aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/MCA/InstrBuilder.cpp
blob: 2bad136017186a23f711278fba7af539c4cefcca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstrBuilder interface.
///
//===----------------------------------------------------------------------===//

#include "llvm/MCA/InstrBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "llvm-mca"

namespace llvm {
namespace mca {

InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
                           const llvm::MCInstrInfo &mcii,
                           const llvm::MCRegisterInfo &mri,
                           const llvm::MCInstrAnalysis *mcia)
    : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
      FirstReturnInst(true) {
  const MCSchedModel &SM = STI.getSchedModel();
  ProcResourceMasks.resize(SM.getNumProcResourceKinds());
  computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
}

static void initializeUsedResources(InstrDesc &ID,
                                    const MCSchedClassDesc &SCDesc,
                                    const MCSubtargetInfo &STI,
                                    ArrayRef<uint64_t> ProcResourceMasks) {
  const MCSchedModel &SM = STI.getSchedModel();

  // Populate resources consumed.
  using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
  std::vector<ResourcePlusCycles> Worklist;

  // Track cycles contributed by resources that are in a "Super" relationship.
  // This is required if we want to correctly match the behavior of method
  // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
  // of "consumed" processor resources and resource cycles, the logic in
  // ExpandProcResource() doesn't update the number of resource cycles
  // contributed by a "Super" resource to a group.
  // We need to take this into account when we find that a processor resource is
  // part of a group, and it is also used as the "Super" of other resources.
  // This map stores the number of cycles contributed by sub-resources that are
  // part of a "Super" resource. The key value is the "Super" resource mask ID.
  DenseMap<uint64_t, unsigned> SuperResources;

  unsigned NumProcResources = SM.getNumProcResourceKinds();
  APInt Buffers(NumProcResources, 0);

  bool AllInOrderResources = true;
  bool AnyDispatchHazards = false;
  for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
    const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
    const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
    if (!PRE->Cycles) {
#ifndef NDEBUG
      WithColor::warning()
          << "Ignoring invalid write of zero cycles on processor resource "
          << PR.Name << "\n";
      WithColor::note() << "found in scheduling class " << SCDesc.Name
                        << " (write index #" << I << ")\n";
#endif
      continue;
    }

    uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
    if (PR.BufferSize < 0) {
      AllInOrderResources = false;
    } else {
      Buffers.setBit(getResourceStateIndex(Mask));
      AnyDispatchHazards |= (PR.BufferSize == 0);
      AllInOrderResources &= (PR.BufferSize <= 1);
    }

    CycleSegment RCy(0, PRE->Cycles, false);
    Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
    if (PR.SuperIdx) {
      uint64_t Super = ProcResourceMasks[PR.SuperIdx];
      SuperResources[Super] += PRE->Cycles;
    }
  }

  ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;

  // Sort elements by mask popcount, so that we prioritize resource units over
  // resource groups, and smaller groups over larger groups.
  sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
    unsigned popcntA = countPopulation(A.first);
    unsigned popcntB = countPopulation(B.first);
    if (popcntA < popcntB)
      return true;
    if (popcntA > popcntB)
      return false;
    return A.first < B.first;
  });

  uint64_t UsedResourceUnits = 0;
  uint64_t UsedResourceGroups = 0;

  // Remove cycles contributed by smaller resources.
  for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
    ResourcePlusCycles &A = Worklist[I];
    if (!A.second.size()) {
      assert(countPopulation(A.first) > 1 && "Expected a group!");
      UsedResourceGroups |= PowerOf2Floor(A.first);
      continue;
    }

    ID.Resources.emplace_back(A);
    uint64_t NormalizedMask = A.first;
    if (countPopulation(A.first) == 1) {
      UsedResourceUnits |= A.first;
    } else {
      // Remove the leading 1 from the resource group mask.
      NormalizedMask ^= PowerOf2Floor(NormalizedMask);
      UsedResourceGroups |= (A.first ^ NormalizedMask);
    }

    for (unsigned J = I + 1; J < E; ++J) {
      ResourcePlusCycles &B = Worklist[J];
      if ((NormalizedMask & B.first) == NormalizedMask) {
        B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
        if (countPopulation(B.first) > 1)
          B.second.NumUnits++;
      }
    }
  }

