }
  ArrayRef<unsigned> loc_nos() const {
    return ArrayRef<unsigned>(LocNos.get(), LocNoCount);
  }

private:
  // IntervalMap requires the value object to be very small, to the extent
  // that we do not have enough room for an std::vector. Using a C-style array
  // (with a unique_ptr wrapper for convenience) allows us to optimize for this
  // specific case by packing the array size into only 6 bits (it is highly
  // unlikely that any debug value will need 64+ locations).
  std::unique_ptr<unsigned[]> LocNos;
  uint8_t LocNoCount : 6;
  bool WasIndirect : 1;
  bool WasList : 1;
  const DIExpression *Expression = nullptr;
};
} // namespace

/// Map of where a user value is live to that value.
using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;

/// Map of stack slot offsets for spilled locations.
/// Non-spilled locations are not added to the map.
using SpillOffsetMap = DenseMap<unsigned, unsigned>;

/// Cache to save the location where it can be used as the starting
/// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug.
/// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from
/// repeatedly searching the same set of PHIs/Labels/Debug instructions
/// if it is called many times for the same block.
using BlockSkipInstsMap =
    DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>;

namespace {

class LDVImpl;

/// A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they are held by the same virtual register. The
/// equivalence class is the transitive closure of that relation.
class UserValue {
  const DILocalVariable *Variable; ///< The debug info variable we are part of.
  /// The part of the variable we describe.
  const Optional<DIExpression::FragmentInfo> Fragment;
  DebugLoc dl;            ///< The debug location for the variable. This is
                          ///< used by dwarf writer to find lexical scope.
  UserValue *leader;      ///< Equivalence class leader.
  UserValue *next = nullptr; ///< Next value in equivalence class, or null.

  /// Numbered locations referenced by locmap.
  SmallVector<MachineOperand, 4> locations;

  /// Map of slot indices where this value is live.
  LocMap locInts;

  /// Set of interval start indexes that have been trimmed to the
  /// lexical scope.
  SmallSet<SlotIndex, 2> trimmedDefs;

  /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
  void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                        SlotIndex StopIdx, DbgVariableValue DbgValue,
                        ArrayRef<bool> LocSpills,
                        ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI,
                        BlockSkipInstsMap &BBSkipInstsMap);

  /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
  /// is live. Returns true if any changes were made.
  bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
                     LiveIntervals &LIS);

public:
  /// Create a new UserValue.
  UserValue(const DILocalVariable *var,
            Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
            LocMap::Allocator &alloc)
      : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
        locInts(alloc) {}

  /// Get the leader of this value's equivalence class.
  UserValue *getLeader() {
    UserValue *l = leader;
    while (l != l->leader)
      l = l->leader;
    return leader = l;
  }

  /// Return the next UserValue in the equivalence class.
  UserValue *getNext() const { return next; }

  /// Merge equivalence classes.
  static UserValue *merge(UserValue *L1, UserValue *L2) {
    L2 = L2->getLeader();
    if (!L1)
      return L2;
    L1 = L1->getLeader();
    if (L1 == L2)
      return L1;
    // Splice L2 before L1's members.
    UserValue *End = L2;
    while (End->next) {
      End->leader = L1;
      End = End->next;
    }
    End->leader = L1;
    End->next = L1->next;
    L1->next = L2;
    return L1;
  }

  /// Return the location number that matches Loc.
  ///
  /// For undef values we always return location number UndefLocNo without
  /// inserting anything in locations. Since locations is a vector and the
  /// location number is the position in the vector and UndefLocNo is ~0,
  /// we would need a very big vector to put the value at the right position.
  unsigned getLocationNo(const MachineOperand &LocMO) {
    if (LocMO.isReg()) {
      if (LocMO.getReg() == 0)
        return UndefLocNo;
      // For register locations we dont care about use/def and other flags.
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (locations[i].isReg() &&
            locations[i].getReg() == LocMO.getReg() &&
            locations[i].getSubReg() == LocMO.getSubReg())
          return i;
    } else
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (LocMO.isIdenticalTo(locations[i]))
          return i;
    locations.push_back(LocMO);
    // We are storing a MachineOperand outside a MachineInstr.
    locations.back().clearParent();
    // Don't store def operands.
    if (locations.back().isReg()) {
      if (locations.back().isDef())
        locations.back().setIsDead(false);
      locations.back().setIsUse();
    }
    return locations.size() - 1;
  }

  /// Remove (recycle) a location number. If \p LocNo still is used by the
  /// locInts nothing is done.
  void removeLocationIfUnused(unsigned LocNo) {
    // Bail out if LocNo still is used.
    for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
      const DbgVariableValue &DbgValue = I.value();
      if (DbgValue.containsLocNo(LocNo))
        return;
    }
    // Remove the entry in the locations vector, and adjust all references to
    // location numbers above the removed entry.
    locations.erase(locations.begin() + LocNo);
    for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
      const DbgVariableValue &DbgValue = I.value();
      if (DbgValue.hasLocNoGreaterThan(LocNo))
        I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo));
    }
  }

  /// Ensure that all virtual register locations are mapped.
  void mapVirtRegs(LDVImpl *LDV);

  /// Add a definition point to this user value.
  void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect,
              bool IsList, const DIExpression &Expr) {
    SmallVector<unsigned> Locs;
    for (MachineOperand Op : LocMOs)
      Locs.push_back(getLocationNo(Op));
    DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr);
    // Add a singular (Idx,Idx) -> value mapping.
    LocMap::iterator I = locInts.find(Idx);
    if (!I.valid() || I.start() != Idx)
      I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue));
    else
      // A later DBG_VALUE at the same SlotIndex overrides the old location.
      I.setValue(std::move(DbgValue));
  }

  /// Extend the current definition as far as possible down.
  ///
  /// Stop when meeting an existing def or when leaving the live
  /// range of VNI. End points where VNI is no longer live are added to Kills.
  ///
  /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
  /// data-flow analysis to propagate them beyond basic block boundaries.
  ///
  /// \param Idx Starting point for the definition.
  /// \param DbgValue value to propagate.
  /// \param LiveIntervalInfo For each location number key in this map,
  /// restricts liveness to where the LiveRange has the value equal to the\
  /// VNInfo.
  /// \param [out] Kills Append end points of VNI's live range to Kills.
  /// \param LIS Live intervals analysis.
  void extendDef(SlotIndex Idx, DbgVariableValue DbgValue,
                 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
                     &LiveIntervalInfo,
                 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
                 LiveIntervals &LIS);

