aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Passes/PassBuilderPipelines.cpp
blob: 593243144f0193d8883b914f1dcd06ef6892120f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
//===- Construction of pass pipelines -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides the implementation of the PassBuilder based on our
/// static pass registry as well as related functionality. It also provides
/// helpers to aid in analyzing, debugging, and testing passes and pass
/// pipelines.
///
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Passes/OptimizationLevel.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/PGOOptions.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "llvm/Transforms/Coroutines/CoroCleanup.h"
#include "llvm/Transforms/Coroutines/CoroConditionalWrapper.h"
#include "llvm/Transforms/Coroutines/CoroEarly.h"
#include "llvm/Transforms/Coroutines/CoroElide.h"
#include "llvm/Transforms/Coroutines/CoroSplit.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/Annotation2Metadata.h"
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/IPO/CalledValuePropagation.h"
#include "llvm/Transforms/IPO/ConstantMerge.h"
#include "llvm/Transforms/IPO/CrossDSOCFI.h"
#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
#include "llvm/Transforms/IPO/ElimAvailExtern.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/Transforms/IPO/GlobalOpt.h"
#include "llvm/Transforms/IPO/GlobalSplit.h"
#include "llvm/Transforms/IPO/HotColdSplitting.h"
#include "llvm/Transforms/IPO/IROutliner.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/MergeFunctions.h"
#include "llvm/Transforms/IPO/ModuleInliner.h"
#include "llvm/Transforms/IPO/OpenMPOpt.h"
#include "llvm/Transforms/IPO/PartialInlining.h"
#include "llvm/Transforms/IPO/SCCP.h"
#include "llvm/Transforms/IPO/SampleProfile.h"
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
#include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation/CGProfile.h"
#include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
#include "llvm/Transforms/Instrumentation/InstrOrderFile.h"
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
#include "llvm/Transforms/Scalar/AnnotationRemarks.h"
#include "llvm/Transforms/Scalar/BDCE.h"
#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/Transforms/Scalar/DFAJumpThreading.h"
#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/Transforms/Scalar/DivRemPairs.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Transforms/Scalar/Float2Int.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/IndVarSimplify.h"
#include "llvm/Transforms/Scalar/InstSimplifyPass.h"
#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/Transforms/Scalar/LoopDistribute.h"
#include "llvm/Transforms/Scalar/LoopFlatten.h"
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
#include "llvm/Transforms/Scalar/LoopInstSimplify.h"
#include "llvm/Transforms/Scalar/LoopInterchange.h"
#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Scalar/LoopRotation.h"
#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
#include "llvm/Transforms/Scalar/LoopSink.h"
#include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
#include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Scalar/SROA.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/Transforms/Scalar/SpeculativeExecution.h"
#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
#include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
#include "llvm/Transforms/Utils/AddDiscriminators.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
#include "llvm/Transforms/Utils/Mem2Reg.h"
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
#include "llvm/Transforms/Utils/RelLookupTableConverter.h"
#include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include "llvm/Transforms/Vectorize/VectorCombine.h"

using namespace llvm;

static cl::opt<InliningAdvisorMode> UseInlineAdvisor(
    "enable-ml-inliner", cl::init(InliningAdvisorMode::Default), cl::Hidden,
    cl::desc("Enable ML policy for inliner. Currently trained for -Oz only"),
    cl::values(clEnumValN(InliningAdvisorMode::Default, "default",
                          "Heuristics-based inliner version."),
               clEnumValN(InliningAdvisorMode::Development, "development",
                          "Use development mode (runtime-loadable model)."),
               clEnumValN(InliningAdvisorMode::Release, "release",
                          "Use release mode (AOT-compiled model).")));

static cl::opt<bool> EnableSyntheticCounts(
    "enable-npm-synthetic-counts", cl::Hidden,
    cl::desc("Run synthetic function entry count generation "
             "pass"));

