aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/DWARFLinker/DWARFLinkerCompileUnit.cpp
blob: acecb1788d10415ccc05e6a34de86a51e554b7eb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//===- DWARFLinkerCompileUnit.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/DWARFLinker/DWARFLinkerCompileUnit.h"
#include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"

namespace llvm {

/// Check if the DIE at \p Idx is in the scope of a function.
static bool inFunctionScope(CompileUnit &U, unsigned Idx) {
  while (Idx) {
    if (U.getOrigUnit().getDIEAtIndex(Idx).getTag() == dwarf::DW_TAG_subprogram)
      return true;
    Idx = U.getInfo(Idx).ParentIdx;
  }
  return false;
}

uint16_t CompileUnit::getLanguage() {
  if (!Language) {
    DWARFDie CU = getOrigUnit().getUnitDIE();
    Language = dwarf::toUnsigned(CU.find(dwarf::DW_AT_language), 0);
  }
  return Language;
}

StringRef CompileUnit::getSysRoot() {
  if (SysRoot.empty()) {
    DWARFDie CU = getOrigUnit().getUnitDIE();
    SysRoot = dwarf::toStringRef(CU.find(dwarf::DW_AT_LLVM_sysroot)).str();
  }
  return SysRoot;
}

void CompileUnit::markEverythingAsKept() {
  unsigned Idx = 0;

  for (auto &I : Info) {
    // Mark everything that wasn't explicit marked for pruning.
    I.Keep = !I.Prune;
    auto DIE = OrigUnit.getDIEAtIndex(Idx++);

    // Try to guess which DIEs must go to the accelerator tables. We do that
    // just for variables, because functions will be handled depending on
    // whether they carry a DW_AT_low_pc attribute or not.
    if (DIE.getTag() != dwarf::DW_TAG_variable &&
        DIE.getTag() != dwarf::DW_TAG_constant)
      continue;

    Optional<DWARFFormValue> Value;
    if (!(Value = DIE.find(dwarf::DW_AT_location))) {
      if ((Value = DIE.find(dwarf::DW_AT_const_value)) &&
          !inFunctionScope(*this, I.ParentIdx))
        I.InDebugMap = true;
      continue;
    }
    if (auto Block = Value->getAsBlock()) {
      if (Block->size() > OrigUnit.getAddressByteSize() &&
          (*Block)[0] == dwarf::DW_OP_addr)
        I.InDebugMap = true;
    }
  }
}

uint64_t CompileUnit::computeNextUnitOffset(uint16_t DwarfVersion) {
  NextUnitOffset = StartOffset;
  if (NewUnit) {
    NextUnitOffset += (DwarfVersion >= 5) ? 12 : 11; // Header size
    NextUnitOffset += NewUnit->getUnitDie().getSize();
  }
  return NextUnitOffset;
}

/// Keep track of a forward cross-cu reference from this unit
/// to \p Die that lives in \p RefUnit.
void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
                                       DeclContext *Ctxt, PatchLocation Attr) {
  ForwardDIEReferences.emplace_back(Die, RefUnit, Ctxt, Attr);
}

void CompileUnit::fixupForwardReferences() {
  for (const auto &Ref : ForwardDIEReferences) {
    DIE *RefDie;
    const CompileUnit *RefUnit;
    PatchLocation Attr;
    DeclContext *Ctxt;
    std::tie(RefDie, RefUnit, Ctxt, Attr) = Ref;
    if (Ctxt && Ctxt->getCanonicalDIEOffset())
      Attr.set(Ctxt->getCanonicalDIEOffset());
    else
      Attr.set(RefDie->getOffset() + RefUnit->getStartOffset());
  }
}

void CompileUnit::addLabelLowPc(uint64_t LabelLowPc, int64_t PcOffset) {
  Labels.insert({LabelLowPc, PcOffset});
}

void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc,
                                   int64_t PcOffset) {
  //  Don't add empty ranges to the interval map.  They are a problem because
  //  the interval map expects half open intervals. This is safe because they
  //  are empty anyway.
  if (FuncHighPc != FuncLowPc)
    Ranges.insert(FuncLowPc, FuncHighPc, PcOffset);
  this->LowPc = std::min(LowPc, FuncLowPc + PcOffset);
  this->HighPc = std::max(HighPc, FuncHighPc + PcOffset);
}

void CompileUnit::noteRangeAttribute(const DIE &Die, PatchLocation Attr) {
  if (Die.getTag() != dwarf::DW_TAG_compile_unit)
    RangeAttributes.push_back(Attr);
  else
    UnitRangeAttribute = Attr;
}

void CompileUnit::noteLocationAttribute(PatchLocation Attr, int64_t PcOffset) {
  LocationAttributes.emplace_back(Attr, PcOffset);
}

void CompileUnit::addNamespaceAccelerator(const DIE *Die,
                                          DwarfStringPoolEntryRef Name) {
  Namespaces.emplace_back(Name, Die);
}

void CompileUnit::addObjCAccelerator(const DIE *Die,
                                     DwarfStringPoolEntryRef Name,
                                     bool SkipPubSection) {
  ObjC.emplace_back(Name, Die, SkipPubSection);
}

void CompileUnit::addNameAccelerator(const DIE *Die,
                                     DwarfStringPoolEntryRef Name,
                                     bool SkipPubSection) {
  Pubnames.emplace_back(Name, Die, SkipPubSection);
}

void CompileUnit::addTypeAccelerator(const DIE *Die,
                                     DwarfStringPoolEntryRef Name,
                                     bool ObjcClassImplementation,
                                     uint32_t QualifiedNameHash) {
  Pubtypes.emplace_back(Name, Die, QualifiedNameHash, ObjcClassImplementation);
}

} // namespace llvm