aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/ModuloSchedule.cpp
blob: b5517c40a28aca92f2765b5540929fac175f1e23 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ModuloSchedule.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "pipeliner"
using namespace llvm;

void ModuloSchedule::print(raw_ostream &OS) {
  for (MachineInstr *MI : ScheduledInstrs)
    OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
}

//===----------------------------------------------------------------------===//
// ModuloScheduleExpander implementation
//===----------------------------------------------------------------------===//

/// Return the register values for  the operands of a Phi instruction.
/// This function assume the instruction is a Phi.
static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
                       unsigned &InitVal, unsigned &LoopVal) {
  assert(Phi.isPHI() && "Expecting a Phi.");

  InitVal = 0;
  LoopVal = 0;
  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    if (Phi.getOperand(i + 1).getMBB() != Loop)
      InitVal = Phi.getOperand(i).getReg();
    else
      LoopVal = Phi.getOperand(i).getReg();

  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
}

/// Return the Phi register value that comes from the incoming block.
static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    if (Phi.getOperand(i + 1).getMBB() != LoopBB)
      return Phi.getOperand(i).getReg();
  return 0;
}

/// Return the Phi register value that comes the loop block.
static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    if (Phi.getOperand(i + 1).getMBB() == LoopBB)
      return Phi.getOperand(i).getReg();
  return 0;
}

void ModuloScheduleExpander::expand() {
  BB = Schedule.getLoop()->getTopBlock();
  Preheader = *BB->pred_begin();
  if (Preheader == BB)
    Preheader = *std::next(BB->pred_begin());

  // Iterate over the definitions in each instruction, and compute the
  // stage difference for each use.  Keep the maximum value.
  for (MachineInstr *MI : Schedule.getInstructions()) {
    int DefStage = Schedule.getStage(MI);
    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || !Op.isDef())
        continue;

      Register Reg = Op.getReg();
      unsigned MaxDiff = 0;
      bool PhiIsSwapped = false;
      for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
                                             EI = MRI.use_end();
           UI != EI; ++UI) {
        MachineOperand &UseOp = *UI;
        MachineInstr *UseMI = UseOp.getParent();
        int UseStage = Schedule.getStage(UseMI);
        unsigned Diff = 0;
        if (UseStage != -1 && UseStage >= DefStage)
          Diff = UseStage - DefStage;
        if (MI->isPHI()) {
          if (isLoopCarried(*MI))
            ++Diff;
          else
            PhiIsSwapped = true;
        }
        MaxDiff = std::max(Diff, MaxDiff);
      }
      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
    }
  }

  generatePipelinedLoop();
}

void ModuloScheduleExpander::generatePipelinedLoop() {
  LoopInfo = TII->analyzeLoopForPipelining(BB);
  assert(LoopInfo && "Must be able to analyze loop!");

  // Create a new basic block for the kernel and add it to the CFG.
  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());

  unsigned MaxStageCount = Schedule.getNumStages() - 1;

  // Remember the registers that are used in different stages. The index is
  // the iteration, or stage, that the instruction is scheduled in.  This is
  // a map between register names in the original block and the names created
  // in each stage of the pipelined loop.
  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
  InstrMapTy InstrMap;

  SmallVector<MachineBasicBlock *, 4> PrologBBs;

  // Generate the prolog instructions that set up the pipeline.
  generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
  MF.insert(BB->getIterator(), KernelBB);

  // Rearrange the instructions to generate the new, pipelined loop,
  // and update register names as needed.
  for (MachineInstr *CI : Schedule.getInstructions()) {
    if (CI->isPHI())
      continue;
    unsigned StageNum = Schedule.getStage(CI);
    MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
    updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
    KernelBB->push_back(NewMI);
    InstrMap[NewMI] = CI;
  }

  // Copy any terminator instructions to the new kernel, and update
  // names as needed.
  for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
                                   E = BB->instr_end();
       I != E; ++I) {
    MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
    updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
    KernelBB->push_back(NewMI);
    InstrMap[NewMI] = &*I;
  }

  NewKernel = KernelBB;
  KernelBB->transferSuccessors(BB);
  KernelBB->replaceSuccessor(BB, KernelBB);

  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
                       InstrMap, MaxStageCount, MaxStageCount, false);
  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
               MaxStageCount, MaxStageCount, false);

  LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););

  SmallVector<MachineBasicBlock *, 4> EpilogBBs;
  // Generate the epilog instructions to complete the pipeline.
  generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);

  // We need this step because the register allocation doesn't handle some
  // situations well, so we insert copies to help out.
  splitLifetimes(KernelBB, EpilogBBs);

  // Remove dead instructions due to loop induction variables.
  removeDeadInstructions(KernelBB, EpilogBBs);

  // Add branches between prolog and epilog blocks.
  addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);

  delete[] VRMap;
}

void ModuloScheduleExpander::cleanup() {
  // Remove the original loop since it's no longer referenced.
  for (auto &I : *BB)
    LIS.RemoveMachineInstrFromMaps(I);
  BB->clear();
  BB->eraseFromParent();
}

/// Generate the pipeline prolog code.
void ModuloScheduleExpander::generateProlog(unsigned LastStage,
                                            MachineBasicBlock *KernelBB,
                                            ValueMapTy *VRMap,
                                            MBBVectorTy &PrologBBs) {
  MachineBasicBlock *PredBB = Preheader;
  InstrMapTy InstrMap;

  // Generate a basic block for each stage, not including the last stage,
  // which will be generated in the kernel. Each basic block may contain
  // instructions from multiple stages/iterations.
  for (unsigned i = 0; i < LastStage; ++i) {
    // Create and insert the prolog basic block prior to the original loop
    // basic block.  The original loop is removed later.
    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
    PrologBBs.push_back(NewBB);
    MF.insert(BB->getIterator(), NewBB);
    NewBB->transferSuccessors(PredBB);
    PredBB->addSuccessor(NewBB);
    PredBB = NewBB;

    // Generate instructions for each appropriate stage. Process instructions
    // in original program order.
    for (int StageNum = i; StageNum >= 0; --StageNum) {
      for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
                                       BBE = BB->getFirstTerminator();
           BBI != BBE; ++BBI) {
        if (Schedule.getStage(&*BBI) == StageNum) {
          if (BBI->isPHI())
            continue;
          MachineInstr *NewMI =
              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
          updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
          NewBB->push_back(NewMI);
          InstrMap[NewMI] = &*BBI;
        }
      }
    }
    rewritePhiValues(NewBB, i, VRMap, InstrMap);
    LLVM_DEBUG({
      dbgs() << "prolog:\n";
      NewBB->dump();
    });
  }

  PredBB->replaceSuccessor(BB, KernelBB);

  // Check if we need to remove the branch from the preheader to the original
  // loop, and replace it with a branch to the new loop.
  unsigned numBranches = TII->removeBranch(*Preheader);
  if (numBranches) {
    SmallVector<MachineOperand, 0> Cond;
    TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
  }
}

/// Generate the pipeline epilog code. The epilog code finishes the iterations
/// that were started in either the prolog or the kernel.  We create a basic
/// block for each stage that needs to complete.
void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
                                            MachineBasicBlock *KernelBB,
                                            ValueMapTy *VRMap,
                                            MBBVectorTy &EpilogBBs,
                                            MBBVectorTy &PrologBBs) {
  // We need to change the branch from the kernel to the first epilog block, so
  // this call to analyze branch uses the kernel rather than the original BB.
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
  assert(!checkBranch && "generateEpilog must be able to analyze the branch");
  if (checkBranch)
    return;

  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
  if (*LoopExitI == KernelBB)
    ++LoopExitI;
  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
  MachineBasicBlock *LoopExitBB = *LoopExitI;

  MachineBasicBlock *PredBB = KernelBB;
  MachineBasicBlock *EpilogStart = LoopExitBB;
  InstrMapTy InstrMap;

  // Generate a basic block for each stage, not including the last stage,
  // which was generated for the kernel.  Each basic block may contain
  // instructions from multiple stages/iterations.
  int EpilogStage = LastStage + 1;
  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
    EpilogBBs.push_back(NewBB);
    MF.insert(BB->getIterator(), NewBB);

    PredBB->replaceSuccessor(LoopExitBB, NewBB);
    NewBB->addSuccessor(LoopExitBB);

    if (EpilogStart == LoopExitBB)
      EpilogStart = NewBB;