  // A SchedWrite may specify a number of cycles in which a resource group
  // is reserved. For example (on target x86; cpu Haswell):
  //
  //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
  //    let ResourceCycles = [2, 2, 3];
  //  }
  //
  // This means:
  // Resource units HWPort0 and HWPort1 are both used for 2cy.
  // Resource group HWPort01 is the union of HWPort0 and HWPort1.
  // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
  // will not be usable for 2 entire cycles from instruction issue.
  //
  // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
  // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
  // extra delay on top of the 2 cycles latency.
  // During those extra cycles, HWPort01 is not usable by other instructions.
  for (ResourcePlusCycles &RPC : ID.Resources) {
    if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
      // Remove the leading 1 from the resource group mask.
      uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
      uint64_t MaxResourceUnits = countPopulation(Mask);
      if (RPC.second.NumUnits > countPopulation(Mask)) {
        RPC.second.setReserved();
        RPC.second.NumUnits = MaxResourceUnits;
      }
    }
  }

  // Identify extra buffers that are consumed through super resources.
  for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
    for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
      const MCProcResourceDesc &PR = *SM.getProcResource(I);
      if (PR.BufferSize == -1)
        continue;

      uint64_t Mask = ProcResourceMasks[I];
      if (Mask != SR.first && ((Mask & SR.first) == SR.first))
        Buffers.setBit(getResourceStateIndex(Mask));
    }
  }

  ID.UsedBuffers = Buffers.getZExtValue();
  ID.UsedProcResUnits = UsedResourceUnits;
  ID.UsedProcResGroups = UsedResourceGroups;

  LLVM_DEBUG({
    for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
      dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
             << "Reserved=" << R.second.isReserved() << ", "
             << "#Units=" << R.second.NumUnits << ", "
             << "cy=" << R.second.size() << '\n';
    uint64_t BufferIDs = ID.UsedBuffers;
    while (BufferIDs) {
      uint64_t Current = BufferIDs & (-BufferIDs);
      dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
      BufferIDs ^= Current;
    }
    dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
    dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
           << '\n';
  });
}

static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
                              const MCSchedClassDesc &SCDesc,
                              const MCSubtargetInfo &STI) {
  if (MCDesc.isCall()) {
    // We cannot estimate how long this call will take.
    // Artificially set an arbitrarily high latency (100cy).
    ID.MaxLatency = 100U;
    return;
  }

  int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
  // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
  ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
}

static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
  // Count register definitions, and skip non register operands in the process.
  unsigned I, E;
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
    const MCOperand &Op = MCI.getOperand(I);
    if (Op.isReg())
      --NumExplicitDefs;
  }

  if (NumExplicitDefs) {
    return make_error<InstructionError<MCInst>>(
        "Expected more register operand definitions.", MCI);
  }

  if (MCDesc.hasOptionalDef()) {
    // Always assume that the optional definition is the last operand.
    const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
    if (I == MCI.getNumOperands() || !Op.isReg()) {
      std::string Message =
          "expected a register operand for an optional definition. Instruction "
          "has not been correctly analyzed.";
      return make_error<InstructionError<MCInst>>(Message, MCI);
    }
  }

  return ErrorSuccess();
}

void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
                                  unsigned SchedClassID) {
  const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
  const MCSchedModel &SM = STI.getSchedModel();
  const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);

  // Assumptions made by this algorithm:
  //  1. The number of explicit and implicit register definitions in a MCInst
  //     matches the number of explicit and implicit definitions according to
  //     the opcode descriptor (MCInstrDesc).
  //  2. Uses start at index #(MCDesc.getNumDefs()).
  //  3. There can only be a single optional register definition, an it is
  //     either the last operand of the sequence (excluding extra operands
  //     contributed by variadic opcodes) or one of the explicit register
  //     definitions. The latter occurs for some Thumb1 instructions.
  //
  // These assumptions work quite well for most out-of-order in-tree targets
  // like x86. This is mainly because the vast majority of instructions is
  // expanded to MCInst using a straightforward lowering logic that preserves
  // the ordering of the operands.
  //
  // About assumption 1.
  // The algorithm allows non-register operands between register operand
  // definitions. This helps to handle some special ARM instructions with
  // implicit operand increment (-mtriple=armv7):
  //
  // vld1.32  {d18, d19}, [r1]!  @ <MCInst #1463 VLD1q32wb_fixed
  //                             @  <MCOperand Reg:59>
  //                             @  <MCOperand Imm:0>     (!!)
  //                             @  <MCOperand Reg:67>
  //                             @  <MCOperand Imm:0>
  //                             @  <MCOperand Imm:14>
  //                             @  <MCOperand Reg:0>>
  //
  // MCDesc reports:
  //  6 explicit operands.
  //  1 optional definition
  //  2 explicit definitions (!!)
  //
  // The presence of an 'Imm' operand between the two register definitions
  // breaks the assumption that "register definitions are always at the
  // beginning of the operand sequence".
  //
  // To workaround this issue, this algorithm ignores (i.e. skips) any
  // non-register operands between register definitions.  The optional
  // definition is still at index #(NumOperands-1).
  //
  // According to assumption 2. register reads start at #(NumExplicitDefs-1).
  // That means, register R1 from the example is both read and written.
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
  unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
  unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
  if (MCDesc.hasOptionalDef())
    TotalDefs++;

  unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
  ID.Writes.resize(TotalDefs + NumVariadicOps);
  // Iterate over the operands list, and skip non-register operands.
  // The first NumExplicitDefs register operands are expected to be register
  // definitions.
  unsigned CurrentDef = 0;
  unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;
  unsigned i = 0;
  for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
    const MCOperand &Op = MCI.getOperand(i);
    if (!Op.isReg())
      continue;

    if (MCDesc.OpInfo[CurrentDef].isOptionalDef()) {
      OptionalDefIdx = CurrentDef++;
      continue;
    }

    WriteDescriptor &Write = ID.Writes[CurrentDef];
    Write.OpIndex = i;
    if (CurrentDef < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
      // Conservatively default to MaxLatency.
      Write.Latency =
          WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }
    Write.IsOptionalDef = false;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def]    OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
    CurrentDef++;
  }

  assert(CurrentDef == NumExplicitDefs &&
         "Expected more register operand definitions.");
  for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
    unsigned Index = NumExplicitDefs + CurrentDef;
    WriteDescriptor &Write = ID.Writes[Index];
    Write.OpIndex = ~CurrentDef;
    Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
    if (Index < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, Index);
      // Conservatively default to MaxLatency.
      Write.Latency =
          WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }

    Write.IsOptionalDef = false;
    assert(Write.RegisterID != 0 && "Expected a valid phys register!");
    LLVM_DEBUG({
      dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
             << ", PhysReg=" << MRI.getName(Write.RegisterID)
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  if (MCDesc.hasOptionalDef()) {
    WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
    Write.OpIndex = OptionalDefIdx;
    // Assign a default latency for this write.
    Write.Latency = ID.MaxLatency;
    Write.SClassOrWriteResourceID = 0;
    Write.IsOptionalDef = true;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  if (!NumVariadicOps)
    return;

  // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
  // "unmodeledSideEffects', then this logic optimistically assumes that any
  // extra register operands in the variadic sequence is not a register
  // definition.
  //
  // Otherwise, we conservatively assume that any register operand from the
  // variadic sequence is both a register read and a register write.
  bool AssumeUsesOnly = MCDesc.mayStore() && !MCDesc.mayLoad() &&
                        !MCDesc.hasUnmodeledSideEffects();
  CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
  for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
       I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
    const MCOperand &Op = MCI.getOperand(OpIndex);
    if (!Op.isReg())
      continue;

    WriteDescriptor &Write = ID.Writes[CurrentDef];
    Write.OpIndex = OpIndex;
    // Assign a default latency for this write.
    Write.Latency = ID.MaxLatency;
    Write.SClassOrWriteResourceID = 0;
    Write.IsOptionalDef = false;
    ++CurrentDef;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  ID.Writes.resize(CurrentDef);
}

void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
                                 unsigned SchedClassID) {
  const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
  unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
  unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
  // Remove the optional definition.
  if (MCDesc.hasOptionalDef())
    --NumExplicitUses;
  unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
  unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
  ID.Reads.resize(TotalUses);
  unsigned CurrentUse = 0;
  for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
       ++I, ++OpIndex) {
    const MCOperand &Op = MCI.getOperand(OpIndex);
    if (!Op.isReg())
      continue;

    ReadDescriptor &Read = ID.Reads[CurrentUse];
    Read.OpIndex = OpIndex;
    Read.UseIndex = I;
    Read.SchedClassID = SchedClassID;
    ++CurrentUse;
    LLVM_DEBUG(dbgs() << "\t\t[Use]    OpIdx=" << Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << '\n');
  }