  /// The value in LI may be copies to other registers. Determine if
  /// any of the copies are available at the kill points, and add defs if
  /// possible.
  ///
  /// \param DbgValue Location number of LI->reg, and DIExpression.
  /// \param LocIntervals Scan for copies of the value for each location in the
  /// corresponding LiveInterval->reg.
  /// \param KilledAt The point where the range of DbgValue could be extended.
  /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
  void addDefsFromCopies(
      DbgVariableValue DbgValue,
      SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
      SlotIndex KilledAt,
      SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
      MachineRegisterInfo &MRI, LiveIntervals &LIS);

  /// Compute the live intervals of all locations after collecting all their
  /// def points.
  void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                        LiveIntervals &LIS, LexicalScopes &LS);

  /// Replace OldReg ranges with NewRegs ranges where NewRegs is
  /// live. Returns true if any changes were made.
  bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
                     LiveIntervals &LIS);

  /// Rewrite virtual register locations according to the provided virtual
  /// register map. Record the stack slot offsets for the locations that
  /// were spilled.
  void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI,
                        SpillOffsetMap &SpillOffsets);

  /// Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                       const TargetInstrInfo &TII,
                       const TargetRegisterInfo &TRI,
                       const SpillOffsetMap &SpillOffsets,
                       BlockSkipInstsMap &BBSkipInstsMap);

  /// Return DebugLoc of this UserValue.
  const DebugLoc &getDebugLoc() { return dl; }

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// A user label is a part of a debug info user label.
class UserLabel {
  const DILabel *Label; ///< The debug info label we are part of.
  DebugLoc dl;          ///< The debug location for the label. This is
                        ///< used by dwarf writer to find lexical scope.
  SlotIndex loc;        ///< Slot used by the debug label.

  /// Insert a DBG_LABEL into MBB at Idx.
  void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
                        LiveIntervals &LIS, const TargetInstrInfo &TII,
                        BlockSkipInstsMap &BBSkipInstsMap);

public:
  /// Create a new UserLabel.
  UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
      : Label(label), dl(std::move(L)), loc(Idx) {}

  /// Does this UserLabel match the parameters?
  bool matches(const DILabel *L, const DILocation *IA,
             const SlotIndex Index) const {
    return Label == L && dl->getInlinedAt() == IA && loc == Index;
  }

  /// Recreate DBG_LABEL instruction from data structures.
  void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
                      BlockSkipInstsMap &BBSkipInstsMap);

  /// Return DebugLoc of this UserLabel.
  const DebugLoc &getDebugLoc() { return dl; }

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// Implementation of the LiveDebugVariables pass.
class LDVImpl {
  LiveDebugVariables &pass;
  LocMap::Allocator allocator;
  MachineFunction *MF = nullptr;
  LiveIntervals *LIS;
  const TargetRegisterInfo *TRI;

  /// Position and VReg of a PHI instruction during register allocation.
  struct PHIValPos {
    SlotIndex SI;    /// Slot where this PHI occurs.
    Register Reg;    /// VReg this PHI occurs in.
    unsigned SubReg; /// Qualifiying subregister for Reg.
  };

  /// Map from debug instruction number to PHI position during allocation.
  std::map<unsigned, PHIValPos> PHIValToPos;
  /// Index of, for each VReg, which debug instruction numbers and corresponding
  /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs,
  /// at different positions.
  DenseMap<Register, std::vector<unsigned>> RegToPHIIdx;

  /// Record for any debug instructions unlinked from their blocks during
  /// regalloc. Stores the instr and it's location, so that they can be
  /// re-inserted after regalloc is over.
  struct InstrPos {
    MachineInstr *MI;       ///< Debug instruction, unlinked from it's block.
    SlotIndex Idx;          ///< Slot position where MI should be re-inserted.
    MachineBasicBlock *MBB; ///< Block that MI was in.
  };

  /// Collection of stored debug instructions, preserved until after regalloc.
  SmallVector<InstrPos, 32> StashedDebugInstrs;

  /// Whether emitDebugValues is called.
  bool EmitDone = false;

  /// Whether the machine function is modified during the pass.
  bool ModifiedMF = false;

  /// All allocated UserValue instances.
  SmallVector<std::unique_ptr<UserValue>, 8> userValues;

  /// All allocated UserLabel instances.
  SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;

  /// Map virtual register to eq class leader.
  using VRMap = DenseMap<unsigned, UserValue *>;
  VRMap virtRegToEqClass;

  /// Map to find existing UserValue instances.
  using UVMap = DenseMap<DebugVariable, UserValue *>;
  UVMap userVarMap;

  /// Find or create a UserValue.
  UserValue *getUserValue(const DILocalVariable *Var,
                          Optional<DIExpression::FragmentInfo> Fragment,
                          const DebugLoc &DL);

  /// Find the EC leader for VirtReg or null.
  UserValue *lookupVirtReg(Register VirtReg);

  /// Add DBG_VALUE instruction to our maps.
  ///
  /// \param MI DBG_VALUE instruction
  /// \param Idx Last valid SLotIndex before instruction.
  ///
  /// \returns True if the DBG_VALUE instruction should be deleted.
  bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);

  /// Track variable location debug instructions while using the instruction
  /// referencing implementation. Such debug instructions do not need to be
  /// updated during regalloc because they identify instructions rather than
  /// register locations. However, they needs to be removed from the
  /// MachineFunction during regalloc, then re-inserted later, to avoid
  /// disrupting the allocator.
  ///
  /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction
  /// \param Idx Last valid SlotIndex before instruction
  ///
  /// \returns Iterator to continue processing from after unlinking.
  MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx);

  /// Add DBG_LABEL instruction to UserLabel.
  ///
  /// \param MI DBG_LABEL instruction
  /// \param Idx Last valid SlotIndex before instruction.
  ///
  /// \returns True if the DBG_LABEL instruction should be deleted.
  bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);

  /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
  /// for each instruction.
  ///
  /// \param mf MachineFunction to be scanned.
  /// \param InstrRef Whether to operate in instruction referencing mode. If
  ///        true, most of LiveDebugVariables doesn't run.
  ///
  /// \returns True if any debug values were found.
  bool collectDebugValues(MachineFunction &mf, bool InstrRef);

  /// Compute the live intervals of all user values after collecting all
  /// their def points.
  void computeIntervals();

public:
  LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}

  bool runOnMachineFunction(MachineFunction &mf, bool InstrRef);

  /// Release all memory.
  void clear() {
    MF = nullptr;
    PHIValToPos.clear();
    RegToPHIIdx.clear();
    StashedDebugInstrs.clear();
    userValues.clear();
    userLabels.clear();
    virtRegToEqClass.clear();
    userVarMap.clear();
    // Make sure we call emitDebugValues if the machine function was modified.
    assert((!ModifiedMF || EmitDone) &&
           "Dbg values are not emitted in LDV");
    EmitDone = false;
    ModifiedMF = false;
  }

  /// Map virtual register to an equivalence class.
  void mapVirtReg(Register VirtReg, UserValue *EC);