    // Add instructions to the epilog depending on the current block.
    // Process instructions in original program order.
    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
      for (auto &BBI : *BB) {
        if (BBI.isPHI())
          continue;
        MachineInstr *In = &BBI;
        if ((unsigned)Schedule.getStage(In) == StageNum) {
          // Instructions with memoperands in the epilog are updated with
          // conservative values.
          MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
          updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
          NewBB->push_back(NewMI);
          InstrMap[NewMI] = In;
        }
      }
    }
    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
                         InstrMap, LastStage, EpilogStage, i == 1);
    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
                 LastStage, EpilogStage, i == 1);
    PredBB = NewBB;

    LLVM_DEBUG({
      dbgs() << "epilog:\n";
      NewBB->dump();
    });
  }

  // Fix any Phi nodes in the loop exit block.
  LoopExitBB->replacePhiUsesWith(BB, PredBB);

  // Create a branch to the new epilog from the kernel.
  // Remove the original branch and add a new branch to the epilog.
  TII->removeBranch(*KernelBB);
  TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
  // Add a branch to the loop exit.
  if (EpilogBBs.size() > 0) {
    MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
    SmallVector<MachineOperand, 4> Cond1;
    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
  }
}

/// Replace all uses of FromReg that appear outside the specified
/// basic block with ToReg.
static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
                                    MachineBasicBlock *MBB,
                                    MachineRegisterInfo &MRI,
                                    LiveIntervals &LIS) {
  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
                                         E = MRI.use_end();
       I != E;) {
    MachineOperand &O = *I;
    ++I;
    if (O.getParent()->getParent() != MBB)
      O.setReg(ToReg);
  }
  if (!LIS.hasInterval(ToReg))
    LIS.createEmptyInterval(ToReg);
}

/// Return true if the register has a use that occurs outside the
/// specified loop.
static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
                            MachineRegisterInfo &MRI) {
  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
                                         E = MRI.use_end();
       I != E; ++I)
    if (I->getParent()->getParent() != BB)
      return true;
  return false;
}

/// Generate Phis for the specific block in the generated pipelined code.
/// This function looks at the Phis from the original code to guide the
/// creation of new Phis.
void ModuloScheduleExpander::generateExistingPhis(
    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
  // Compute the stage number for the initial value of the Phi, which
  // comes from the prolog. The prolog to use depends on to which kernel/
  // epilog that we're adding the Phi.
  unsigned PrologStage = 0;
  unsigned PrevStage = 0;
  bool InKernel = (LastStageNum == CurStageNum);
  if (InKernel) {
    PrologStage = LastStageNum - 1;
    PrevStage = CurStageNum;
  } else {
    PrologStage = LastStageNum - (CurStageNum - LastStageNum);
    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
  }

  for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
                                   BBE = BB->getFirstNonPHI();
       BBI != BBE; ++BBI) {
    Register Def = BBI->getOperand(0).getReg();

    unsigned InitVal = 0;
    unsigned LoopVal = 0;
    getPhiRegs(*BBI, BB, InitVal, LoopVal);

    unsigned PhiOp1 = 0;
    // The Phi value from the loop body typically is defined in the loop, but
    // not always. So, we need to check if the value is defined in the loop.
    unsigned PhiOp2 = LoopVal;
    if (VRMap[LastStageNum].count(LoopVal))
      PhiOp2 = VRMap[LastStageNum][LoopVal];

    int StageScheduled = Schedule.getStage(&*BBI);
    int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
    unsigned NumStages = getStagesForReg(Def, CurStageNum);
    if (NumStages == 0) {
      // We don't need to generate a Phi anymore, but we need to rename any uses
      // of the Phi value.
      unsigned NewReg = VRMap[PrevStage][LoopVal];
      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
                            InitVal, NewReg);
      if (VRMap[CurStageNum].count(LoopVal))
        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
    }
    // Adjust the number of Phis needed depending on the number of prologs left,
    // and the distance from where the Phi is first scheduled. The number of
    // Phis cannot exceed the number of prolog stages. Each stage can
    // potentially define two values.
    unsigned MaxPhis = PrologStage + 2;
    if (!InKernel && (int)PrologStage <= LoopValStage)
      MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
    unsigned NumPhis = std::min(NumStages, MaxPhis);

    unsigned NewReg = 0;
    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
    // In the epilog, we may need to look back one stage to get the correct
    // Phi name, because the epilog and prolog blocks execute the same stage.
    // The correct name is from the previous block only when the Phi has
    // been completely scheduled prior to the epilog, and Phi value is not
    // needed in multiple stages.
    int StageDiff = 0;
    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
        NumPhis == 1)
      StageDiff = 1;
    // Adjust the computations below when the phi and the loop definition
    // are scheduled in different stages.
    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
      StageDiff = StageScheduled - LoopValStage;
    for (unsigned np = 0; np < NumPhis; ++np) {
      // If the Phi hasn't been scheduled, then use the initial Phi operand
      // value. Otherwise, use the scheduled version of the instruction. This
      // is a little complicated when a Phi references another Phi.
      if (np > PrologStage || StageScheduled >= (int)LastStageNum)
        PhiOp1 = InitVal;
      // Check if the Phi has already been scheduled in a prolog stage.
      else if (PrologStage >= AccessStage + StageDiff + np &&
               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
      // Check if the Phi has already been scheduled, but the loop instruction
      // is either another Phi, or doesn't occur in the loop.
      else if (PrologStage >= AccessStage + StageDiff + np) {
        // If the Phi references another Phi, we need to examine the other
        // Phi to get the correct value.
        PhiOp1 = LoopVal;
        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
        int Indirects = 1;
        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
          int PhiStage = Schedule.getStage(InstOp1);
          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
            PhiOp1 = getInitPhiReg(*InstOp1, BB);
          else
            PhiOp1 = getLoopPhiReg(*InstOp1, BB);
          InstOp1 = MRI.getVRegDef(PhiOp1);
          int PhiOpStage = Schedule.getStage(InstOp1);
          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
            break;
          }
          ++Indirects;
        }
      } else
        PhiOp1 = InitVal;
      // If this references a generated Phi in the kernel, get the Phi operand
      // from the incoming block.
      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);

      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
      // In the epilog, a map lookup is needed to get the value from the kernel,
      // or previous epilog block. How is does this depends on if the
      // instruction is scheduled in the previous block.
      if (!InKernel) {
        int StageDiffAdj = 0;
        if (LoopValStage != -1 && StageScheduled > LoopValStage)
          StageDiffAdj = StageScheduled - LoopValStage;
        // Use the loop value defined in the kernel, unless the kernel
        // contains the last definition of the Phi.
        if (np == 0 && PrevStage == LastStageNum &&
            (StageScheduled != 0 || LoopValStage != 0) &&
            VRMap[PrevStage - StageDiffAdj].count(LoopVal))
          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
        // Use the value defined by the Phi. We add one because we switch
        // from looking at the loop value to the Phi definition.
        else if (np > 0 && PrevStage == LastStageNum &&
                 VRMap[PrevStage - np + 1].count(Def))
          PhiOp2 = VRMap[PrevStage - np + 1][Def];
        // Use the loop value defined in the kernel.
        else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
        // Use the value defined by the Phi, unless we're generating the first
        // epilog and the Phi refers to a Phi in a different stage.
        else if (VRMap[PrevStage - np].count(Def) &&
                 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
                  (LoopValStage == StageScheduled)))
          PhiOp2 = VRMap[PrevStage - np][Def];
      }

      // Check if we can reuse an existing Phi. This occurs when a Phi
      // references another Phi, and the other Phi is scheduled in an
      // earlier stage. We can try to reuse an existing Phi up until the last
      // stage of the current Phi.
      if (LoopDefIsPhi) {
        if (static_cast<int>(PrologStage - np) >= StageScheduled) {
          int LVNumStages = getStagesForPhi(LoopVal);
          int StageDiff = (StageScheduled - LoopValStage);
          LVNumStages -= StageDiff;
          // Make sure the loop value Phi has been processed already.
          if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
            NewReg = PhiOp2;
            unsigned ReuseStage = CurStageNum;
            if (isLoopCarried(*PhiInst))
              ReuseStage -= LVNumStages;
            // Check if the Phi to reuse has been generated yet. If not, then
            // there is nothing to reuse.
            if (VRMap[ReuseStage - np].count(LoopVal)) {
              NewReg = VRMap[ReuseStage - np][LoopVal];

              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
                                    Def, NewReg);
              // Update the map with the new Phi name.
              VRMap[CurStageNum - np][Def] = NewReg;
              PhiOp2 = NewReg;
              if (VRMap[LastStageNum - np - 1].count(LoopVal))
                PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];

              if (IsLast && np == NumPhis - 1)
                replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
              continue;
            }
          }
        }
        if (InKernel && StageDiff > 0 &&
            VRMap[CurStageNum - StageDiff - np].count(LoopVal))
          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
      }

      const TargetRegisterClass *RC = MRI.getRegClass(Def);
      NewReg = MRI.createVirtualRegister(RC);