  // For the purpose of ReadAdvance, implicit uses come directly after explicit
  // uses. The "UseIndex" must be updated according to that implicit layout.
  for (unsigned I = 0; I < NumImplicitUses; ++I) {
    ReadDescriptor &Read = ID.Reads[CurrentUse + I];
    Read.OpIndex = ~I;
    Read.UseIndex = NumExplicitUses + I;
    Read.RegisterID = MCDesc.getImplicitUses()[I];
    Read.SchedClassID = SchedClassID;
    LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << ", RegisterID="
                      << MRI.getName(Read.RegisterID) << '\n');
  }

  CurrentUse += NumImplicitUses;

  // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
  // "unmodeledSideEffects", then this logic optimistically assumes that any
  // extra register operand in the variadic sequence is not a register
  // definition.
  bool AssumeDefsOnly = !MCDesc.mayStore() && MCDesc.mayLoad() &&
                        !MCDesc.hasUnmodeledSideEffects();
  for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
       I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
    const MCOperand &Op = MCI.getOperand(OpIndex);
    if (!Op.isReg())
      continue;

    ReadDescriptor &Read = ID.Reads[CurrentUse];
    Read.OpIndex = OpIndex;
    Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
    Read.SchedClassID = SchedClassID;
    ++CurrentUse;
    LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << '\n');
  }

  ID.Reads.resize(CurrentUse);
}

Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
                                    const MCInst &MCI) const {
  if (ID.NumMicroOps != 0)
    return ErrorSuccess();

  bool UsesBuffers = ID.UsedBuffers;
  bool UsesResources = !ID.Resources.empty();
  if (!UsesBuffers && !UsesResources)
    return ErrorSuccess();

  // FIXME: see PR44797. We should revisit these checks and possibly move them
  // in CodeGenSchedule.cpp.
  StringRef Message = "found an inconsistent instruction that decodes to zero "
                      "opcodes and that consumes scheduler resources.";
  return make_error<InstructionError<MCInst>>(std::string(Message), MCI);
}

Expected<const InstrDesc &>
InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
  assert(STI.getSchedModel().hasInstrSchedModel() &&
         "Itineraries are not yet supported!");

  // Obtain the instruction descriptor from the opcode.
  unsigned short Opcode = MCI.getOpcode();
  const MCInstrDesc &MCDesc = MCII.get(Opcode);
  const MCSchedModel &SM = STI.getSchedModel();

  // Then obtain the scheduling class information from the instruction.
  unsigned SchedClassID = MCDesc.getSchedClass();
  bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();

  // Try to solve variant scheduling classes.
  if (IsVariant) {
    unsigned CPUID = SM.getProcessorID();
    while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
      SchedClassID =
          STI.resolveVariantSchedClass(SchedClassID, &MCI, &MCII, CPUID);

    if (!SchedClassID) {
      return make_error<InstructionError<MCInst>>(
          "unable to resolve scheduling class for write variant.", MCI);
    }
  }

  // Check if this instruction is supported. Otherwise, report an error.
  const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
  if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
    return make_error<InstructionError<MCInst>>(
        "found an unsupported instruction in the input assembly sequence.",
        MCI);
  }

  LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
  LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');

  // Create a new empty descriptor.
  std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
  ID->NumMicroOps = SCDesc.NumMicroOps;
  ID->SchedClassID = SchedClassID;

  if (MCDesc.isCall() && FirstCallInst) {
    // We don't correctly model calls.
    WithColor::warning() << "found a call in the input assembly sequence.\n";
    WithColor::note() << "call instructions are not correctly modeled. "
                      << "Assume a latency of 100cy.\n";
    FirstCallInst = false;
  }

  if (MCDesc.isReturn() && FirstReturnInst) {
    WithColor::warning() << "found a return instruction in the input"
                         << " assembly sequence.\n";
    WithColor::note() << "program counter updates are ignored.\n";
    FirstReturnInst = false;
  }

