aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Object/MachOUniversalWriter.cpp
blob: 9673c97a10f01081d7e41998cbae49c0acd31aec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//===- MachOUniversalWriter.cpp - MachO universal binary writer---*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the Slice class and writeUniversalBinary function for writing a MachO
// universal binary file.
//
//===----------------------------------------------------------------------===//

#include "llvm/Object/MachOUniversalWriter.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Support/SmallVectorMemoryBuffer.h"

using namespace llvm;
using namespace object;

// For compatibility with cctools lipo, a file's alignment is calculated as the
// minimum aligment of all segments. For object files, the file's alignment is
// the maximum alignment of its sections.
static uint32_t calculateFileAlignment(const MachOObjectFile &O) {
  uint32_t P2CurrentAlignment;
  uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment;
  const bool Is64Bit = O.is64Bit();

  for (const auto &LC : O.load_commands()) {
    if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT))
      continue;
    if (O.getHeader().filetype == MachO::MH_OBJECT) {
      unsigned NumberOfSections =
          (Is64Bit ? O.getSegment64LoadCommand(LC).nsects
                   : O.getSegmentLoadCommand(LC).nsects);
      P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment;
      for (unsigned SI = 0; SI < NumberOfSections; ++SI) {
        P2CurrentAlignment = std::max(P2CurrentAlignment,
                                      (Is64Bit ? O.getSection64(LC, SI).align
                                               : O.getSection(LC, SI).align));
      }
    } else {
      P2CurrentAlignment =
          countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr
                                     : O.getSegmentLoadCommand(LC).vmaddr);
    }
    P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment);
  }
  // return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment
  return std::max(
      static_cast<uint32_t>(2),
      std::min(P2MinAlignment, static_cast<uint32_t>(
                                   MachOUniversalBinary::MaxSectionAlignment)));
}

static uint32_t calculateAlignment(const MachOObjectFile &ObjectFile) {
  switch (ObjectFile.getHeader().cputype) {
  case MachO::CPU_TYPE_I386:
  case MachO::CPU_TYPE_X86_64:
  case MachO::CPU_TYPE_POWERPC:
  case MachO::CPU_TYPE_POWERPC64:
    return 12; // log2 value of page size(4k) for x86 and PPC
  case MachO::CPU_TYPE_ARM:
  case MachO::CPU_TYPE_ARM64:
  case MachO::CPU_TYPE_ARM64_32:
    return 14; // log2 value of page size(16k) for Darwin ARM
  default:
    return calculateFileAlignment(ObjectFile);
  }
}

Slice::Slice(const Archive &A, uint32_t CPUType, uint32_t CPUSubType,
             std::string ArchName, uint32_t Align)
    : B(&A), CPUType(CPUType), CPUSubType(CPUSubType),
      ArchName(std::move(ArchName)), P2Alignment(Align) {}

Slice::Slice(const MachOObjectFile &O, uint32_t Align)
    : B(&O), CPUType(O.getHeader().cputype),
      CPUSubType(O.getHeader().cpusubtype),
      ArchName(std::string(O.getArchTriple().getArchName())),
      P2Alignment(Align) {}

Slice::Slice(const IRObjectFile &IRO, uint32_t CPUType, uint32_t CPUSubType,
             std::string ArchName, uint32_t Align)
    : B(&IRO), CPUType(CPUType), CPUSubType(CPUSubType),
      ArchName(std::move(ArchName)), P2Alignment(Align) {}

Slice::Slice(const MachOObjectFile &O) : Slice(O, calculateAlignment(O)) {}

using MachoCPUTy = std::pair<unsigned, unsigned>;

static Expected<MachoCPUTy> getMachoCPUFromTriple(Triple TT) {
  auto CPU = std::make_pair(MachO::getCPUType(TT), MachO::getCPUSubType(TT));
  if (!CPU.first) {
    return CPU.first.takeError();
  }
  if (!CPU.second) {
    return CPU.second.takeError();
  }
  return std::make_pair(*CPU.first, *CPU.second);
}

static Expected<MachoCPUTy> getMachoCPUFromTriple(StringRef TT) {
  return getMachoCPUFromTriple(Triple{TT});
}