      MachineInstrBuilder NewPhi =
          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
                  TII->get(TargetOpcode::PHI), NewReg);
      NewPhi.addReg(PhiOp1).addMBB(BB1);
      NewPhi.addReg(PhiOp2).addMBB(BB2);
      if (np == 0)
        InstrMap[NewPhi] = &*BBI;

      // We define the Phis after creating the new pipelined code, so
      // we need to rename the Phi values in scheduled instructions.

      unsigned PrevReg = 0;
      if (InKernel && VRMap[PrevStage - np].count(LoopVal))
        PrevReg = VRMap[PrevStage - np][LoopVal];
      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
                            NewReg, PrevReg);
      // If the Phi has been scheduled, use the new name for rewriting.
      if (VRMap[CurStageNum - np].count(Def)) {
        unsigned R = VRMap[CurStageNum - np][Def];
        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
                              NewReg);
      }

      // Check if we need to rename any uses that occurs after the loop. The
      // register to replace depends on whether the Phi is scheduled in the
      // epilog.
      if (IsLast && np == NumPhis - 1)
        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);

      // In the kernel, a dependent Phi uses the value from this Phi.
      if (InKernel)
        PhiOp2 = NewReg;

      // Update the map with the new Phi name.
      VRMap[CurStageNum - np][Def] = NewReg;
    }

    while (NumPhis++ < NumStages) {
      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
                            NewReg, 0);
    }

    // Check if we need to rename a Phi that has been eliminated due to
    // scheduling.
    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
  }
}

/// Generate Phis for the specified block in the generated pipelined code.
/// These are new Phis needed because the definition is scheduled after the
/// use in the pipelined sequence.
void ModuloScheduleExpander::generatePhis(
    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
  // Compute the stage number that contains the initial Phi value, and
  // the Phi from the previous stage.
  unsigned PrologStage = 0;
  unsigned PrevStage = 0;
  unsigned StageDiff = CurStageNum - LastStageNum;
  bool InKernel = (StageDiff == 0);
  if (InKernel) {
    PrologStage = LastStageNum - 1;
    PrevStage = CurStageNum;
  } else {
    PrologStage = LastStageNum - StageDiff;
    PrevStage = LastStageNum + StageDiff - 1;
  }

  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
                                   BBE = BB->instr_end();
       BBI != BBE; ++BBI) {
    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = BBI->getOperand(i);
      if (!MO.isReg() || !MO.isDef() ||
          !Register::isVirtualRegister(MO.getReg()))
        continue;

      int StageScheduled = Schedule.getStage(&*BBI);
      assert(StageScheduled != -1 && "Expecting scheduled instruction.");
      Register Def = MO.getReg();
      unsigned NumPhis = getStagesForReg(Def, CurStageNum);
      // An instruction scheduled in stage 0 and is used after the loop
      // requires a phi in the epilog for the last definition from either
      // the kernel or prolog.
      if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
          hasUseAfterLoop(Def, BB, MRI))
        NumPhis = 1;
      if (!InKernel && (unsigned)StageScheduled > PrologStage)
        continue;

      unsigned PhiOp2 = VRMap[PrevStage][Def];
      if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
        if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
          PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
      // The number of Phis can't exceed the number of prolog stages. The
      // prolog stage number is zero based.
      if (NumPhis > PrologStage + 1 - StageScheduled)
        NumPhis = PrologStage + 1 - StageScheduled;
      for (unsigned np = 0; np < NumPhis; ++np) {
        unsigned PhiOp1 = VRMap[PrologStage][Def];
        if (np <= PrologStage)
          PhiOp1 = VRMap[PrologStage - np][Def];
        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
          if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
            PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
        }
        if (!InKernel)
          PhiOp2 = VRMap[PrevStage - np][Def];

        const TargetRegisterClass *RC = MRI.getRegClass(Def);
        Register NewReg = MRI.createVirtualRegister(RC);

        MachineInstrBuilder NewPhi =
            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
                    TII->get(TargetOpcode::PHI), NewReg);
        NewPhi.addReg(PhiOp1).addMBB(BB1);
        NewPhi.addReg(PhiOp2).addMBB(BB2);
        if (np == 0)
          InstrMap[NewPhi] = &*BBI;

        // Rewrite uses and update the map. The actions depend upon whether
        // we generating code for the kernel or epilog blocks.
        if (InKernel) {
          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
                                NewReg);
          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
                                NewReg);

          PhiOp2 = NewReg;
          VRMap[PrevStage - np - 1][Def] = NewReg;
        } else {
          VRMap[CurStageNum - np][Def] = NewReg;
          if (np == NumPhis - 1)
            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
                                  NewReg);
        }
        if (IsLast && np == NumPhis - 1)
          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
      }
    }
  }
}

/// Remove instructions that generate values with no uses.
/// Typically, these are induction variable operations that generate values
/// used in the loop itself.  A dead instruction has a definition with
/// no uses, or uses that occur in the original loop only.
void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
                                                    MBBVectorTy &EpilogBBs) {
  // For each epilog block, check that the value defined by each instruction
  // is used.  If not, delete it.
  for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
                                     MBE = EpilogBBs.rend();
       MBB != MBE; ++MBB)
    for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
                                                   ME = (*MBB)->instr_rend();
         MI != ME;) {
      // From DeadMachineInstructionElem. Don't delete inline assembly.
      if (MI->isInlineAsm()) {
        ++MI;
        continue;
      }
      bool SawStore = false;
      // Check if it's safe to remove the instruction due to side effects.
      // We can, and want to, remove Phis here.
      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
        ++MI;
        continue;
      }
      bool used = true;
      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
                                      MOE = MI->operands_end();
           MOI != MOE; ++MOI) {
        if (!MOI->isReg() || !MOI->isDef())
          continue;
        Register reg = MOI->getReg();
        // Assume physical registers are used, unless they are marked dead.
        if (Register::isPhysicalRegister(reg)) {
          used = !MOI->isDead();
          if (used)
            break;
          continue;
        }
        unsigned realUses = 0;
        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
                                               EI = MRI.use_end();
             UI != EI; ++UI) {
          // Check if there are any uses that occur only in the original
          // loop.  If so, that's not a real use.
          if (UI->getParent()->getParent() != BB) {
            realUses++;
            used = true;
            break;
          }
        }
        if (realUses > 0)
          break;
        used = false;
      }
      if (!used) {
        LIS.RemoveMachineInstrFromMaps(*MI);
        MI++->eraseFromParent();
        continue;
      }
      ++MI;
    }
  // In the kernel block, check if we can remove a Phi that generates a value
  // used in an instruction removed in the epilog block.
  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
                                   BBE = KernelBB->getFirstNonPHI();
       BBI != BBE;) {
    MachineInstr *MI = &*BBI;
    ++BBI;
    Register reg = MI->getOperand(0).getReg();
    if (MRI.use_begin(reg) == MRI.use_end()) {
      LIS.RemoveMachineInstrFromMaps(*MI);
      MI->eraseFromParent();
    }
  }
}

/// For loop carried definitions, we split the lifetime of a virtual register
/// that has uses past the definition in the next iteration. A copy with a new
/// virtual register is inserted before the definition, which helps with
/// generating a better register assignment.
///
///   v1 = phi(a, v2)     v1 = phi(a, v2)
///   v2 = phi(b, v3)     v2 = phi(b, v3)
///   v3 = ..             v4 = copy v1
///   .. = V1             v3 = ..
///                       .. = v4
void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
                                            MBBVectorTy &EpilogBBs) {
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  for (auto &PHI : KernelBB->phis()) {
    Register Def = PHI.getOperand(0).getReg();
    // Check for any Phi definition that used as an operand of another Phi
    // in the same block.
    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
                                                 E = MRI.use_instr_end();
         I != E; ++I) {
      if (I->isPHI() && I->getParent() == KernelBB) {
        // Get the loop carried definition.
        unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
        if (!LCDef)
          continue;
        MachineInstr *MI = MRI.getVRegDef(LCDef);
        if (!MI || MI->getParent() != KernelBB || MI->isPHI())
          continue;
        // Search through the rest of the block looking for uses of the Phi
        // definition. If one occurs, then split the lifetime.
        unsigned SplitReg = 0;
        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
                                    KernelBB->instr_end()))
          if (BBJ.readsRegister(Def)) {
            // We split the lifetime when we find the first use.
            if (SplitReg == 0) {
              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
              BuildMI(*KernelBB, MI, MI->getDebugLoc(),
                      TII->get(TargetOpcode::COPY), SplitReg)
                  .addReg(Def);
            }
            BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
          }
        if (!SplitReg)
          continue;
        // Search through each of the epilog blocks for any uses to be renamed.
        for (auto &Epilog : EpilogBBs)
          for (auto &I : *Epilog)
            if (I.readsRegister(Def))
              I.substituteRegister(Def, SplitReg, 0, *TRI);
        break;
      }
    }
  }
}