/// Flag to enable inline deferral during PGO.
static cl::opt<bool>
    EnablePGOInlineDeferral("enable-npm-pgo-inline-deferral", cl::init(true),
                            cl::Hidden,
                            cl::desc("Enable inline deferral during PGO"));

static cl::opt<bool> EnableMemProfiler("enable-mem-prof", cl::Hidden,
                                       cl::desc("Enable memory profiler"));

static cl::opt<bool> EnableModuleInliner("enable-module-inliner",
                                         cl::init(false), cl::Hidden,
                                         cl::desc("Enable module inliner"));

static cl::opt<bool> PerformMandatoryInliningsFirst(
    "mandatory-inlining-first", cl::init(true), cl::Hidden,
    cl::desc("Perform mandatory inlinings module-wide, before performing "
             "inlining."));

static cl::opt<bool> EnableO3NonTrivialUnswitching(
    "enable-npm-O3-nontrivial-unswitch", cl::init(true), cl::Hidden,
    cl::desc("Enable non-trivial loop unswitching for -O3"));

static cl::opt<bool> EnableEagerlyInvalidateAnalyses(
    "eagerly-invalidate-analyses", cl::init(true), cl::Hidden,
    cl::desc("Eagerly invalidate more analyses in default pipelines"));

static cl::opt<bool> EnableNoRerunSimplificationPipeline(
    "enable-no-rerun-simplification-pipeline", cl::init(false), cl::Hidden,
    cl::desc(
        "Prevent running the simplification pipeline on a function more "
        "than once in the case that SCC mutations cause a function to be "
        "visited multiple times as long as the function has not been changed"));

static cl::opt<bool> EnableMergeFunctions(
    "enable-merge-functions", cl::init(false), cl::Hidden,
    cl::desc("Enable function merging as part of the optimization pipeline"));

PipelineTuningOptions::PipelineTuningOptions() {
  LoopInterleaving = true;
  LoopVectorization = true;
  SLPVectorization = false;
  LoopUnrolling = true;
  ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
  LicmMssaOptCap = SetLicmMssaOptCap;
  LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
  CallGraphProfile = true;
  MergeFunctions = EnableMergeFunctions;
  EagerlyInvalidateAnalyses = EnableEagerlyInvalidateAnalyses;
}

namespace llvm {

extern cl::opt<unsigned> MaxDevirtIterations;
extern cl::opt<bool> EnableConstraintElimination;
extern cl::opt<bool> EnableFunctionSpecialization;
extern cl::opt<bool> EnableGVNHoist;
extern cl::opt<bool> EnableGVNSink;
extern cl::opt<bool> EnableHotColdSplit;
extern cl::opt<bool> EnableIROutliner;
extern cl::opt<bool> EnableOrderFileInstrumentation;
extern cl::opt<bool> EnableCHR;
extern cl::opt<bool> EnableLoopInterchange;
extern cl::opt<bool> EnableUnrollAndJam;
extern cl::opt<bool> EnableLoopFlatten;
extern cl::opt<bool> EnableDFAJumpThreading;
extern cl::opt<bool> RunNewGVN;
extern cl::opt<bool> RunPartialInlining;
extern cl::opt<bool> ExtraVectorizerPasses;

extern cl::opt<bool> FlattenedProfileUsed;

extern cl::opt<AttributorRunOption> AttributorRun;
extern cl::opt<bool> EnableKnowledgeRetention;

extern cl::opt<bool> EnableMatrix;

extern cl::opt<bool> DisablePreInliner;
extern cl::opt<int> PreInlineThreshold;
} // namespace llvm

void PassBuilder::invokePeepholeEPCallbacks(FunctionPassManager &FPM,
                                            OptimizationLevel Level) {
  for (auto &C : PeepholeEPCallbacks)
    C(FPM, Level);
}

// Helper to add AnnotationRemarksPass.
static void addAnnotationRemarksPass(ModulePassManager &MPM) {
  MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
}

// Helper to check if the current compilation phase is preparing for LTO
static bool isLTOPreLink(ThinOrFullLTOPhase Phase) {
  return Phase == ThinOrFullLTOPhase::ThinLTOPreLink ||
         Phase == ThinOrFullLTOPhase::FullLTOPreLink;
}

// TODO: Investigate the cost/benefit of tail call elimination on debugging.
FunctionPassManager
PassBuilder::buildO1FunctionSimplificationPipeline(OptimizationLevel Level,
                                                   ThinOrFullLTOPhase Phase) {

  FunctionPassManager FPM;

  // Form SSA out of local memory accesses after breaking apart aggregates into
  // scalars.
  FPM.addPass(SROAPass());

  // Catch trivial redundancies
  FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));

  // Hoisting of scalars and load expressions.
  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  FPM.addPass(InstCombinePass());

  FPM.addPass(LibCallsShrinkWrapPass());

  invokePeepholeEPCallbacks(FPM, Level);