Expected<Slice> Slice::create(const Archive &A, LLVMContext *LLVMCtx) {
  Error Err = Error::success();
  std::unique_ptr<MachOObjectFile> MFO = nullptr;
  std::unique_ptr<IRObjectFile> IRFO = nullptr;
  for (const Archive::Child &Child : A.children(Err)) {
    Expected<std::unique_ptr<Binary>> ChildOrErr = Child.getAsBinary(LLVMCtx);
    if (!ChildOrErr)
      return createFileError(A.getFileName(), ChildOrErr.takeError());
    Binary *Bin = ChildOrErr.get().get();
    if (Bin->isMachOUniversalBinary())
      return createStringError(std::errc::invalid_argument,
                               ("archive member " + Bin->getFileName() +
                                " is a fat file (not allowed in an archive)")
                                   .str()
                                   .c_str());
    if (Bin->isMachO()) {
      MachOObjectFile *O = cast<MachOObjectFile>(Bin);
      if (IRFO) {
        return createStringError(
            std::errc::invalid_argument,
            "archive member %s is a MachO, while previous archive member "
            "%s was an IR LLVM object",
            O->getFileName().str().c_str(), IRFO->getFileName().str().c_str());
      }
      if (MFO &&
          std::tie(MFO->getHeader().cputype, MFO->getHeader().cpusubtype) !=
              std::tie(O->getHeader().cputype, O->getHeader().cpusubtype)) {
        return createStringError(
            std::errc::invalid_argument,
            ("archive member " + O->getFileName() + " cputype (" +
             Twine(O->getHeader().cputype) + ") and cpusubtype(" +
             Twine(O->getHeader().cpusubtype) +
             ") does not match previous archive members cputype (" +
             Twine(MFO->getHeader().cputype) + ") and cpusubtype(" +
             Twine(MFO->getHeader().cpusubtype) +
             ") (all members must match) " + MFO->getFileName())
                .str()
                .c_str());
      }
      if (!MFO) {
        ChildOrErr.get().release();
        MFO.reset(O);
      }
    } else if (Bin->isIR()) {
      IRObjectFile *O = cast<IRObjectFile>(Bin);
      if (MFO) {
        return createStringError(std::errc::invalid_argument,
                                 "archive member '%s' is an LLVM IR object, "
                                 "while previous archive member "
                                 "'%s' was a MachO",
                                 O->getFileName().str().c_str(),
                                 MFO->getFileName().str().c_str());
      }
      if (IRFO) {
        Expected<MachoCPUTy> CPUO = getMachoCPUFromTriple(O->getTargetTriple());
        Expected<MachoCPUTy> CPUFO =
            getMachoCPUFromTriple(IRFO->getTargetTriple());
        if (!CPUO)
          return CPUO.takeError();
        if (!CPUFO)
          return CPUFO.takeError();
        if (*CPUO != *CPUFO) {
          return createStringError(
              std::errc::invalid_argument,
              ("archive member " + O->getFileName() + " cputype (" +
               Twine(CPUO->first) + ") and cpusubtype(" + Twine(CPUO->second) +
               ") does not match previous archive members cputype (" +
               Twine(CPUFO->first) + ") and cpusubtype(" +
               Twine(CPUFO->second) + ") (all members must match) " +
               IRFO->getFileName())
                  .str()
                  .c_str());
        }
      } else {
        ChildOrErr.get().release();
        IRFO.reset(O);
      }
    } else
      return createStringError(std::errc::invalid_argument,
                               ("archive member " + Bin->getFileName() +
                                " is neither a MachO file or an LLVM IR file "
                                "(not allowed in an archive)")
                                   .str()
                                   .c_str());
  }
  if (Err)
    return createFileError(A.getFileName(), std::move(Err));
  if (!MFO && !IRFO)
    return createStringError(
        std::errc::invalid_argument,
        ("empty archive with no architecture specification: " +
         A.getFileName() + " (can't determine architecture for it)")
            .str()
            .c_str());

  if (MFO) {
    Slice ArchiveSlice(*(MFO.get()), MFO->is64Bit() ? 3 : 2);
    ArchiveSlice.B = &A;
    return ArchiveSlice;
  }

  // For IR objects
  Expected<Slice> ArchiveSliceOrErr = Slice::create(*IRFO, 0);
  if (!ArchiveSliceOrErr)
    return createFileError(A.getFileName(), ArchiveSliceOrErr.takeError());
  auto &ArchiveSlice = ArchiveSliceOrErr.get();
  ArchiveSlice.B = &A;
  return std::move(ArchiveSlice);
}