/// Remove the incoming block from the Phis in a basic block.
static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
  for (MachineInstr &MI : *BB) {
    if (!MI.isPHI())
      break;
    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
      if (MI.getOperand(i + 1).getMBB() == Incoming) {
        MI.RemoveOperand(i + 1);
        MI.RemoveOperand(i);
        break;
      }
  }
}

/// Create branches from each prolog basic block to the appropriate epilog
/// block.  These edges are needed if the loop ends before reaching the
/// kernel.
void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
                                         MBBVectorTy &PrologBBs,
                                         MachineBasicBlock *KernelBB,
                                         MBBVectorTy &EpilogBBs,
                                         ValueMapTy *VRMap) {
  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
  MachineBasicBlock *LastPro = KernelBB;
  MachineBasicBlock *LastEpi = KernelBB;

  // Start from the blocks connected to the kernel and work "out"
  // to the first prolog and the last epilog blocks.
  SmallVector<MachineInstr *, 4> PrevInsts;
  unsigned MaxIter = PrologBBs.size() - 1;
  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
    // Add branches to the prolog that go to the corresponding
    // epilog, and the fall-thru prolog/kernel block.
    MachineBasicBlock *Prolog = PrologBBs[j];
    MachineBasicBlock *Epilog = EpilogBBs[i];

    SmallVector<MachineOperand, 4> Cond;
    Optional<bool> StaticallyGreater =
        LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
    unsigned numAdded = 0;
    if (!StaticallyGreater.hasValue()) {
      Prolog->addSuccessor(Epilog);
      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
    } else if (*StaticallyGreater == false) {
      Prolog->addSuccessor(Epilog);
      Prolog->removeSuccessor(LastPro);
      LastEpi->removeSuccessor(Epilog);
      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
      removePhis(Epilog, LastEpi);
      // Remove the blocks that are no longer referenced.
      if (LastPro != LastEpi) {
        LastEpi->clear();
        LastEpi->eraseFromParent();
      }
      if (LastPro == KernelBB) {
        LoopInfo->disposed();
        NewKernel = nullptr;
      }
      LastPro->clear();
      LastPro->eraseFromParent();
    } else {
      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
      removePhis(Epilog, Prolog);
    }
    LastPro = Prolog;
    LastEpi = Epilog;
    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
                                                   E = Prolog->instr_rend();
         I != E && numAdded > 0; ++I, --numAdded)
      updateInstruction(&*I, false, j, 0, VRMap);
  }

  if (NewKernel) {
    LoopInfo->setPreheader(PrologBBs[MaxIter]);
    LoopInfo->adjustTripCount(-(MaxIter + 1));
  }
}

/// Return true if we can compute the amount the instruction changes
/// during each iteration. Set Delta to the amount of the change.
bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  const MachineOperand *BaseOp;
  int64_t Offset;
  bool OffsetIsScalable;
  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
    return false;

  // FIXME: This algorithm assumes instructions have fixed-size offsets.
  if (OffsetIsScalable)
    return false;

  if (!BaseOp->isReg())
    return false;

  Register BaseReg = BaseOp->getReg();

  MachineRegisterInfo &MRI = MF.getRegInfo();
  // Check if there is a Phi. If so, get the definition in the loop.
  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
  if (BaseDef && BaseDef->isPHI()) {
    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
    BaseDef = MRI.getVRegDef(BaseReg);
  }
  if (!BaseDef)
    return false;

  int D = 0;
  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
    return false;

  Delta = D;
  return true;
}

/// Update the memory operand with a new offset when the pipeliner
/// generates a new copy of the instruction that refers to a
/// different memory location.
void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
                                               MachineInstr &OldMI,
                                               unsigned Num) {
  if (Num == 0)
    return;
  // If the instruction has memory operands, then adjust the offset
  // when the instruction appears in different stages.
  if (NewMI.memoperands_empty())
    return;
  SmallVector<MachineMemOperand *, 2> NewMMOs;
  for (MachineMemOperand *MMO : NewMI.memoperands()) {
    // TODO: Figure out whether isAtomic is really necessary (see D57601).
    if (MMO->isVolatile() || MMO->isAtomic() ||
        (MMO->isInvariant() && MMO->isDereferenceable()) ||
        (!MMO->getValue())) {
      NewMMOs.push_back(MMO);
      continue;
    }
    unsigned Delta;
    if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
      int64_t AdjOffset = Delta * Num;
      NewMMOs.push_back(
          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
    } else {
      NewMMOs.push_back(
          MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
    }
  }
  NewMI.setMemRefs(MF, NewMMOs);
}

/// Clone the instruction for the new pipelined loop and update the
/// memory operands, if needed.
MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
                                                 unsigned CurStageNum,
                                                 unsigned InstStageNum) {
  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
  // Check for tied operands in inline asm instructions. This should be handled
  // elsewhere, but I'm not sure of the best solution.
  if (OldMI->isInlineAsm())
    for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
      const auto &MO = OldMI->getOperand(i);
      if (MO.isReg() && MO.isUse())
        break;
      unsigned UseIdx;
      if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
        NewMI->tieOperands(i, UseIdx);
    }
  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
  return NewMI;
}

/// Clone the instruction for the new pipelined loop. If needed, this
/// function updates the instruction using the values saved in the
/// InstrChanges structure.
MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
    MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
  auto It = InstrChanges.find(OldMI);
  if (It != InstrChanges.end()) {
    std::pair<unsigned, int64_t> RegAndOffset = It->second;
    unsigned BasePos, OffsetPos;
    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
      return nullptr;
    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
    if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
    NewMI->getOperand(OffsetPos).setImm(NewOffset);
  }
  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
  return NewMI;
}

/// Update the machine instruction with new virtual registers.  This
/// function may change the defintions and/or uses.
void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
                                               bool LastDef,
                                               unsigned CurStageNum,
                                               unsigned InstrStageNum,
                                               ValueMapTy *VRMap) {
  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = NewMI->getOperand(i);
    if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
      continue;
    Register reg = MO.getReg();
    if (MO.isDef()) {
      // Create a new virtual register for the definition.
      const TargetRegisterClass *RC = MRI.getRegClass(reg);
      Register NewReg = MRI.createVirtualRegister(RC);
      MO.setReg(NewReg);
      VRMap[CurStageNum][reg] = NewReg;
      if (LastDef)
        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
    } else if (MO.isUse()) {
      MachineInstr *Def = MRI.getVRegDef(reg);
      // Compute the stage that contains the last definition for instruction.
      int DefStageNum = Schedule.getStage(Def);
      unsigned StageNum = CurStageNum;
      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
        // Compute the difference in stages between the defintion and the use.
        unsigned StageDiff = (InstrStageNum - DefStageNum);
        // Make an adjustment to get the last definition.
        StageNum -= StageDiff;
      }
      if (VRMap[StageNum].count(reg))
        MO.setReg(VRMap[StageNum][reg]);
    }
  }
}

/// Return the instruction in the loop that defines the register.
/// If the definition is a Phi, then follow the Phi operand to
/// the instruction in the loop.
MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
  SmallPtrSet<MachineInstr *, 8> Visited;
  MachineInstr *Def = MRI.getVRegDef(Reg);
  while (Def->isPHI()) {
    if (!Visited.insert(Def).second)
      break;
    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
      if (Def->getOperand(i + 1).getMBB() == BB) {
        Def = MRI.getVRegDef(Def->getOperand(i).getReg());
        break;
      }
  }
  return Def;
}

/// Return the new name for the value from the previous stage.
unsigned ModuloScheduleExpander::getPrevMapVal(
    unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
    ValueMapTy *VRMap, MachineBasicBlock *BB) {
  unsigned PrevVal = 0;
  if (StageNum > PhiStage) {
    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
      // The name is defined in the previous stage.
      PrevVal = VRMap[StageNum - 1][LoopVal];
    else if (VRMap[StageNum].count(LoopVal))
      // The previous name is defined in the current stage when the instruction
      // order is swapped.
      PrevVal = VRMap[StageNum][LoopVal];
    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
      // The loop value hasn't yet been scheduled.
      PrevVal = LoopVal;
    else if (StageNum == PhiStage + 1)
      // The loop value is another phi, which has not been scheduled.
      PrevVal = getInitPhiReg(*LoopInst, BB);
    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
      // The loop value is another phi, which has been scheduled.
      PrevVal =
          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
                        LoopStage, VRMap, BB);
  }
  return PrevVal;
}