  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));

  // Form canonically associated expression trees, and simplify the trees using
  // basic mathematical properties. For example, this will form (nearly)
  // minimal multiplication trees.
  FPM.addPass(ReassociatePass());

  // Add the primary loop simplification pipeline.
  // FIXME: Currently this is split into two loop pass pipelines because we run
  // some function passes in between them. These can and should be removed
  // and/or replaced by scheduling the loop pass equivalents in the correct
  // positions. But those equivalent passes aren't powerful enough yet.
  // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
  // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
  // fully replace `SimplifyCFGPass`, and the closest to the other we have is
  // `LoopInstSimplify`.
  LoopPassManager LPM1, LPM2;

  // Simplify the loop body. We do this initially to clean up after other loop
  // passes run, either when iterating on a loop or on inner loops with
  // implications on the outer loop.
  LPM1.addPass(LoopInstSimplifyPass());
  LPM1.addPass(LoopSimplifyCFGPass());

  // Try to remove as much code from the loop header as possible,
  // to reduce amount of IR that will have to be duplicated. However,
  // do not perform speculative hoisting the first time as LICM
  // will destroy metadata that may not need to be destroyed if run
  // after loop rotation.
  // TODO: Investigate promotion cap for O1.
  LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
                        /*AllowSpeculation=*/false));

  LPM1.addPass(LoopRotatePass(/* Disable header duplication */ true,
                              isLTOPreLink(Phase)));
  // TODO: Investigate promotion cap for O1.
  LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
                        /*AllowSpeculation=*/true));
  LPM1.addPass(SimpleLoopUnswitchPass());
  if (EnableLoopFlatten)
    LPM1.addPass(LoopFlattenPass());

  LPM2.addPass(LoopIdiomRecognizePass());
  LPM2.addPass(IndVarSimplifyPass());

  for (auto &C : LateLoopOptimizationsEPCallbacks)
    C(LPM2, Level);

  LPM2.addPass(LoopDeletionPass());

  if (EnableLoopInterchange)
    LPM2.addPass(LoopInterchangePass());

  // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
  // because it changes IR to makes profile annotation in back compile
  // inaccurate. The normal unroller doesn't pay attention to forced full unroll
  // attributes so we need to make sure and allow the full unroll pass to pay
  // attention to it.
  if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
      PGOOpt->Action != PGOOptions::SampleUse)
    LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
                                    /* OnlyWhenForced= */ !PTO.LoopUnrolling,
                                    PTO.ForgetAllSCEVInLoopUnroll));

  for (auto &C : LoopOptimizerEndEPCallbacks)
    C(LPM2, Level);

  // We provide the opt remark emitter pass for LICM to use. We only need to do
  // this once as it is immutable.
  FPM.addPass(
      RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
                                              /*UseMemorySSA=*/true,
                                              /*UseBlockFrequencyInfo=*/true));
  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  FPM.addPass(InstCombinePass());
  // The loop passes in LPM2 (LoopFullUnrollPass) do not preserve MemorySSA.
  // *All* loop passes must preserve it, in order to be able to use it.
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
                                              /*UseMemorySSA=*/false,
                                              /*UseBlockFrequencyInfo=*/false));

  // Delete small array after loop unroll.
  FPM.addPass(SROAPass());

  // Specially optimize memory movement as it doesn't look like dataflow in SSA.
  FPM.addPass(MemCpyOptPass());

  // Sparse conditional constant propagation.
  // FIXME: It isn't clear why we do this *after* loop passes rather than
  // before...
  FPM.addPass(SCCPPass());

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  FPM.addPass(BDCEPass());

  // Run instcombine after redundancy and dead bit elimination to exploit
  // opportunities opened up by them.
  FPM.addPass(InstCombinePass());
  invokePeepholeEPCallbacks(FPM, Level);

  FPM.addPass(CoroElidePass());

  for (auto &C : ScalarOptimizerLateEPCallbacks)
    C(FPM, Level);

  // Finally, do an expensive DCE pass to catch all the dead code exposed by
  // the simplifications and basic cleanup after all the simplifications.
  // TODO: Investigate if this is too expensive.
  FPM.addPass(ADCEPass());
  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  FPM.addPass(InstCombinePass());
  invokePeepholeEPCallbacks(FPM, Level);

  return FPM;
}

FunctionPassManager
PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
                                                 ThinOrFullLTOPhase Phase) {
  assert(Level != OptimizationLevel::O0 && "Must request optimizations!");