Expected<Slice> Slice::create(const IRObjectFile &IRO, uint32_t Align) {
  Expected<MachoCPUTy> CPUOrErr = getMachoCPUFromTriple(IRO.getTargetTriple());
  if (!CPUOrErr)
    return CPUOrErr.takeError();
  unsigned CPUType, CPUSubType;
  std::tie(CPUType, CPUSubType) = CPUOrErr.get();
  // We don't directly use the architecture name of the target triple T, as,
  // for instance, thumb is treated as ARM by the MachOUniversal object.
  std::string ArchName(
      MachOObjectFile::getArchTriple(CPUType, CPUSubType).getArchName());
  return Slice{IRO, CPUType, CPUSubType, std::move(ArchName), Align};
}

static Expected<SmallVector<MachO::fat_arch, 2>>
buildFatArchList(ArrayRef<Slice> Slices) {
  SmallVector<MachO::fat_arch, 2> FatArchList;
  uint64_t Offset =
      sizeof(MachO::fat_header) + Slices.size() * sizeof(MachO::fat_arch);

  for (const auto &S : Slices) {
    Offset = alignTo(Offset, 1ull << S.getP2Alignment());
    if (Offset > UINT32_MAX)
      return createStringError(
          std::errc::invalid_argument,
          ("fat file too large to be created because the offset "
           "field in struct fat_arch is only 32-bits and the offset " +
           Twine(Offset) + " for " + S.getBinary()->getFileName() +
           " for architecture " + S.getArchString() + "exceeds that.")
              .str()
              .c_str());

    MachO::fat_arch FatArch;
    FatArch.cputype = S.getCPUType();
    FatArch.cpusubtype = S.getCPUSubType();
    FatArch.offset = Offset;
    FatArch.size = S.getBinary()->getMemoryBufferRef().getBufferSize();
    FatArch.align = S.getP2Alignment();
    Offset += FatArch.size;
    FatArchList.push_back(FatArch);
  }
  return FatArchList;
}

Error object::writeUniversalBinaryToStream(ArrayRef<Slice> Slices,
                                           raw_ostream &Out) {
  MachO::fat_header FatHeader;
  FatHeader.magic = MachO::FAT_MAGIC;
  FatHeader.nfat_arch = Slices.size();

  Expected<SmallVector<MachO::fat_arch, 2>> FatArchListOrErr =
      buildFatArchList(Slices);
  if (!FatArchListOrErr)
    return FatArchListOrErr.takeError();
  SmallVector<MachO::fat_arch, 2> FatArchList = *FatArchListOrErr;

  if (sys::IsLittleEndianHost)
    MachO::swapStruct(FatHeader);
  Out.write(reinterpret_cast<const char *>(&FatHeader),
            sizeof(MachO::fat_header));

  if (sys::IsLittleEndianHost)
    for (MachO::fat_arch &FA : FatArchList)
      MachO::swapStruct(FA);
  Out.write(reinterpret_cast<const char *>(FatArchList.data()),
            sizeof(MachO::fat_arch) * FatArchList.size());

  if (sys::IsLittleEndianHost)
    for (MachO::fat_arch &FA : FatArchList)
      MachO::swapStruct(FA);

  size_t Offset =
      sizeof(MachO::fat_header) + sizeof(MachO::fat_arch) * FatArchList.size();
  for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) {
    MemoryBufferRef BufferRef = Slices[Index].getBinary()->getMemoryBufferRef();
    assert((Offset <= FatArchList[Index].offset) && "Incorrect slice offset");
    Out.write_zeros(FatArchList[Index].offset - Offset);
    Out.write(BufferRef.getBufferStart(), BufferRef.getBufferSize());
    Offset = FatArchList[Index].offset + BufferRef.getBufferSize();
  }

  Out.flush();
  return Error::success();
}

Error object::writeUniversalBinary(ArrayRef<Slice> Slices,
                                   StringRef OutputFileName) {
  const bool IsExecutable = any_of(Slices, [](Slice S) {
    return sys::fs::can_execute(S.getBinary()->getFileName());
  });
  unsigned Mode = sys::fs::all_read | sys::fs::all_write;
  if (IsExecutable)
    Mode |= sys::fs::all_exe;
  Expected<sys::fs::TempFile> Temp = sys::fs::TempFile::create(
      OutputFileName + ".temp-universal-%%%%%%", Mode);
  if (!Temp)
    return Temp.takeError();
  raw_fd_ostream Out(Temp->FD, false);
  if (Error E = writeUniversalBinaryToStream(Slices, Out)) {
    if (Error DiscardError = Temp->discard())
      return joinErrors(std::move(E), std::move(DiscardError));
    return E;
  }
  return Temp->keep(OutputFileName);
}