/// Rewrite the Phi values in the specified block to use the mappings
/// from the initial operand. Once the Phi is scheduled, we switch
/// to using the loop value instead of the Phi value, so those names
/// do not need to be rewritten.
void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
                                              unsigned StageNum,
                                              ValueMapTy *VRMap,
                                              InstrMapTy &InstrMap) {
  for (auto &PHI : BB->phis()) {
    unsigned InitVal = 0;
    unsigned LoopVal = 0;
    getPhiRegs(PHI, BB, InitVal, LoopVal);
    Register PhiDef = PHI.getOperand(0).getReg();

    unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
    unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
    unsigned NumPhis = getStagesForPhi(PhiDef);
    if (NumPhis > StageNum)
      NumPhis = StageNum;
    for (unsigned np = 0; np <= NumPhis; ++np) {
      unsigned NewVal =
          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
      if (!NewVal)
        NewVal = InitVal;
      rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
                            NewVal);
    }
  }
}

/// Rewrite a previously scheduled instruction to use the register value
/// from the new instruction. Make sure the instruction occurs in the
/// basic block, and we don't change the uses in the new instruction.
void ModuloScheduleExpander::rewriteScheduledInstr(
    MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
    unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
    unsigned PrevReg) {
  bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
  int StagePhi = Schedule.getStage(Phi) + PhiNum;
  // Rewrite uses that have been scheduled already to use the new
  // Phi register.
  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
                                         EI = MRI.use_end();
       UI != EI;) {
    MachineOperand &UseOp = *UI;
    MachineInstr *UseMI = UseOp.getParent();
    ++UI;
    if (UseMI->getParent() != BB)
      continue;
    if (UseMI->isPHI()) {
      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
        continue;
      if (getLoopPhiReg(*UseMI, BB) != OldReg)
        continue;
    }
    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
    MachineInstr *OrigMI = OrigInstr->second;
    int StageSched = Schedule.getStage(OrigMI);
    int CycleSched = Schedule.getCycle(OrigMI);
    unsigned ReplaceReg = 0;
    // This is the stage for the scheduled instruction.
    if (StagePhi == StageSched && Phi->isPHI()) {
      int CyclePhi = Schedule.getCycle(Phi);
      if (PrevReg && InProlog)
        ReplaceReg = PrevReg;
      else if (PrevReg && !isLoopCarried(*Phi) &&
               (CyclePhi <= CycleSched || OrigMI->isPHI()))
        ReplaceReg = PrevReg;
      else
        ReplaceReg = NewReg;
    }
    // The scheduled instruction occurs before the scheduled Phi, and the
    // Phi is not loop carried.
    if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
      ReplaceReg = NewReg;
    if (StagePhi > StageSched && Phi->isPHI())
      ReplaceReg = NewReg;
    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
      ReplaceReg = NewReg;
    if (ReplaceReg) {
      MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
      UseOp.setReg(ReplaceReg);
    }
  }
}

bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
  if (!Phi.isPHI())
    return false;
  int DefCycle = Schedule.getCycle(&Phi);
  int DefStage = Schedule.getStage(&Phi);

  unsigned InitVal = 0;
  unsigned LoopVal = 0;
  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
  MachineInstr *Use = MRI.getVRegDef(LoopVal);
  if (!Use || Use->isPHI())
    return true;
  int LoopCycle = Schedule.getCycle(Use);
  int LoopStage = Schedule.getStage(Use);
  return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
}

//===----------------------------------------------------------------------===//
// PeelingModuloScheduleExpander implementation
//===----------------------------------------------------------------------===//
// This is a reimplementation of ModuloScheduleExpander that works by creating
// a fully correct steady-state kernel and peeling off the prolog and epilogs.
//===----------------------------------------------------------------------===//

namespace {
// Remove any dead phis in MBB. Dead phis either have only one block as input
// (in which case they are the identity) or have no uses.
void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
                       LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
  bool Changed = true;
  while (Changed) {
    Changed = false;
    for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
      MachineInstr &MI = *I++;
      assert(MI.isPHI());
      if (MRI.use_empty(MI.getOperand(0).getReg())) {
        if (LIS)
          LIS->RemoveMachineInstrFromMaps(MI);
        MI.eraseFromParent();
        Changed = true;
      } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
        MRI.constrainRegClass(MI.getOperand(1).getReg(),
                              MRI.getRegClass(MI.getOperand(0).getReg()));
        MRI.replaceRegWith(MI.getOperand(0).getReg(),
                           MI.getOperand(1).getReg());
        if (LIS)
          LIS->RemoveMachineInstrFromMaps(MI);
        MI.eraseFromParent();
        Changed = true;
      }
    }
  }
}

/// Rewrites the kernel block in-place to adhere to the given schedule.
/// KernelRewriter holds all of the state required to perform the rewriting.
class KernelRewriter {
  ModuloSchedule &S;
  MachineBasicBlock *BB;
  MachineBasicBlock *PreheaderBB, *ExitBB;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo *TII;
  LiveIntervals *LIS;

  // Map from register class to canonical undef register for that class.
  DenseMap<const TargetRegisterClass *, Register> Undefs;
  // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
  // this map is only used when InitReg is non-undef.
  DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
  // Map from LoopReg to phi register where the InitReg is undef.
  DenseMap<Register, Register> UndefPhis;

  // Reg is used by MI. Return the new register MI should use to adhere to the
  // schedule. Insert phis as necessary.
  Register remapUse(Register Reg, MachineInstr &MI);
  // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
  // If InitReg is not given it is chosen arbitrarily. It will either be undef
  // or will be chosen so as to share another phi.
  Register phi(Register LoopReg, Optional<Register> InitReg = {},
               const TargetRegisterClass *RC = nullptr);
  // Create an undef register of the given register class.
  Register undef(const TargetRegisterClass *RC);

public:
  KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
                 LiveIntervals *LIS = nullptr);
  void rewrite();
};
} // namespace

KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
                               MachineBasicBlock *LoopBB, LiveIntervals *LIS)
    : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
      ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
      TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
  PreheaderBB = *BB->pred_begin();
  if (PreheaderBB == BB)
    PreheaderBB = *std::next(BB->pred_begin());
}

void KernelRewriter::rewrite() {
  // Rearrange the loop to be in schedule order. Note that the schedule may
  // contain instructions that are not owned by the loop block (InstrChanges and
  // friends), so we gracefully handle unowned instructions and delete any
  // instructions that weren't in the schedule.
  auto InsertPt = BB->getFirstTerminator();
  MachineInstr *FirstMI = nullptr;
  for (MachineInstr *MI : S.getInstructions()) {
    if (MI->isPHI())
      continue;
    if (MI->getParent())
      MI->removeFromParent();
    BB->insert(InsertPt, MI);
    if (!FirstMI)
      FirstMI = MI;
  }
  assert(FirstMI && "Failed to find first MI in schedule");

  // At this point all of the scheduled instructions are between FirstMI
  // and the end of the block. Kill from the first non-phi to FirstMI.
  for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
    if (LIS)
      LIS->RemoveMachineInstrFromMaps(*I);
    (I++)->eraseFromParent();
  }

  // Now remap every instruction in the loop.
  for (MachineInstr &MI : *BB) {
    if (MI.isPHI() || MI.isTerminator())
      continue;
    for (MachineOperand &MO : MI.uses()) {
      if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
        continue;
      Register Reg = remapUse(MO.getReg(), MI);
      MO.setReg(Reg);
    }
  }
  EliminateDeadPhis(BB, MRI, LIS);

  // Ensure a phi exists for all instructions that are either referenced by
  // an illegal phi or by an instruction outside the loop. This allows us to
  // treat remaps of these values the same as "normal" values that come from
  // loop-carried phis.
  for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
    if (MI->isPHI()) {
      Register R = MI->getOperand(0).getReg();
      phi(R);
      continue;
    }

    for (MachineOperand &Def : MI->defs()) {
      for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
        if (MI.getParent() != BB) {
          phi(Def.getReg());
          break;
        }
      }
    }
  }
}

Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
  MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
  if (!Producer)
    return Reg;

  int ConsumerStage = S.getStage(&MI);
  if (!Producer->isPHI()) {
    // Non-phi producers are simple to remap. Insert as many phis as the
    // difference between the consumer and producer stages.
    if (Producer->getParent() != BB)
      // Producer was not inside the loop. Use the register as-is.
      return Reg;
    int ProducerStage = S.getStage(Producer);
    assert(ConsumerStage != -1 &&
           "In-loop consumer should always be scheduled!");
    assert(ConsumerStage >= ProducerStage);
    unsigned StageDiff = ConsumerStage - ProducerStage;

    for (unsigned I = 0; I < StageDiff; ++I)
      Reg = phi(Reg);
    return Reg;
  }