  // The O1 pipeline has a separate pipeline creation function to simplify
  // construction readability.
  if (Level.getSpeedupLevel() == 1)
    return buildO1FunctionSimplificationPipeline(Level, Phase);

  FunctionPassManager FPM;

  // Form SSA out of local memory accesses after breaking apart aggregates into
  // scalars.
  FPM.addPass(SROAPass());

  // Catch trivial redundancies
  FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
  if (EnableKnowledgeRetention)
    FPM.addPass(AssumeSimplifyPass());

  // Hoisting of scalars and load expressions.
  if (EnableGVNHoist)
    FPM.addPass(GVNHoistPass());

  // Global value numbering based sinking.
  if (EnableGVNSink) {
    FPM.addPass(GVNSinkPass());
    FPM.addPass(
        SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  }

  if (EnableConstraintElimination)
    FPM.addPass(ConstraintEliminationPass());

  // Speculative execution if the target has divergent branches; otherwise nop.
  FPM.addPass(SpeculativeExecutionPass(/* OnlyIfDivergentTarget =*/true));

  // Optimize based on known information about branches, and cleanup afterward.
  FPM.addPass(JumpThreadingPass());
  FPM.addPass(CorrelatedValuePropagationPass());

  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  FPM.addPass(InstCombinePass());
  if (Level == OptimizationLevel::O3)
    FPM.addPass(AggressiveInstCombinePass());

  if (!Level.isOptimizingForSize())
    FPM.addPass(LibCallsShrinkWrapPass());

  invokePeepholeEPCallbacks(FPM, Level);

  // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
  // using the size value profile. Don't perform this when optimizing for size.
  if (PGOOpt && PGOOpt->Action == PGOOptions::IRUse &&
      !Level.isOptimizingForSize())
    FPM.addPass(PGOMemOPSizeOpt());

  FPM.addPass(TailCallElimPass());
  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));

  // Form canonically associated expression trees, and simplify the trees using
  // basic mathematical properties. For example, this will form (nearly)
  // minimal multiplication trees.
  FPM.addPass(ReassociatePass());

  // Add the primary loop simplification pipeline.
  // FIXME: Currently this is split into two loop pass pipelines because we run
  // some function passes in between them. These can and should be removed
  // and/or replaced by scheduling the loop pass equivalents in the correct
  // positions. But those equivalent passes aren't powerful enough yet.
  // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
  // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
  // fully replace `SimplifyCFGPass`, and the closest to the other we have is
  // `LoopInstSimplify`.
  LoopPassManager LPM1, LPM2;

  // Simplify the loop body. We do this initially to clean up after other loop
  // passes run, either when iterating on a loop or on inner loops with
  // implications on the outer loop.
  LPM1.addPass(LoopInstSimplifyPass());
  LPM1.addPass(LoopSimplifyCFGPass());

  // Try to remove as much code from the loop header as possible,
  // to reduce amount of IR that will have to be duplicated. However,
  // do not perform speculative hoisting the first time as LICM
  // will destroy metadata that may not need to be destroyed if run
  // after loop rotation.
  // TODO: Investigate promotion cap for O1.
  LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
                        /*AllowSpeculation=*/false));

  // Disable header duplication in loop rotation at -Oz.
  LPM1.addPass(
      LoopRotatePass(Level != OptimizationLevel::Oz, isLTOPreLink(Phase)));
  // TODO: Investigate promotion cap for O1.
  LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
                        /*AllowSpeculation=*/true));
  LPM1.addPass(
      SimpleLoopUnswitchPass(/* NonTrivial */ Level == OptimizationLevel::O3 &&
                             EnableO3NonTrivialUnswitching));
  if (EnableLoopFlatten)
    LPM1.addPass(LoopFlattenPass());

  LPM2.addPass(LoopIdiomRecognizePass());
  LPM2.addPass(IndVarSimplifyPass());

  for (auto &C : LateLoopOptimizationsEPCallbacks)
    C(LPM2, Level);

  LPM2.addPass(LoopDeletionPass());

  if (EnableLoopInterchange)
    LPM2.addPass(LoopInterchangePass());

  // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
  // because it changes IR to makes profile annotation in back compile
  // inaccurate. The normal unroller doesn't pay attention to forced full unroll
  // attributes so we need to make sure and allow the full unroll pass to pay
  // attention to it.
  if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
      PGOOpt->Action != PGOOptions::SampleUse)
    LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
                                    /* OnlyWhenForced= */ !PTO.LoopUnrolling,
                                    PTO.ForgetAllSCEVInLoopUnroll));

  for (auto &C : LoopOptimizerEndEPCallbacks)
    C(LPM2, Level);

  // We provide the opt remark emitter pass for LICM to use. We only need to do
  // this once as it is immutable.
  FPM.addPass(
      RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
                                              /*UseMemorySSA=*/true,
                                              /*UseBlockFrequencyInfo=*/true));
  FPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  FPM.addPass(InstCombinePass());
  // The loop passes in LPM2 (LoopIdiomRecognizePass, IndVarSimplifyPass,
  // LoopDeletionPass and LoopFullUnrollPass) do not preserve MemorySSA.
  // *All* loop passes must preserve it, in order to be able to use it.
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
                                              /*UseMemorySSA=*/false,
                                              /*UseBlockFrequencyInfo=*/false));

  // Delete small array after loop unroll.
  FPM.addPass(SROAPass());

  // The matrix extension can introduce large vector operations early, which can
  // benefit from running vector-combine early on.
  if (EnableMatrix)
    FPM.addPass(VectorCombinePass(/*ScalarizationOnly=*/true));

  // Eliminate redundancies.
  FPM.addPass(MergedLoadStoreMotionPass());
  if (RunNewGVN)
    FPM.addPass(NewGVNPass());
  else
    FPM.addPass(GVNPass());

  // Sparse conditional constant propagation.
  // FIXME: It isn't clear why we do this *after* loop passes rather than
  // before...
  FPM.addPass(SCCPPass());

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  FPM.addPass(BDCEPass());

  // Run instcombine after redundancy and dead bit elimination to exploit
  // opportunities opened up by them.
  FPM.addPass(InstCombinePass());
  invokePeepholeEPCallbacks(FPM, Level);

  // Re-consider control flow based optimizations after redundancy elimination,
  // redo DCE, etc.
  if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
    FPM.addPass(DFAJumpThreadingPass());

  FPM.addPass(JumpThreadingPass());
  FPM.addPass(CorrelatedValuePropagationPass());

  // Finally, do an expensive DCE pass to catch all the dead code exposed by
  // the simplifications and basic cleanup after all the simplifications.
  // TODO: Investigate if this is too expensive.
  FPM.addPass(ADCEPass());

  // Specially optimize memory movement as it doesn't look like dataflow in SSA.
  FPM.addPass(MemCpyOptPass());

  FPM.addPass(DSEPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
               /*AllowSpeculation=*/true),
      /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));

  FPM.addPass(CoroElidePass());

  for (auto &C : ScalarOptimizerLateEPCallbacks)
    C(FPM, Level);

  FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
                                  .convertSwitchRangeToICmp(true)
                                  .hoistCommonInsts(true)
                                  .sinkCommonInsts(true)));
  FPM.addPass(InstCombinePass());
  invokePeepholeEPCallbacks(FPM, Level);

  if (EnableCHR && Level == OptimizationLevel::O3 && PGOOpt &&
      (PGOOpt->Action == PGOOptions::IRUse ||
       PGOOpt->Action == PGOOptions::SampleUse))
    FPM.addPass(ControlHeightReductionPass());

  return FPM;
}

void PassBuilder::addRequiredLTOPreLinkPasses(ModulePassManager &MPM) {
  MPM.addPass(CanonicalizeAliasesPass());
  MPM.addPass(NameAnonGlobalPass());
}

void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM,
                                    OptimizationLevel Level, bool RunProfileGen,
                                    bool IsCS, std::string ProfileFile,
                                    std::string ProfileRemappingFile,
                                    ThinOrFullLTOPhase LTOPhase) {
  assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
  if (!IsCS && !DisablePreInliner) {
    InlineParams IP;

    IP.DefaultThreshold = PreInlineThreshold;

    // FIXME: The hint threshold has the same value used by the regular inliner
    // when not optimzing for size. This should probably be lowered after
    // performance testing.
    // FIXME: this comment is cargo culted from the old pass manager, revisit).
    IP.HintThreshold = Level.isOptimizingForSize() ? PreInlineThreshold : 325;
    ModuleInlinerWrapperPass MIWP(
        IP, /* MandatoryFirst */ true,
        InlineContext{LTOPhase, InlinePass::EarlyInliner});
    CGSCCPassManager &CGPipeline = MIWP.getPM();