  /// Replace any PHI referring to OldReg with its corresponding NewReg, if
  /// present.
  void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs);

  /// Replace all references to OldReg with NewRegs.
  void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);

  /// Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM);

  void print(raw_ostream&);
};

} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
                          const LLVMContext &Ctx) {
  if (!DL)
    return;

  auto *Scope = cast<DIScope>(DL.getScope());
  // Omit the directory, because it's likely to be long and uninteresting.
  CommentOS << Scope->getFilename();
  CommentOS << ':' << DL.getLine();
  if (DL.getCol() != 0)
    CommentOS << ':' << DL.getCol();

  DebugLoc InlinedAtDL = DL.getInlinedAt();
  if (!InlinedAtDL)
    return;

  CommentOS << " @[ ";
  printDebugLoc(InlinedAtDL, CommentOS, Ctx);
  CommentOS << " ]";
}

static void printExtendedName(raw_ostream &OS, const DINode *Node,
                              const DILocation *DL) {
  const LLVMContext &Ctx = Node->getContext();
  StringRef Res;
  unsigned Line = 0;
  if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
    Res = V->getName();
    Line = V->getLine();
  } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
    Res = L->getName();
    Line = L->getLine();
  }

  if (!Res.empty())
    OS << Res << "," << Line;
  auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
  if (InlinedAt) {
    if (DebugLoc InlinedAtDL = InlinedAt) {
      OS << " @[";
      printDebugLoc(InlinedAtDL, OS, Ctx);
      OS << "]";
    }
  }
}

void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  OS << "!\"";
  printExtendedName(OS, Variable, dl);

  OS << "\"\t";
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    OS << " [" << I.start() << ';' << I.stop() << "):";
    if (I.value().isUndef())
      OS << " undef";
    else {
      I.value().printLocNos(OS);
      if (I.value().getWasIndirect())
        OS << " ind";
      else if (I.value().getWasList())
        OS << " list";
    }
  }
  for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    OS << " Loc" << i << '=';
    locations[i].print(OS, TRI);
  }
  OS << '\n';
}

void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  OS << "!\"";
  printExtendedName(OS, Label, dl);

  OS << "\"\t";
  OS << loc;
  OS << '\n';
}

void LDVImpl::print(raw_ostream &OS) {
  OS << "********** DEBUG VARIABLES **********\n";
  for (auto &userValue : userValues)
    userValue->print(OS, TRI);
  OS << "********** DEBUG LABELS **********\n";
  for (auto &userLabel : userLabels)
    userLabel->print(OS, TRI);
}
#endif

void UserValue::mapVirtRegs(LDVImpl *LDV) {
  for (unsigned i = 0, e = locations.size(); i != e; ++i)
    if (locations[i].isReg() &&
        Register::isVirtualRegister(locations[i].getReg()))
      LDV->mapVirtReg(locations[i].getReg(), this);
}

UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
                                 Optional<DIExpression::FragmentInfo> Fragment,
                                 const DebugLoc &DL) {
  // FIXME: Handle partially overlapping fragments. See
  // https://reviews.llvm.org/D70121#1849741.
  DebugVariable ID(Var, Fragment, DL->getInlinedAt());
  UserValue *&UV = userVarMap[ID];
  if (!UV) {
    userValues.push_back(
        std::make_unique<UserValue>(Var, Fragment, DL, allocator));
    UV = userValues.back().get();
  }
  return UV;
}

void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
  assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
  UserValue *&Leader = virtRegToEqClass[VirtReg];
  Leader = UserValue::merge(Leader, EC);
}

UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
  if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
    return UV->getLeader();
  return nullptr;
}

bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
  // DBG_VALUE loc, offset, variable, expr
  // DBG_VALUE_LIST variable, expr, locs...
  if (!MI.isDebugValue()) {
    LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI);
    return false;
  }
  if (!MI.getDebugVariableOp().isMetadata()) {
    LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: "
                      << MI);
    return false;
  }
  if (MI.isNonListDebugValue() &&
      (MI.getNumOperands() != 4 ||
       !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) {
    LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI);
    return false;
  }

  // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
  // register that hasn't been defined yet. If we do not remove those here, then
  // the re-insertion of the DBG_VALUE instruction after register allocation
  // will be incorrect.
  // TODO: If earlier passes are corrected to generate sane debug information
  // (and if the machine verifier is improved to catch this), then these checks
  // could be removed or replaced by asserts.
  bool Discard = false;
  for (const MachineOperand &Op : MI.debug_operands()) {
    if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) {
      const Register Reg = Op.getReg();
      if (!LIS->hasInterval(Reg)) {
        // The DBG_VALUE is described by a virtual register that does not have a
        // live interval. Discard the DBG_VALUE.
        Discard = true;
        LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
                          << " " << MI);
      } else {
        // The DBG_VALUE is only valid if either Reg is live out from Idx, or
        // Reg is defined dead at Idx (where Idx is the slot index for the
        // instruction preceding the DBG_VALUE).
        const LiveInterval &LI = LIS->getInterval(Reg);
        LiveQueryResult LRQ = LI.Query(Idx);
        if (!LRQ.valueOutOrDead()) {
          // We have found a DBG_VALUE with the value in a virtual register that
          // is not live. Discard the DBG_VALUE.
          Discard = true;
          LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
                            << " " << MI);
        }
      }
    }
  }

  // Get or create the UserValue for (variable,offset) here.
  bool IsIndirect = MI.isDebugOffsetImm();
  if (IsIndirect)
    assert(MI.getDebugOffset().getImm() == 0 &&
           "DBG_VALUE with nonzero offset");
  bool IsList = MI.isDebugValueList();
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
  if (!Discard)
    UV->addDef(Idx,
               ArrayRef<MachineOperand>(MI.debug_operands().begin(),
                                        MI.debug_operands().end()),
               IsIndirect, IsList, *Expr);
  else {
    MachineOperand MO = MachineOperand::CreateReg(0U, false);
    MO.setIsDebug();
    // We should still pass a list the same size as MI.debug_operands() even if
    // all MOs are undef, so that DbgVariableValue can correctly adjust the
    // expression while removing the duplicated undefs.
    SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO);
    UV->addDef(Idx, UndefMOs, false, IsList, *Expr);
  }
  return true;
}

MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI,
                                                      SlotIndex Idx) {
  assert(MI.isDebugValue() || MI.isDebugRef() || MI.isDebugPHI());

  // In instruction referencing mode, there should be no DBG_VALUE instructions
  // that refer to virtual registers. They might still refer to constants.
  if (MI.isDebugValue())
    assert(!MI.getOperand(0).isReg() || !MI.getOperand(0).getReg().isVirtual());