  // First, dive through the phi chain to find the defaults for the generated
  // phis.
  SmallVector<Optional<Register>, 4> Defaults;
  Register LoopReg = Reg;
  auto LoopProducer = Producer;
  while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
    LoopReg = getLoopPhiReg(*LoopProducer, BB);
    Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
    LoopProducer = MRI.getUniqueVRegDef(LoopReg);
    assert(LoopProducer);
  }
  int LoopProducerStage = S.getStage(LoopProducer);

  Optional<Register> IllegalPhiDefault;

  if (LoopProducerStage == -1) {
    // Do nothing.
  } else if (LoopProducerStage > ConsumerStage) {
    // This schedule is only representable if ProducerStage == ConsumerStage+1.
    // In addition, Consumer's cycle must be scheduled after Producer in the
    // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
    // functions.
#ifndef NDEBUG // Silence unused variables in non-asserts mode.
    int LoopProducerCycle = S.getCycle(LoopProducer);
    int ConsumerCycle = S.getCycle(&MI);
#endif
    assert(LoopProducerCycle <= ConsumerCycle);
    assert(LoopProducerStage == ConsumerStage + 1);
    // Peel off the first phi from Defaults and insert a phi between producer
    // and consumer. This phi will not be at the front of the block so we
    // consider it illegal. It will only exist during the rewrite process; it
    // needs to exist while we peel off prologs because these could take the
    // default value. After that we can replace all uses with the loop producer
    // value.
    IllegalPhiDefault = Defaults.front();
    Defaults.erase(Defaults.begin());
  } else {
    assert(ConsumerStage >= LoopProducerStage);
    int StageDiff = ConsumerStage - LoopProducerStage;
    if (StageDiff > 0) {
      LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
                        << " to " << (Defaults.size() + StageDiff) << "\n");
      // If we need more phis than we have defaults for, pad out with undefs for
      // the earliest phis, which are at the end of the defaults chain (the
      // chain is in reverse order).
      Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
                                                       ? Optional<Register>()
                                                       : Defaults.back());
    }
  }

  // Now we know the number of stages to jump back, insert the phi chain.
  auto DefaultI = Defaults.rbegin();
  while (DefaultI != Defaults.rend())
    LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));

  if (IllegalPhiDefault.hasValue()) {
    // The consumer optionally consumes LoopProducer in the same iteration
    // (because the producer is scheduled at an earlier cycle than the consumer)
    // or the initial value. To facilitate this we create an illegal block here
    // by embedding a phi in the middle of the block. We will fix this up
    // immediately prior to pruning.
    auto RC = MRI.getRegClass(Reg);
    Register R = MRI.createVirtualRegister(RC);
    MachineInstr *IllegalPhi =
        BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
            .addReg(IllegalPhiDefault.getValue())
            .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
            .addReg(LoopReg)
            .addMBB(BB); // Block choice is arbitrary and has no effect.
    // Illegal phi should belong to the producer stage so that it can be
    // filtered correctly during peeling.
    S.setStage(IllegalPhi, LoopProducerStage);
    return R;
  }

  return LoopReg;
}

Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
                             const TargetRegisterClass *RC) {
  // If the init register is not undef, try and find an existing phi.
  if (InitReg.hasValue()) {
    auto I = Phis.find({LoopReg, InitReg.getValue()});
    if (I != Phis.end())
      return I->second;
  } else {
    for (auto &KV : Phis) {
      if (KV.first.first == LoopReg)
        return KV.second;
    }
  }

  // InitReg is either undef or no existing phi takes InitReg as input. Try and
  // find a phi that takes undef as input.
  auto I = UndefPhis.find(LoopReg);
  if (I != UndefPhis.end()) {
    Register R = I->second;
    if (!InitReg.hasValue())
      // Found a phi taking undef as input, and this input is undef so return
      // without any more changes.
      return R;
    // Found a phi taking undef as input, so rewrite it to take InitReg.
    MachineInstr *MI = MRI.getVRegDef(R);
    MI->getOperand(1).setReg(InitReg.getValue());
    Phis.insert({{LoopReg, InitReg.getValue()}, R});
    MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
    UndefPhis.erase(I);
    return R;
  }

  // Failed to find any existing phi to reuse, so create a new one.
  if (!RC)
    RC = MRI.getRegClass(LoopReg);
  Register R = MRI.createVirtualRegister(RC);
  if (InitReg.hasValue())
    MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
  BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
      .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
      .addMBB(PreheaderBB)
      .addReg(LoopReg)
      .addMBB(BB);
  if (!InitReg.hasValue())
    UndefPhis[LoopReg] = R;
  else
    Phis[{LoopReg, *InitReg}] = R;
  return R;
}

Register KernelRewriter::undef(const TargetRegisterClass *RC) {
  Register &R = Undefs[RC];
  if (R == 0) {
    // Create an IMPLICIT_DEF that defines this register if we need it.
    // All uses of this should be removed by the time we have finished unrolling
    // prologs and epilogs.
    R = MRI.createVirtualRegister(RC);
    auto *InsertBB = &PreheaderBB->getParent()->front();
    BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
            TII->get(TargetOpcode::IMPLICIT_DEF), R);
  }
  return R;
}

namespace {
/// Describes an operand in the kernel of a pipelined loop. Characteristics of
/// the operand are discovered, such as how many in-loop PHIs it has to jump
/// through and defaults for these phis.
class KernelOperandInfo {
  MachineBasicBlock *BB;
  MachineRegisterInfo &MRI;
  SmallVector<Register, 4> PhiDefaults;
  MachineOperand *Source;
  MachineOperand *Target;

public:
  KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
                    const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
      : MRI(MRI) {
    Source = MO;
    BB = MO->getParent()->getParent();
    while (isRegInLoop(MO)) {
      MachineInstr *MI = MRI.getVRegDef(MO->getReg());
      if (MI->isFullCopy()) {
        MO = &MI->getOperand(1);
        continue;
      }
      if (!MI->isPHI())
        break;
      // If this is an illegal phi, don't count it in distance.
      if (IllegalPhis.count(MI)) {
        MO = &MI->getOperand(3);
        continue;
      }

      Register Default = getInitPhiReg(*MI, BB);
      MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
                                            : &MI->getOperand(3);
      PhiDefaults.push_back(Default);
    }
    Target = MO;
  }

  bool operator==(const KernelOperandInfo &Other) const {
    return PhiDefaults.size() == Other.PhiDefaults.size();
  }

  void print(raw_ostream &OS) const {
    OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
       << *Source->getParent();
  }

private:
  bool isRegInLoop(MachineOperand *MO) {
    return MO->isReg() && MO->getReg().isVirtual() &&
           MRI.getVRegDef(MO->getReg())->getParent() == BB;
  }
};
} // namespace

MachineBasicBlock *
PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
  MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
  if (LPD == LPD_Front)
    PeeledFront.push_back(NewBB);
  else
    PeeledBack.push_front(NewBB);
  for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
       ++I, ++NI) {
    CanonicalMIs[&*I] = &*I;
    CanonicalMIs[&*NI] = &*I;
    BlockMIs[{NewBB, &*I}] = &*NI;
    BlockMIs[{BB, &*I}] = &*I;
  }
  return NewBB;
}

void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
                                                       int MinStage) {
  for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
       I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
    MachineInstr *MI = &*I++;
    int Stage = getStage(MI);
    if (Stage == -1 || Stage >= MinStage)
      continue;

    for (MachineOperand &DefMO : MI->defs()) {
      SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
      for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
        // Only PHIs can use values from this block by construction.
        // Match with the equivalent PHI in B.
        assert(UseMI.isPHI());
        Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
                                               MI->getParent());
        Subs.emplace_back(&UseMI, Reg);
      }
      for (auto &Sub : Subs)
        Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
                                      *MRI.getTargetRegisterInfo());
    }
    if (LIS)
      LIS->RemoveMachineInstrFromMaps(*MI);
    MI->eraseFromParent();
  }
}