    FunctionPassManager FPM;
    FPM.addPass(SROAPass());
    FPM.addPass(EarlyCSEPass());    // Catch trivial redundancies.
    FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
        true)));                    // Merge & remove basic blocks.
    FPM.addPass(InstCombinePass()); // Combine silly sequences.
    invokePeepholeEPCallbacks(FPM, Level);

    CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
        std::move(FPM), PTO.EagerlyInvalidateAnalyses));

    MPM.addPass(std::move(MIWP));

    // Delete anything that is now dead to make sure that we don't instrument
    // dead code. Instrumentation can end up keeping dead code around and
    // dramatically increase code size.
    MPM.addPass(GlobalDCEPass());
  }

  if (!RunProfileGen) {
    assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
    MPM.addPass(PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS));
    // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
    // RequireAnalysisPass for PSI before subsequent non-module passes.
    MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
    return;
  }

  // Perform PGO instrumentation.
  MPM.addPass(PGOInstrumentationGen(IsCS));

  // Disable header duplication in loop rotation at -Oz.
  MPM.addPass(createModuleToFunctionPassAdaptor(
      createFunctionToLoopPassAdaptor(
          LoopRotatePass(Level != OptimizationLevel::Oz),
          /*UseMemorySSA=*/false,
          /*UseBlockFrequencyInfo=*/false),
      PTO.EagerlyInvalidateAnalyses));

  // Add the profile lowering pass.
  InstrProfOptions Options;
  if (!ProfileFile.empty())
    Options.InstrProfileOutput = ProfileFile;
  // Do counter promotion at Level greater than O0.
  Options.DoCounterPromotion = true;
  Options.UseBFIInPromotion = IsCS;
  MPM.addPass(InstrProfiling(Options, IsCS));
}

void PassBuilder::addPGOInstrPassesForO0(ModulePassManager &MPM,
                                         bool RunProfileGen, bool IsCS,
                                         std::string ProfileFile,
                                         std::string ProfileRemappingFile) {
  if (!RunProfileGen) {
    assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
    MPM.addPass(PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS));
    // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
    // RequireAnalysisPass for PSI before subsequent non-module passes.
    MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
    return;
  }

  // Perform PGO instrumentation.
  MPM.addPass(PGOInstrumentationGen(IsCS));
  // Add the profile lowering pass.
  InstrProfOptions Options;
  if (!ProfileFile.empty())
    Options.InstrProfileOutput = ProfileFile;
  // Do not do counter promotion at O0.
  Options.DoCounterPromotion = false;
  Options.UseBFIInPromotion = IsCS;
  MPM.addPass(InstrProfiling(Options, IsCS));
}

static InlineParams getInlineParamsFromOptLevel(OptimizationLevel Level) {
  return getInlineParams(Level.getSpeedupLevel(), Level.getSizeLevel());
}

ModuleInlinerWrapperPass
PassBuilder::buildInlinerPipeline(OptimizationLevel Level,
                                  ThinOrFullLTOPhase Phase) {
  InlineParams IP = getInlineParamsFromOptLevel(Level);
  // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
  // disable hot callsite inline (as much as possible [1]) because it makes
  // profile annotation in the backend inaccurate.
  //
  // [1] Note the cost of a function could be below zero due to erased
  // prologue / epilogue.
  if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
      PGOOpt->Action == PGOOptions::SampleUse)
    IP.HotCallSiteThreshold = 0;

  if (PGOOpt)
    IP.EnableDeferral = EnablePGOInlineDeferral;

  ModuleInlinerWrapperPass MIWP(
      IP, PerformMandatoryInliningsFirst,
      InlineContext{Phase, InlinePass::CGSCCInliner},
      UseInlineAdvisor, MaxDevirtIterations);

  // Require the GlobalsAA analysis for the module so we can query it within
  // the CGSCC pipeline.
  MIWP.addModulePass(RequireAnalysisPass<GlobalsAA, Module>());
  // Invalidate AAManager so it can be recreated and pick up the newly available
  // GlobalsAA.
  MIWP.addModulePass(
      createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));

  // Require the ProfileSummaryAnalysis for the module so we can query it within
  // the inliner pass.
  MIWP.addModulePass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());