  // Unlink the instruction, store it in the debug instructions collection.
  auto NextInst = std::next(MI.getIterator());
  auto *MBB = MI.getParent();
  MI.removeFromParent();
  StashedDebugInstrs.push_back({&MI, Idx, MBB});
  return NextInst;
}

bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
  // DBG_LABEL label
  if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
    LLVM_DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Get or create the UserLabel for label here.
  const DILabel *Label = MI.getDebugLabel();
  const DebugLoc &DL = MI.getDebugLoc();
  bool Found = false;
  for (auto const &L : userLabels) {
    if (L->matches(Label, DL->getInlinedAt(), Idx)) {
      Found = true;
      break;
    }
  }
  if (!Found)
    userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));

  return true;
}

bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) {
  bool Changed = false;
  for (MachineBasicBlock &MBB : mf) {
    for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end();
         MBBI != MBBE;) {
      // Use the first debug instruction in the sequence to get a SlotIndex
      // for following consecutive debug instructions.
      if (!MBBI->isDebugOrPseudoInstr()) {
        ++MBBI;
        continue;
      }
      // Debug instructions has no slot index. Use the previous
      // non-debug instruction's SlotIndex as its SlotIndex.
      SlotIndex Idx =
          MBBI == MBB.begin()
              ? LIS->getMBBStartIdx(&MBB)
              : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
      // Handle consecutive debug instructions with the same slot index.
      do {
        // In instruction referencing mode, pass each instr to handleDebugInstr
        // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and
        // need to go through the normal live interval splitting process.
        if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() ||
                         MBBI->isDebugRef())) {
          MBBI = handleDebugInstr(*MBBI, Idx);
          Changed = true;
        // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler
        // to track things through register allocation, and erase the instr.
        } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
                   (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
          MBBI = MBB.erase(MBBI);
          Changed = true;
        } else
          ++MBBI;
      } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr());
    }
  }
  return Changed;
}

void UserValue::extendDef(
    SlotIndex Idx, DbgVariableValue DbgValue,
    SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
        &LiveIntervalInfo,
    Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
    LiveIntervals &LIS) {
  SlotIndex Start = Idx;
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
  SlotIndex Stop = LIS.getMBBEndIdx(MBB);
  LocMap::iterator I = locInts.find(Start);

  // Limit to the intersection of the VNIs' live ranges.
  for (auto &LII : LiveIntervalInfo) {
    LiveRange *LR = LII.second.first;
    assert(LR && LII.second.second && "Missing range info for Idx.");
    LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
    assert(Segment && Segment->valno == LII.second.second &&
           "Invalid VNInfo for Idx given?");
    if (Segment->end < Stop) {
      Stop = Segment->end;
      Kills = {Stop, {LII.first}};
    } else if (Segment->end == Stop && Kills.hasValue()) {
      // If multiple locations end at the same place, track all of them in
      // Kills.
      Kills->second.push_back(LII.first);
    }
  }

  // There could already be a short def at Start.
  if (I.valid() && I.start() <= Start) {
    // Stop when meeting a different location or an already extended interval.
    Start = Start.getNextSlot();
    if (I.value() != DbgValue || I.stop() != Start) {
      // Clear `Kills`, as we have a new def available.
      Kills = None;
      return;
    }
    // This is a one-slot placeholder. Just skip it.
    ++I;
  }

  // Limited by the next def.
  if (I.valid() && I.start() < Stop) {
    Stop = I.start();
    // Clear `Kills`, as we have a new def available.
    Kills = None;
  }

  if (Start < Stop) {
    DbgVariableValue ExtDbgValue(DbgValue);
    I.insert(Start, Stop, std::move(ExtDbgValue));
  }
}

void UserValue::addDefsFromCopies(
    DbgVariableValue DbgValue,
    SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
    SlotIndex KilledAt,
    SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
    MachineRegisterInfo &MRI, LiveIntervals &LIS) {
  // Don't track copies from physregs, there are too many uses.
  if (any_of(LocIntervals, [](auto LocI) {
        return !Register::isVirtualRegister(LocI.second->reg());
      }))
    return;

  // Collect all the (vreg, valno) pairs that are copies of LI.
  SmallDenseMap<unsigned,
                SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>>
      CopyValues;
  for (auto &LocInterval : LocIntervals) {
    unsigned LocNo = LocInterval.first;
    LiveInterval *LI = LocInterval.second;
    for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) {
      MachineInstr *MI = MO.getParent();
      // Copies of the full value.
      if (MO.getSubReg() || !MI->isCopy())
        continue;
      Register DstReg = MI->getOperand(0).getReg();

      // Don't follow copies to physregs. These are usually setting up call
      // arguments, and the argument registers are always call clobbered. We are
      // better off in the source register which could be a callee-saved
      // register, or it could be spilled.
      if (!Register::isVirtualRegister(DstReg))
        continue;

      // Is the value extended to reach this copy? If not, another def may be
      // blocking it, or we are looking at a wrong value of LI.
      SlotIndex Idx = LIS.getInstructionIndex(*MI);
      LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
      if (!I.valid() || I.value() != DbgValue)
        continue;

      if (!LIS.hasInterval(DstReg))
        continue;
      LiveInterval *DstLI = &LIS.getInterval(DstReg);
      const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
      assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
      CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI));
    }
  }

  if (CopyValues.empty())
    return;

#if !defined(NDEBUG)
  for (auto &LocInterval : LocIntervals)
    LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size()
                      << " copies of " << *LocInterval.second << '\n');
#endif

  // Try to add defs of the copied values for the kill point. Check that there
  // isn't already a def at Idx.
  LocMap::iterator I = locInts.find(KilledAt);
  if (I.valid() && I.start() <= KilledAt)
    return;
  DbgVariableValue NewValue(DbgValue);
  for (auto &LocInterval : LocIntervals) {
    unsigned LocNo = LocInterval.first;
    bool FoundCopy = false;
    for (auto &LIAndVNI : CopyValues[LocNo]) {
      LiveInterval *DstLI = LIAndVNI.first;
      const VNInfo *DstVNI = LIAndVNI.second;
      if (DstLI->getVNInfoAt(KilledAt) != DstVNI)
        continue;
      LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #"
                        << DstVNI->id << " in " << *DstLI << '\n');
      MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
      assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
      unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0));
      NewValue = NewValue.changeLocNo(LocNo, NewLocNo);
      FoundCopy = true;
      break;
    }
    // If there are any killed locations we can't find a copy for, we can't
    // extend the variable value.
    if (!FoundCopy)
      return;
  }
  I.insert(KilledAt, KilledAt.getNextSlot(), NewValue);
  NewDefs.push_back(std::make_pair(KilledAt, NewValue));
}

void UserValue::computeIntervals(MachineRegisterInfo &MRI,
                                 const TargetRegisterInfo &TRI,
                                 LiveIntervals &LIS, LexicalScopes &LS) {
  SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;