void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
    MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
  auto InsertPt = DestBB->getFirstNonPHI();
  DenseMap<Register, Register> Remaps;
  for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
    MachineInstr *MI = &*I++;
    if (MI->isPHI()) {
      // This is an illegal PHI. If we move any instructions using an illegal
      // PHI, we need to create a legal Phi.
      if (getStage(MI) != Stage) {
        // The legal Phi is not necessary if the illegal phi's stage
        // is being moved.
        Register PhiR = MI->getOperand(0).getReg();
        auto RC = MRI.getRegClass(PhiR);
        Register NR = MRI.createVirtualRegister(RC);
        MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
                                   DebugLoc(), TII->get(TargetOpcode::PHI), NR)
                               .addReg(PhiR)
                               .addMBB(SourceBB);
        BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
        CanonicalMIs[NI] = CanonicalMIs[MI];
        Remaps[PhiR] = NR;
      }
    }
    if (getStage(MI) != Stage)
      continue;
    MI->removeFromParent();
    DestBB->insert(InsertPt, MI);
    auto *KernelMI = CanonicalMIs[MI];
    BlockMIs[{DestBB, KernelMI}] = MI;
    BlockMIs.erase({SourceBB, KernelMI});
  }
  SmallVector<MachineInstr *, 4> PhiToDelete;
  for (MachineInstr &MI : DestBB->phis()) {
    assert(MI.getNumOperands() == 3);
    MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
    // If the instruction referenced by the phi is moved inside the block
    // we don't need the phi anymore.
    if (getStage(Def) == Stage) {
      Register PhiReg = MI.getOperand(0).getReg();
      assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
      MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
      MI.getOperand(0).setReg(PhiReg);
      PhiToDelete.push_back(&MI);
    }
  }
  for (auto *P : PhiToDelete)
    P->eraseFromParent();
  InsertPt = DestBB->getFirstNonPHI();
  // Helper to clone Phi instructions into the destination block. We clone Phi
  // greedily to avoid combinatorial explosion of Phi instructions.
  auto clonePhi = [&](MachineInstr *Phi) {
    MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
    DestBB->insert(InsertPt, NewMI);
    Register OrigR = Phi->getOperand(0).getReg();
    Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
    NewMI->getOperand(0).setReg(R);
    NewMI->getOperand(1).setReg(OrigR);
    NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
    Remaps[OrigR] = R;
    CanonicalMIs[NewMI] = CanonicalMIs[Phi];
    BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
    PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
    return R;
  };
  for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
    for (MachineOperand &MO : I->uses()) {
      if (!MO.isReg())
        continue;
      if (Remaps.count(MO.getReg()))
        MO.setReg(Remaps[MO.getReg()]);
      else {
        // If we are using a phi from the source block we need to add a new phi
        // pointing to the old one.
        MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
        if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
          Register R = clonePhi(Use);
          MO.setReg(R);
        }
      }
    }
  }
}

Register
PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
                                                  MachineInstr *Phi) {
  unsigned distance = PhiNodeLoopIteration[Phi];
  MachineInstr *CanonicalUse = CanonicalPhi;
  Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
  for (unsigned I = 0; I < distance; ++I) {
    assert(CanonicalUse->isPHI());
    assert(CanonicalUse->getNumOperands() == 5);
    unsigned LoopRegIdx = 3, InitRegIdx = 1;
    if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
      std::swap(LoopRegIdx, InitRegIdx);
    CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
    CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
  }
  return CanonicalUseReg;
}

void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
  BitVector LS(Schedule.getNumStages(), true);
  BitVector AS(Schedule.getNumStages(), true);
  LiveStages[BB] = LS;
  AvailableStages[BB] = AS;

  // Peel out the prologs.
  LS.reset();
  for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
    LS[I] = 1;
    Prologs.push_back(peelKernel(LPD_Front));
    LiveStages[Prologs.back()] = LS;
    AvailableStages[Prologs.back()] = LS;
  }

  // Create a block that will end up as the new loop exiting block (dominated by
  // all prologs and epilogs). It will only contain PHIs, in the same order as
  // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
  // that the exiting block is a (sub) clone of BB. This in turn gives us the
  // property that any value deffed in BB but used outside of BB is used by a
  // PHI in the exiting block.
  MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
  EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
  // Push out the epilogs, again in reverse order.
  // We can't assume anything about the minumum loop trip count at this point,
  // so emit a fairly complex epilog.

  // We first peel number of stages minus one epilogue. Then we remove dead
  // stages and reorder instructions based on their stage. If we have 3 stages
  // we generate first:
  // E0[3, 2, 1]
  // E1[3', 2']
  // E2[3'']
  // And then we move instructions based on their stages to have:
  // E0[3]
  // E1[2, 3']
  // E2[1, 2', 3'']
  // The transformation is legal because we only move instructions past
  // instructions of a previous loop iteration.
  for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
    Epilogs.push_back(peelKernel(LPD_Back));
    MachineBasicBlock *B = Epilogs.back();
    filterInstructions(B, Schedule.getNumStages() - I);
    // Keep track at which iteration each phi belongs to. We need it to know
    // what version of the variable to use during prologue/epilogue stitching.
    EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
    for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
      PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
  }
  for (size_t I = 0; I < Epilogs.size(); I++) {
    LS.reset();
    for (size_t J = I; J < Epilogs.size(); J++) {
      int Iteration = J;
      unsigned Stage = Schedule.getNumStages() - 1 + I - J;
      // Move stage one block at a time so that Phi nodes are updated correctly.
      for (size_t K = Iteration; K > I; K--)
        moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
      LS[Stage] = 1;
    }
    LiveStages[Epilogs[I]] = LS;
    AvailableStages[Epilogs[I]] = AS;
  }

  // Now we've defined all the prolog and epilog blocks as a fallthrough
  // sequence, add the edges that will be followed if the loop trip count is
  // lower than the number of stages (connecting prologs directly with epilogs).
  auto PI = Prologs.begin();
  auto EI = Epilogs.begin();
  assert(Prologs.size() == Epilogs.size());
  for (; PI != Prologs.end(); ++PI, ++EI) {
    MachineBasicBlock *Pred = *(*EI)->pred_begin();
    (*PI)->addSuccessor(*EI);
    for (MachineInstr &MI : (*EI)->phis()) {
      Register Reg = MI.getOperand(1).getReg();
      MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
      if (Use && Use->getParent() == Pred) {
        MachineInstr *CanonicalUse = CanonicalMIs[Use];
        if (CanonicalUse->isPHI()) {
          // If the use comes from a phi we need to skip as many phi as the
          // distance between the epilogue and the kernel. Trace through the phi
          // chain to find the right value.
          Reg = getPhiCanonicalReg(CanonicalUse, Use);
        }
        Reg = getEquivalentRegisterIn(Reg, *PI);
      }
      MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
      MI.addOperand(MachineOperand::CreateMBB(*PI));
    }
  }

  // Create a list of all blocks in order.
  SmallVector<MachineBasicBlock *, 8> Blocks;
  llvm::copy(PeeledFront, std::back_inserter(Blocks));
  Blocks.push_back(BB);
  llvm::copy(PeeledBack, std::back_inserter(Blocks));

  // Iterate in reverse order over all instructions, remapping as we go.
  for (MachineBasicBlock *B : reverse(Blocks)) {
    for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
         I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
      MachineInstr *MI = &*I++;
      rewriteUsesOf(MI);
    }
  }
  for (auto *MI : IllegalPhisToDelete) {
    if (LIS)
      LIS->RemoveMachineInstrFromMaps(*MI);
    MI->eraseFromParent();
  }
  IllegalPhisToDelete.clear();

  // Now all remapping has been done, we're free to optimize the generated code.
  for (MachineBasicBlock *B : reverse(Blocks))
    EliminateDeadPhis(B, MRI, LIS);
  EliminateDeadPhis(ExitingBB, MRI, LIS);
}

MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
  MachineFunction &MF = *BB->getParent();
  MachineBasicBlock *Exit = *BB->succ_begin();
  if (Exit == BB)
    Exit = *std::next(BB->succ_begin());

  MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
  MF.insert(std::next(BB->getIterator()), NewBB);

  // Clone all phis in BB into NewBB and rewrite.
  for (MachineInstr &MI : BB->phis()) {
    auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
    Register OldR = MI.getOperand(3).getReg();
    Register R = MRI.createVirtualRegister(RC);
    SmallVector<MachineInstr *, 4> Uses;
    for (MachineInstr &Use : MRI.use_instructions(OldR))
      if (Use.getParent() != BB)
        Uses.push_back(&Use);
    for (MachineInstr *Use : Uses)
      Use->substituteRegister(OldR, R, /*SubIdx=*/0,
                              *MRI.getTargetRegisterInfo());
    MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
        .addReg(OldR)
        .addMBB(BB);
    BlockMIs[{NewBB, &MI}] = NI;
    CanonicalMIs[NI] = &MI;
  }
  BB->replaceSuccessor(Exit, NewBB);
  Exit->replacePhiUsesWith(BB, NewBB);
  NewBB->addSuccessor(Exit);

  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
  (void)CanAnalyzeBr;
  assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
  TII->removeBranch(*BB);
  TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
                    Cond, DebugLoc());
  TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
  return NewBB;
}