  ID->MayLoad = MCDesc.mayLoad();
  ID->MayStore = MCDesc.mayStore();
  ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
  ID->BeginGroup = SCDesc.BeginGroup;
  ID->EndGroup = SCDesc.EndGroup;

  initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
  computeMaxLatency(*ID, MCDesc, SCDesc, STI);

  if (Error Err = verifyOperands(MCDesc, MCI))
    return std::move(Err);

  populateWrites(*ID, MCI, SchedClassID);
  populateReads(*ID, MCI, SchedClassID);

  LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
  LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');

  // Sanity check on the instruction descriptor.
  if (Error Err = verifyInstrDesc(*ID, MCI))
    return std::move(Err);

  // Now add the new descriptor.
  bool IsVariadic = MCDesc.isVariadic();
  if (!IsVariadic && !IsVariant) {
    Descriptors[MCI.getOpcode()] = std::move(ID);
    return *Descriptors[MCI.getOpcode()];
  }

  VariantDescriptors[&MCI] = std::move(ID);
  return *VariantDescriptors[&MCI];
}

Expected<const InstrDesc &>
InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
  if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
    return *Descriptors[MCI.getOpcode()];

  if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
    return *VariantDescriptors[&MCI];

  return createInstrDescImpl(MCI);
}

Expected<std::unique_ptr<Instruction>>
InstrBuilder::createInstruction(const MCInst &MCI) {
  Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
  if (!DescOrErr)
    return DescOrErr.takeError();
  const InstrDesc &D = *DescOrErr;
  std::unique_ptr<Instruction> NewIS = std::make_unique<Instruction>(D);

  // Check if this is a dependency breaking instruction.
  APInt Mask;

  bool IsZeroIdiom = false;
  bool IsDepBreaking = false;
  if (MCIA) {
    unsigned ProcID = STI.getSchedModel().getProcessorID();
    IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
    IsDepBreaking =
        IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
    if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
      NewIS->setOptimizableMove();
  }

  // Initialize Reads first.
  MCPhysReg RegID = 0;
  for (const ReadDescriptor &RD : D.Reads) {
    if (!RD.isImplicitRead()) {
      // explicit read.
      const MCOperand &Op = MCI.getOperand(RD.OpIndex);
      // Skip non-register operands.
      if (!Op.isReg())
        continue;
      RegID = Op.getReg();
    } else {
      // Implicit read.
      RegID = RD.RegisterID;
    }

    // Skip invalid register operands.
    if (!RegID)
      continue;

    // Okay, this is a register operand. Create a ReadState for it.
    NewIS->getUses().emplace_back(RD, RegID);
    ReadState &RS = NewIS->getUses().back();

    if (IsDepBreaking) {
      // A mask of all zeroes means: explicit input operands are not
      // independent.
      if (Mask.isNullValue()) {
        if (!RD.isImplicitRead())
          RS.setIndependentFromDef();
      } else {
        // Check if this register operand is independent according to `Mask`.
        // Note that Mask may not have enough bits to describe all explicit and
        // implicit input operands. If this register operand doesn't have a
        // corresponding bit in Mask, then conservatively assume that it is
        // dependent.
        if (Mask.getBitWidth() > RD.UseIndex) {
          // Okay. This map describe register use `RD.UseIndex`.
          if (Mask[RD.UseIndex])
            RS.setIndependentFromDef();
        }
      }
    }
  }

  // Early exit if there are no writes.
  if (D.Writes.empty())
    return std::move(NewIS);

  // Track register writes that implicitly clear the upper portion of the
  // underlying super-registers using an APInt.
  APInt WriteMask(D.Writes.size(), 0);

  // Now query the MCInstrAnalysis object to obtain information about which
  // register writes implicitly clear the upper portion of a super-register.
  if (MCIA)
    MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);

  // Initialize writes.
  unsigned WriteIndex = 0;
  for (const WriteDescriptor &WD : D.Writes) {
    RegID = WD.isImplicitWrite() ? WD.RegisterID
                                 : MCI.getOperand(WD.OpIndex).getReg();
    // Check if this is a optional definition that references NoReg.
    if (WD.IsOptionalDef && !RegID) {
      ++WriteIndex;
      continue;
    }

    assert(RegID && "Expected a valid register ID!");
    NewIS->getDefs().emplace_back(WD, RegID,
                                  /* ClearsSuperRegs */ WriteMask[WriteIndex],
                                  /* WritesZero */ IsZeroIdiom);
    ++WriteIndex;
  }

  return std::move(NewIS);
}
} // namespace mca
} // namespace llvm