  // Collect all defs to be extended (Skipping undefs).
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    if (!I.value().isUndef())
      Defs.push_back(std::make_pair(I.start(), I.value()));

  // Extend all defs, and possibly add new ones along the way.
  for (unsigned i = 0; i != Defs.size(); ++i) {
    SlotIndex Idx = Defs[i].first;
    DbgVariableValue DbgValue = Defs[i].second;
    SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs;
    SmallVector<const VNInfo *, 4> VNIs;
    bool ShouldExtendDef = false;
    for (unsigned LocNo : DbgValue.loc_nos()) {
      const MachineOperand &LocMO = locations[LocNo];
      if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) {
        ShouldExtendDef |= !LocMO.isReg();
        continue;
      }
      ShouldExtendDef = true;
      LiveInterval *LI = nullptr;
      const VNInfo *VNI = nullptr;
      if (LIS.hasInterval(LocMO.getReg())) {
        LI = &LIS.getInterval(LocMO.getReg());
        VNI = LI->getVNInfoAt(Idx);
      }
      if (LI && VNI)
        LIs[LocNo] = {LI, VNI};
    }
    if (ShouldExtendDef) {
      Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills;
      extendDef(Idx, DbgValue, LIs, Kills, LIS);

      if (Kills) {
        SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals;
        bool AnySubreg = false;
        for (unsigned LocNo : Kills->second) {
          const MachineOperand &LocMO = this->locations[LocNo];
          if (LocMO.getSubReg()) {
            AnySubreg = true;
            break;
          }
          LiveInterval *LI = &LIS.getInterval(LocMO.getReg());
          KilledLocIntervals.push_back({LocNo, LI});
        }

        // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
        // if the original location for example is %vreg0:sub_hi, and we find a
        // full register copy in addDefsFromCopies (at the moment it only
        // handles full register copies), then we must add the sub1 sub-register
        // index to the new location. However, that is only possible if the new
        // virtual register is of the same regclass (or if there is an
        // equivalent sub-register in that regclass). For now, simply skip
        // handling copies if a sub-register is involved.
        if (!AnySubreg)
          addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs,
                            MRI, LIS);
      }
    }

    // For physregs, we only mark the start slot idx. DwarfDebug will see it
    // as if the DBG_VALUE is valid up until the end of the basic block, or
    // the next def of the physical register. So we do not need to extend the
    // range. It might actually happen that the DBG_VALUE is the last use of
    // the physical register (e.g. if this is an unused input argument to a
    // function).
  }

  // The computed intervals may extend beyond the range of the debug
  // location's lexical scope. In this case, splitting of an interval
  // can result in an interval outside of the scope being created,
  // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
  // this, trim the intervals to the lexical scope in the case of inlined
  // variables, since heavy inlining may cause production of dramatically big
  // number of DBG_VALUEs to be generated.
  if (!dl.getInlinedAt())
    return;

  LexicalScope *Scope = LS.findLexicalScope(dl);
  if (!Scope)
    return;

  SlotIndex PrevEnd;
  LocMap::iterator I = locInts.begin();

  // Iterate over the lexical scope ranges. Each time round the loop
  // we check the intervals for overlap with the end of the previous
  // range and the start of the next. The first range is handled as
  // a special case where there is no PrevEnd.
  for (const InsnRange &Range : Scope->getRanges()) {
    SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
    SlotIndex REnd = LIS.getInstructionIndex(*Range.second);

    // Variable locations at the first instruction of a block should be
    // based on the block's SlotIndex, not the first instruction's index.
    if (Range.first == Range.first->getParent()->begin())
      RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);

    // At the start of each iteration I has been advanced so that
    // I.stop() >= PrevEnd. Check for overlap.
    if (PrevEnd && I.start() < PrevEnd) {
      SlotIndex IStop = I.stop();
      DbgVariableValue DbgValue = I.value();

      // Stop overlaps previous end - trim the end of the interval to
      // the scope range.
      I.setStopUnchecked(PrevEnd);
      ++I;

      // If the interval also overlaps the start of the "next" (i.e.
      // current) range create a new interval for the remainder (which
      // may be further trimmed).
      if (RStart < IStop)
        I.insert(RStart, IStop, DbgValue);
    }

    // Advance I so that I.stop() >= RStart, and check for overlap.
    I.advanceTo(RStart);
    if (!I.valid())
      return;

    if (I.start() < RStart) {
      // Interval start overlaps range - trim to the scope range.
      I.setStartUnchecked(RStart);
      // Remember that this interval was trimmed.
      trimmedDefs.insert(RStart);
    }

    // The end of a lexical scope range is the last instruction in the
    // range. To convert to an interval we need the index of the
    // instruction after it.
    REnd = REnd.getNextIndex();

    // Advance I to first interval outside current range.
    I.advanceTo(REnd);
    if (!I.valid())
      return;

    PrevEnd = REnd;
  }

  // Check for overlap with end of final range.
  if (PrevEnd && I.start() < PrevEnd)
    I.setStopUnchecked(PrevEnd);
}

void LDVImpl::computeIntervals() {
  LexicalScopes LS;
  LS.initialize(*MF);

  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
    userValues[i]->mapVirtRegs(this);
  }
}

bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) {
  clear();
  MF = &mf;
  LIS = &pass.getAnalysis<LiveIntervals>();
  TRI = mf.getSubtarget().getRegisterInfo();
  LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
                    << mf.getName() << " **********\n");

  bool Changed = collectDebugValues(mf, InstrRef);
  computeIntervals();
  LLVM_DEBUG(print(dbgs()));

  // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive
  // VRegs too, for when we're notified of a range split.
  SlotIndexes *Slots = LIS->getSlotIndexes();
  for (const auto &PHIIt : MF->DebugPHIPositions) {
    const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second;
    MachineBasicBlock *MBB = Position.MBB;
    Register Reg = Position.Reg;
    unsigned SubReg = Position.SubReg;
    SlotIndex SI = Slots->getMBBStartIdx(MBB);
    PHIValPos VP = {SI, Reg, SubReg};
    PHIValToPos.insert(std::make_pair(PHIIt.first, VP));
    RegToPHIIdx[Reg].push_back(PHIIt.first);
  }

  ModifiedMF = Changed;
  return Changed;
}

static void removeDebugInstrs(MachineFunction &mf) {
  for (MachineBasicBlock &MBB : mf) {
    for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
      if (!MBBI->isDebugInstr()) {
        ++MBBI;
        continue;
      }
      MBBI = MBB.erase(MBBI);
    }
  }
}

bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
  if (!EnableLDV)
    return false;
  if (!mf.getFunction().getSubprogram()) {
    removeDebugInstrs(mf);
    return false;
  }