Register
PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
                                                       MachineBasicBlock *BB) {
  MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
  unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
  return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
}

void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
  if (MI->isPHI()) {
    // This is an illegal PHI. The loop-carried (desired) value is operand 3,
    // and it is produced by this block.
    Register PhiR = MI->getOperand(0).getReg();
    Register R = MI->getOperand(3).getReg();
    int RMIStage = getStage(MRI.getUniqueVRegDef(R));
    if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
      R = MI->getOperand(1).getReg();
    MRI.setRegClass(R, MRI.getRegClass(PhiR));
    MRI.replaceRegWith(PhiR, R);
    // Postpone deleting the Phi as it may be referenced by BlockMIs and used
    // later to figure out how to remap registers.
    MI->getOperand(0).setReg(PhiR);
    IllegalPhisToDelete.push_back(MI);
    return;
  }

  int Stage = getStage(MI);
  if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
      LiveStages[MI->getParent()].test(Stage))
    // Instruction is live, no rewriting to do.
    return;

  for (MachineOperand &DefMO : MI->defs()) {
    SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
    for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
      // Only PHIs can use values from this block by construction.
      // Match with the equivalent PHI in B.
      assert(UseMI.isPHI());
      Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
                                             MI->getParent());
      Subs.emplace_back(&UseMI, Reg);
    }
    for (auto &Sub : Subs)
      Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
                                    *MRI.getTargetRegisterInfo());
  }
  if (LIS)
    LIS->RemoveMachineInstrFromMaps(*MI);
  MI->eraseFromParent();
}

void PeelingModuloScheduleExpander::fixupBranches() {
  // Work outwards from the kernel.
  bool KernelDisposed = false;
  int TC = Schedule.getNumStages() - 1;
  for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
       ++PI, ++EI, --TC) {
    MachineBasicBlock *Prolog = *PI;
    MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
    MachineBasicBlock *Epilog = *EI;
    SmallVector<MachineOperand, 4> Cond;
    TII->removeBranch(*Prolog);
    Optional<bool> StaticallyGreater =
        LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
    if (!StaticallyGreater.hasValue()) {
      LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
      // Dynamically branch based on Cond.
      TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
    } else if (*StaticallyGreater == false) {
      LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
      // Prolog never falls through; branch to epilog and orphan interior
      // blocks. Leave it to unreachable-block-elim to clean up.
      Prolog->removeSuccessor(Fallthrough);
      for (MachineInstr &P : Fallthrough->phis()) {
        P.RemoveOperand(2);
        P.RemoveOperand(1);
      }
      TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
      KernelDisposed = true;
    } else {
      LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
      // Prolog always falls through; remove incoming values in epilog.
      Prolog->removeSuccessor(Epilog);
      for (MachineInstr &P : Epilog->phis()) {
        P.RemoveOperand(4);
        P.RemoveOperand(3);
      }
    }
  }

  if (!KernelDisposed) {
    LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
    LoopInfo->setPreheader(Prologs.back());
  } else {
    LoopInfo->disposed();
  }
}

void PeelingModuloScheduleExpander::rewriteKernel() {
  KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
  KR.rewrite();
}

void PeelingModuloScheduleExpander::expand() {
  BB = Schedule.getLoop()->getTopBlock();
  Preheader = Schedule.getLoop()->getLoopPreheader();
  LLVM_DEBUG(Schedule.dump());
  LoopInfo = TII->analyzeLoopForPipelining(BB);
  assert(LoopInfo);

  rewriteKernel();
  peelPrologAndEpilogs();
  fixupBranches();
}

void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
  BB = Schedule.getLoop()->getTopBlock();
  Preheader = Schedule.getLoop()->getLoopPreheader();

  // Dump the schedule before we invalidate and remap all its instructions.
  // Stash it in a string so we can print it if we found an error.
  std::string ScheduleDump;
  raw_string_ostream OS(ScheduleDump);
  Schedule.print(OS);
  OS.flush();

  // First, run the normal ModuleScheduleExpander. We don't support any
  // InstrChanges.
  assert(LIS && "Requires LiveIntervals!");
  ModuloScheduleExpander MSE(MF, Schedule, *LIS,
                             ModuloScheduleExpander::InstrChangesTy());
  MSE.expand();
  MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
  if (!ExpandedKernel) {
    // The expander optimized away the kernel. We can't do any useful checking.
    MSE.cleanup();
    return;
  }
  // Before running the KernelRewriter, re-add BB into the CFG.
  Preheader->addSuccessor(BB);

  // Now run the new expansion algorithm.
  KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
  KR.rewrite();
  peelPrologAndEpilogs();

  // Collect all illegal phis that the new algorithm created. We'll give these
  // to KernelOperandInfo.
  SmallPtrSet<MachineInstr *, 4> IllegalPhis;
  for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
    if (NI->isPHI())
      IllegalPhis.insert(&*NI);
  }

  // Co-iterate across both kernels. We expect them to be identical apart from
  // phis and full COPYs (we look through both).
  SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
  auto OI = ExpandedKernel->begin();
  auto NI = BB->begin();
  for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
    while (OI->isPHI() || OI->isFullCopy())
      ++OI;
    while (NI->isPHI() || NI->isFullCopy())
      ++NI;
    assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
    // Analyze every operand separately.
    for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
         OOpI != OI->operands_end(); ++OOpI, ++NOpI)
      KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
                        KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
  }

  bool Failed = false;
  for (auto &OldAndNew : KOIs) {
    if (OldAndNew.first == OldAndNew.second)
      continue;
    Failed = true;
    errs() << "Modulo kernel validation error: [\n";
    errs() << " [golden] ";
    OldAndNew.first.print(errs());
    errs() << "          ";
    OldAndNew.second.print(errs());
    errs() << "]\n";
  }

  if (Failed) {
    errs() << "Golden reference kernel:\n";
    ExpandedKernel->print(errs());
    errs() << "New kernel:\n";
    BB->print(errs());
    errs() << ScheduleDump;
    report_fatal_error(
        "Modulo kernel validation (-pipeliner-experimental-cg) failed");
  }

  // Cleanup by removing BB from the CFG again as the original
  // ModuloScheduleExpander intended.
  Preheader->removeSuccessor(BB);
  MSE.cleanup();
}

//===----------------------------------------------------------------------===//
// ModuloScheduleTestPass implementation
//===----------------------------------------------------------------------===//
// This pass constructs a ModuloSchedule from its module and runs
// ModuloScheduleExpander.
//
// The module is expected to contain a single-block analyzable loop.
// The total order of instructions is taken from the loop as-is.
// Instructions are expected to be annotated with a PostInstrSymbol.
// This PostInstrSymbol must have the following format:
//  "Stage=%d Cycle=%d".
//===----------------------------------------------------------------------===//

namespace {
class ModuloScheduleTest : public MachineFunctionPass {
public:
  static char ID;

  ModuloScheduleTest() : MachineFunctionPass(ID) {
    initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;
  void runOnLoop(MachineFunction &MF, MachineLoop &L);

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<LiveIntervals>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};
} // namespace

char ModuloScheduleTest::ID = 0;

INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
                      "Modulo Schedule test pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
                    "Modulo Schedule test pass", false, false)

bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
  for (auto *L : MLI) {
    if (L->getTopBlock() != L->getBottomBlock())
      continue;
    runOnLoop(MF, *L);
    return false;
  }
  return false;
}

static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
  std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
  std::pair<StringRef, StringRef> StageTokenAndValue =
      getToken(StageAndCycle.first, "-");
  std::pair<StringRef, StringRef> CycleTokenAndValue =
      getToken(StageAndCycle.second, "-");
  if (StageTokenAndValue.first != "Stage" ||
      CycleTokenAndValue.first != "_Cycle") {
    llvm_unreachable(
        "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
    return;
  }

  StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
  CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);

  dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
}

void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
  MachineBasicBlock *BB = L.getTopBlock();
  dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";

  DenseMap<MachineInstr *, int> Cycle, Stage;
  std::vector<MachineInstr *> Instrs;
  for (MachineInstr &MI : *BB) {
    if (MI.isTerminator())
      continue;
    Instrs.push_back(&MI);
    if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
      dbgs() << "Parsing post-instr symbol for " << MI;
      parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
    }
  }

  ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
                    std::move(Stage));
  ModuloScheduleExpander MSE(
      MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
  MSE.expand();
  MSE.cleanup();
}

//===----------------------------------------------------------------------===//
// ModuloScheduleTestAnnotater implementation
//===----------------------------------------------------------------------===//

void ModuloScheduleTestAnnotater::annotate() {
  for (MachineInstr *MI : S.getInstructions()) {
    SmallVector<char, 16> SV;
    raw_svector_ostream OS(SV);
    OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
    MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
    MI->setPostInstrSymbol(MF, Sym);
  }
}