  // Have we been asked to track variable locations using instruction
  // referencing?
  bool InstrRef = false;
  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (TPC) {
    auto &TM = TPC->getTM<TargetMachine>();
    InstrRef = TM.Options.ValueTrackingVariableLocations;
  }

  if (!pImpl)
    pImpl = new LDVImpl(this);
  return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef);
}

void LiveDebugVariables::releaseMemory() {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->clear();
}

LiveDebugVariables::~LiveDebugVariables() {
  if (pImpl)
    delete static_cast<LDVImpl*>(pImpl);
}

//===----------------------------------------------------------------------===//
//                           Live Range Splitting
//===----------------------------------------------------------------------===//

bool
UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
                         LiveIntervals& LIS) {
  LLVM_DEBUG({
    dbgs() << "Splitting Loc" << OldLocNo << '\t';
    print(dbgs(), nullptr);
  });
  bool DidChange = false;
  LocMap::iterator LocMapI;
  LocMapI.setMap(locInts);
  for (unsigned i = 0; i != NewRegs.size(); ++i) {
    LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
    if (LI->empty())
      continue;

    // Don't allocate the new LocNo until it is needed.
    unsigned NewLocNo = UndefLocNo;

    // Iterate over the overlaps between locInts and LI.
    LocMapI.find(LI->beginIndex());
    if (!LocMapI.valid())
      continue;
    LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
    LiveInterval::iterator LIE = LI->end();
    while (LocMapI.valid() && LII != LIE) {
      // At this point, we know that LocMapI.stop() > LII->start.
      LII = LI->advanceTo(LII, LocMapI.start());
      if (LII == LIE)
        break;

      // Now LII->end > LocMapI.start(). Do we have an overlap?
      if (LocMapI.value().containsLocNo(OldLocNo) &&
          LII->start < LocMapI.stop()) {
        // Overlapping correct location. Allocate NewLocNo now.
        if (NewLocNo == UndefLocNo) {
          MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false);
          MO.setSubReg(locations[OldLocNo].getSubReg());
          NewLocNo = getLocationNo(MO);
          DidChange = true;
        }

        SlotIndex LStart = LocMapI.start();
        SlotIndex LStop = LocMapI.stop();
        DbgVariableValue OldDbgValue = LocMapI.value();

        // Trim LocMapI down to the LII overlap.
        if (LStart < LII->start)
          LocMapI.setStartUnchecked(LII->start);
        if (LStop > LII->end)
          LocMapI.setStopUnchecked(LII->end);

        // Change the value in the overlap. This may trigger coalescing.
        LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo));

        // Re-insert any removed OldDbgValue ranges.
        if (LStart < LocMapI.start()) {
          LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
          ++LocMapI;
          assert(LocMapI.valid() && "Unexpected coalescing");
        }
        if (LStop > LocMapI.stop()) {
          ++LocMapI;
          LocMapI.insert(LII->end, LStop, OldDbgValue);
          --LocMapI;
        }
      }

      // Advance to the next overlap.
      if (LII->end < LocMapI.stop()) {
        if (++LII == LIE)
          break;
        LocMapI.advanceTo(LII->start);
      } else {
        ++LocMapI;
        if (!LocMapI.valid())
          break;
        LII = LI->advanceTo(LII, LocMapI.start());
      }
    }
  }

  // Finally, remove OldLocNo unless it is still used by some interval in the
  // locInts map. One case when OldLocNo still is in use is when the register
  // has been spilled. In such situations the spilled register is kept as a
  // location until rewriteLocations is called (VirtRegMap is mapping the old
  // register to the spill slot). So for a while we can have locations that map
  // to virtual registers that have been removed from both the MachineFunction
  // and from LiveIntervals.
  //
  // We may also just be using the location for a value with a different
  // expression.
  removeLocationIfUnused(OldLocNo);

  LLVM_DEBUG({
    dbgs() << "Split result: \t";
    print(dbgs(), nullptr);
  });
  return DidChange;
}

bool
UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
                         LiveIntervals &LIS) {
  bool DidChange = false;
  // Split locations referring to OldReg. Iterate backwards so splitLocation can
  // safely erase unused locations.
  for (unsigned i = locations.size(); i ; --i) {
    unsigned LocNo = i-1;
    const MachineOperand *Loc = &locations[LocNo];
    if (!Loc->isReg() || Loc->getReg() != OldReg)
      continue;
    DidChange |= splitLocation(LocNo, NewRegs, LIS);
  }
  return DidChange;
}

void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) {
  auto RegIt = RegToPHIIdx.find(OldReg);
  if (RegIt == RegToPHIIdx.end())
    return;

  std::vector<std::pair<Register, unsigned>> NewRegIdxes;
  // Iterate over all the debug instruction numbers affected by this split.
  for (unsigned InstrID : RegIt->second) {
    auto PHIIt = PHIValToPos.find(InstrID);
    assert(PHIIt != PHIValToPos.end());
    const SlotIndex &Slot = PHIIt->second.SI;
    assert(OldReg == PHIIt->second.Reg);

    // Find the new register that covers this position.
    for (auto NewReg : NewRegs) {
      const LiveInterval &LI = LIS->getInterval(NewReg);
      auto LII = LI.find(Slot);
      if (LII != LI.end() && LII->start <= Slot) {
        // This new register covers this PHI position, record this for indexing.
        NewRegIdxes.push_back(std::make_pair(NewReg, InstrID));
        // Record that this value lives in a different VReg now.
        PHIIt->second.Reg = NewReg;
        break;
      }
    }

    // If we do not find a new register covering this PHI, then register
    // allocation has dropped its location, for example because it's not live.
    // The old VReg will not be mapped to a physreg, and the instruction
    // number will have been optimized out.
  }

  // Re-create register index using the new register numbers.
  RegToPHIIdx.erase(RegIt);
  for (auto &RegAndInstr : NewRegIdxes)
    RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second);
}

void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
  // Consider whether this split range affects any PHI locations.
  splitPHIRegister(OldReg, NewRegs);

  // Check whether any intervals mapped by a DBG_VALUE were split and need
  // updating.
  bool DidChange = false;
  for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
    DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);

  if (!DidChange)
    return;

  // Map all of the new virtual registers.
  UserValue *UV = lookupVirtReg(OldReg);
  for (unsigned i = 0; i != NewRegs.size(); ++i)
    mapVirtReg(NewRegs[i], UV);
}

void LiveDebugVariables::
splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
}

void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
                                 const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI,
                                 SpillOffsetMap &SpillOffsets) {
  // Build a set of new locations with new numbers so we can coalesce our
  // IntervalMap if two vreg intervals collapse to the same physical location.
  // Use MapVector instead of SetVector because MapVector::insert returns the
  // position of the previously or newly inserted element. The boolean value
  // tracks if the location was produced by a spill.
  // FIXME: This will be problematic if we ever support direct and indirect
  // frame index locations, i.e. expressing both variables in memory and
  // 'int x, *px = &x'. The "spilled" bit must become part of the location.
  MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
  SmallVector<unsigned, 4> LocNoMap(locations.size());
  for (unsigned I = 0, E = locations.size(); I != E; ++I) {
    bool Spilled = false;
    unsigned SpillOffset = 0;
    MachineOperand Loc = locations[I];
    // Only virtual registers are rewritten.
    if (Loc.isReg() && Loc.getReg() &&
        Register::isVirtualRegister(Loc.getReg())) {
      Register VirtReg = Loc.getReg();
      if (VRM.isAssignedReg(VirtReg) &&
          Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
        // This can create a %noreg operand in rare cases when the sub-register
        // index is no longer available. That means the user value is in a
        // non-existent sub-register, and %noreg is exactly what we want.
        Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
      } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
        // Retrieve the stack slot offset.
        unsigned SpillSize;
        const MachineRegisterInfo &MRI = MF.getRegInfo();
        const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
        bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
                                             SpillOffset, MF);

        // FIXME: Invalidate the location if the offset couldn't be calculated.
        (void)Success;

        Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
        Spilled = true;
      } else {
        Loc.setReg(0);
        Loc.setSubReg(0);
      }
    }

    // Insert this location if it doesn't already exist and record a mapping
    // from the old number to the new number.
    auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
    unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
    LocNoMap[I] = NewLocNo;
  }

  // Rewrite the locations and record the stack slot offsets for spills.
  locations.clear();
  SpillOffsets.clear();
  for (auto &Pair : NewLocations) {
    bool Spilled;
    unsigned SpillOffset;
    std::tie(Spilled, SpillOffset) = Pair.second;
    locations.push_back(Pair.first);
    if (Spilled) {
      unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
      SpillOffsets[NewLocNo] = SpillOffset;
    }
  }

  // Update the interval map, but only coalesce left, since intervals to the
  // right use the old location numbers. This should merge two contiguous
  // DBG_VALUE intervals with different vregs that were allocated to the same
  // physical register.
  for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
    I.setValueUnchecked(I.value().remapLocNos(LocNoMap));
    I.setStart(I.start());
  }
}

/// Find an iterator for inserting a DBG_VALUE instruction.
static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS,
                   BlockSkipInstsMap &BBSkipInstsMap) {
  SlotIndex Start = LIS.getMBBStartIdx(MBB);
  Idx = Idx.getBaseIndex();

  // Try to find an insert location by going backwards from Idx.
  MachineInstr *MI;
  while (!(MI = LIS.getInstructionFromIndex(Idx))) {
    // We've reached the beginning of MBB.
    if (Idx == Start) {
      // Retrieve the last PHI/Label/Debug location found when calling
      // SkipPHIsLabelsAndDebug last time. Start searching from there.
      //
      // Note the iterator kept in BBSkipInstsMap is one step back based
      // on the iterator returned by SkipPHIsLabelsAndDebug last time.
      // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(),
      // BBSkipInstsMap won't save it. This is to consider the case that
      // new instructions may be inserted at the beginning of MBB after
      // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in
      // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions
      // are inserted at the beginning of the MBB, the iterator in
      // BBSkipInstsMap won't point to the beginning of the MBB anymore.
      // Therefore The next search in SkipPHIsLabelsAndDebug will skip those
      // newly added instructions and that is unwanted.
      MachineBasicBlock::iterator BeginIt;
      auto MapIt = BBSkipInstsMap.find(MBB);
      if (MapIt == BBSkipInstsMap.end())
        BeginIt = MBB->begin();
      else
        BeginIt = std::next(MapIt->second);
      auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt);
      if (I != BeginIt)
        BBSkipInstsMap[MBB] = std::prev(I);
      return I;
    }
    Idx = Idx.getPrevIndex();
  }

  // Don't insert anything after the first terminator, though.
  return MI->isTerminator() ? MBB->getFirstTerminator() :
                              std::next(MachineBasicBlock::iterator(MI));
}

/// Find an iterator for inserting the next DBG_VALUE instruction
/// (or end if no more insert locations found).
static MachineBasicBlock::iterator
findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I,
                       SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs,
                       LiveIntervals &LIS, const TargetRegisterInfo &TRI) {
  SmallVector<Register, 4> Regs;
  for (const MachineOperand &LocMO : LocMOs)
    if (LocMO.isReg())
      Regs.push_back(LocMO.getReg());
  if (Regs.empty())
    return MBB->instr_end();

  // Find the next instruction in the MBB that define the register Reg.
  while (I != MBB->end() && !I->isTerminator()) {
    if (!LIS.isNotInMIMap(*I) &&
        SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
      break;
    if (any_of(Regs, [&I, &TRI](Register &Reg) {
          return I->definesRegister(Reg, &TRI);
        }))
      // The insert location is directly after the instruction/bundle.
      return std::next(I);
    ++I;
  }
  return MBB->end();
}

void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                                 SlotIndex StopIdx, DbgVariableValue DbgValue,
                                 ArrayRef<bool> LocSpills,
                                 ArrayRef<unsigned> SpillOffsets,
                                 LiveIntervals &LIS, const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI,
                                 BlockSkipInstsMap &BBSkipInstsMap) {
  SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
  // Only search within the current MBB.
  StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
  MachineBasicBlock::iterator I =
      findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap);
  // Undef values don't exist in locations so create new "noreg" register MOs
  // for them. See getLocationNo().
  SmallVector<MachineOperand, 8> MOs;
  if (DbgValue.isUndef()) {
    MOs.assign(DbgValue.loc_nos().size(),
               MachineOperand::CreateReg(
                   /* Reg */ 0, /* isDef */ false, /* isImp */ false,
                   /* isKill */ false, /* isDead */ false,
                   /* isUndef */ false, /* isEarlyClobber */ false,
                   /* SubReg */ 0, /* isDebug */ true));
  } else {
    for (unsigned LocNo : DbgValue.loc_nos())
      MOs.push_back(locations[LocNo]);
  }

  ++NumInsertedDebugValues;

  assert(cast<DILocalVariable>(Variable)
             ->isValidLocationForIntrinsic(getDebugLoc()) &&
         "Expected inlined-at fields to agree");

  // If the location was spilled, the new DBG_VALUE will be indirect. If the
  // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
  // that the original virtual register was a pointer. Also, add the stack slot
  // offset for the spilled register to the expression.
  const DIExpression *Expr = DbgValue.getExpression();
  bool IsIndirect = DbgValue.getWasIndirect();
  bool IsList = DbgValue.getWasList();
  for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) {
    if (LocSpills[I]) {
      if (!IsList) {
        uint8_t DIExprFlags = DIExpression::ApplyOffset;
        if (IsIndirect)
          DIExprFlags |= DIExpression::DerefAfter;
        Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]);
        IsIndirect = true;
      } else {
        SmallVector<uint64_t, 4> Ops;
        DIExpression::appendOffset(Ops, SpillOffsets[I]);
        Ops.push_back(dwarf::DW_OP_deref);
        Expr = DIExpression::appendOpsToArg(Expr, Ops, I);
      }
    }

    assert((!LocSpills[I] || MOs[I].isFI()) &&
           "a spilled location must be a frame index");
  }

  unsigned DbgValueOpcode =
      IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE;
  do {
    BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs,
            Variable, Expr);

    // Continue and insert DBG_VALUES after every redefinition of a register
    // associated with the debug value within the range
    I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI);
  } while (I != MBB->end());
}

void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
                                 LiveIntervals &LIS, const TargetInstrInfo &TII,
                                 BlockSkipInstsMap &BBSkipInstsMap) {
  MachineBasicBlock::iterator I =
      findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap);
  ++NumInsertedDebugLabels;
  BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
      .addMetadata(Label);
}

void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                                const TargetInstrInfo &TII,
                                const TargetRegisterInfo &TRI,
                                const SpillOffsetMap &SpillOffsets,
                                BlockSkipInstsMap &BBSkipInstsMap) {
  MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();

  for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
    SlotIndex Start = I.start();
    SlotIndex Stop = I.stop();
    DbgVariableValue DbgValue = I.value();

    SmallVector<bool> SpilledLocs;
    SmallVector<unsigned> LocSpillOffsets;
    for (unsigned LocNo : DbgValue.loc_nos()) {
      auto SpillIt =
          !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end();
      bool Spilled = SpillIt != SpillOffsets.end();
      SpilledLocs.push_back(Spilled);
      LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0);
    }

    // If the interval start was trimmed to the lexical scope insert the
    // DBG_VALUE at the previous index (otherwise it appears after the
    // first instruction in the range).
    if (trimmedDefs.count(Start))
      Start = Start.getPrevIndex();

    LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):";
               DbgValue.printLocNos(dbg));
    MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
    SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);

    LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
    insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets,
                     LIS, TII, TRI, BBSkipInstsMap);
    // This interval may span multiple basic blocks.
    // Insert a DBG_VALUE into each one.
    while (Stop > MBBEnd) {
      // Move to the next block.
      Start = MBBEnd;
      if (++MBB == MFEnd)
        break;
      MBBEnd = LIS.getMBBEndIdx(&*MBB);
      LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
      insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs,
                       LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap);
    }
    LLVM_DEBUG(dbgs() << '\n');
    if (MBB == MFEnd)
      break;

    ++I;
  }
}

void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
                               BlockSkipInstsMap &BBSkipInstsMap) {
  LLVM_DEBUG(dbgs() << "\t" << loc);
  MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();

  LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
  insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap);

  LLVM_DEBUG(dbgs() << '\n');
}

void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
  LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
  if (!MF)
    return;

  BlockSkipInstsMap BBSkipInstsMap;
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  SpillOffsetMap SpillOffsets;
  for (auto &userValue : userValues) {
    LLVM_DEBUG(userValue->print(dbgs(), TRI));
    userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
    userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets,
                               BBSkipInstsMap);
  }
  LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
  for (auto &userLabel : userLabels) {
    LLVM_DEBUG(userLabel->print(dbgs(), TRI));
    userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap);
  }

  LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n");

  auto Slots = LIS->getSlotIndexes();
  for (auto &It : PHIValToPos) {
    // For each ex-PHI, identify its physreg location or stack slot, and emit
    // a DBG_PHI for it.
    unsigned InstNum = It.first;
    auto Slot = It.second.SI;
    Register Reg = It.second.Reg;
    unsigned SubReg = It.second.SubReg;

    MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot);
    if (VRM->isAssignedReg(Reg) &&
        Register::isPhysicalRegister(VRM->getPhys(Reg))) {
      unsigned PhysReg = VRM->getPhys(Reg);
      if (SubReg != 0)
        PhysReg = TRI->getSubReg(PhysReg, SubReg);

      auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(),
                             TII->get(TargetOpcode::DBG_PHI));
      Builder.addReg(PhysReg);
      Builder.addImm(InstNum);
    } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) {
      const MachineRegisterInfo &MRI = MF->getRegInfo();
      const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
      unsigned SpillSize, SpillOffset;

      // Test whether this location is legal with the given subreg.
      bool Success =
          TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF);

      if (Success) {
        auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(),
                               TII->get(TargetOpcode::DBG_PHI));
        Builder.addFrameIndex(VRM->getStackSlot(Reg));
        Builder.addImm(InstNum);
      }
    }
    // If there was no mapping for a value ID, it's optimized out. Create no
    // DBG_PHI, and any variables using this value will become optimized out.
  }
  MF->DebugPHIPositions.clear();

  LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n");

  // Re-insert any debug instrs back in the position they were. Ordering
  // is preserved by vector. We must re-insert in the same order to ensure that
  // debug instructions don't swap, which could re-order assignments.
  for (auto &P : StashedDebugInstrs) {
    SlotIndex Idx = P.Idx;

    // Start block index: find the first non-debug instr in the block, and
    // insert before it.
    if (Idx == Slots->getMBBStartIdx(P.MBB)) {
      MachineBasicBlock::iterator InsertPos =
          findInsertLocation(P.MBB, Idx, *LIS, BBSkipInstsMap);
      P.MBB->insert(InsertPos, P.MI);
      continue;
    }

    if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) {
      // Insert at the end of any debug instructions.
      auto PostDebug = std::next(Pos->getIterator());
      PostDebug = skipDebugInstructionsForward(PostDebug, P.MBB->instr_end());
      P.MBB->insert(PostDebug, P.MI);
    } else {
      // Insert position disappeared; walk forwards through slots until we
      // find a new one.
      SlotIndex End = Slots->getMBBEndIdx(P.MBB);
      for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) {
        Pos = Slots->getInstructionFromIndex(Idx);
        if (Pos) {
          P.MBB->insert(Pos->getIterator(), P.MI);
          break;
        }
      }

      // We have reached the end of the block and didn't find anywhere to
      // insert! It's not safe to discard any debug instructions; place them
      // in front of the first terminator, or in front of end().
      if (Idx >= End) {
        auto TermIt = P.MBB->getFirstTerminator();
        P.MBB->insert(TermIt, P.MI);
      }
    }
  }

  EmitDone = true;
  BBSkipInstsMap.clear();
}

void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->print(dbgs());
}
#endif