  // Now begin the main postorder CGSCC pipeline.
  // FIXME: The current CGSCC pipeline has its origins in the legacy pass
  // manager and trying to emulate its precise behavior. Much of this doesn't
  // make a lot of sense and we should revisit the core CGSCC structure.
  CGSCCPassManager &MainCGPipeline = MIWP.getPM();

  // Note: historically, the PruneEH pass was run first to deduce nounwind and
  // generally clean up exception handling overhead. It isn't clear this is
  // valuable as the inliner doesn't currently care whether it is inlining an
  // invoke or a call.

  if (AttributorRun & AttributorRunOption::CGSCC)
    MainCGPipeline.addPass(AttributorCGSCCPass());

  // Now deduce any function attributes based in the current code.
  MainCGPipeline.addPass(PostOrderFunctionAttrsPass());

  // When at O3 add argument promotion to the pass pipeline.
  // FIXME: It isn't at all clear why this should be limited to O3.
  if (Level == OptimizationLevel::O3)
    MainCGPipeline.addPass(ArgumentPromotionPass());

  // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
  // there are no OpenMP runtime calls present in the module.
  if (Level == OptimizationLevel::O2 || Level == OptimizationLevel::O3)
    MainCGPipeline.addPass(OpenMPOptCGSCCPass());

  for (auto &C : CGSCCOptimizerLateEPCallbacks)
    C(MainCGPipeline, Level);

  // Lastly, add the core function simplification pipeline nested inside the
  // CGSCC walk.
  MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
      buildFunctionSimplificationPipeline(Level, Phase),
      PTO.EagerlyInvalidateAnalyses, EnableNoRerunSimplificationPipeline));

  MainCGPipeline.addPass(CoroSplitPass(Level != OptimizationLevel::O0));

  if (EnableNoRerunSimplificationPipeline)
    MIWP.addLateModulePass(createModuleToFunctionPassAdaptor(
        InvalidateAnalysisPass<ShouldNotRunFunctionPassesAnalysis>()));

  return MIWP;
}

ModulePassManager
PassBuilder::buildModuleInlinerPipeline(OptimizationLevel Level,
                                        ThinOrFullLTOPhase Phase) {
  ModulePassManager MPM;

  InlineParams IP = getInlineParamsFromOptLevel(Level);
  // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
  // disable hot callsite inline (as much as possible [1]) because it makes
  // profile annotation in the backend inaccurate.
  //
  // [1] Note the cost of a function could be below zero due to erased
  // prologue / epilogue.
  if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
      PGOOpt->Action == PGOOptions::SampleUse)
    IP.HotCallSiteThreshold = 0;

  if (PGOOpt)
    IP.EnableDeferral = EnablePGOInlineDeferral;

  // The inline deferral logic is used to avoid losing some
  // inlining chance in future. It is helpful in SCC inliner, in which
  // inlining is processed in bottom-up order.
  // While in module inliner, the inlining order is a priority-based order
  // by default. The inline deferral is unnecessary there. So we disable the
  // inline deferral logic in module inliner.
  IP.EnableDeferral = false;

  MPM.addPass(ModuleInlinerPass(IP, UseInlineAdvisor, Phase));

  MPM.addPass(createModuleToFunctionPassAdaptor(
      buildFunctionSimplificationPipeline(Level, Phase),
      PTO.EagerlyInvalidateAnalyses));

  MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
      CoroSplitPass(Level != OptimizationLevel::O0)));

  return MPM;
}

ModulePassManager
PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
                                               ThinOrFullLTOPhase Phase) {
  ModulePassManager MPM;

  // Place pseudo probe instrumentation as the first pass of the pipeline to
  // minimize the impact of optimization changes.
  if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
      Phase != ThinOrFullLTOPhase::ThinLTOPostLink)
    MPM.addPass(SampleProfileProbePass(TM));

  bool HasSampleProfile = PGOOpt && (PGOOpt->Action == PGOOptions::SampleUse);

  // In ThinLTO mode, when flattened profile is used, all the available
  // profile information will be annotated in PreLink phase so there is
  // no need to load the profile again in PostLink.
  bool LoadSampleProfile =
      HasSampleProfile &&
      !(FlattenedProfileUsed && Phase == ThinOrFullLTOPhase::ThinLTOPostLink);

  // During the ThinLTO backend phase we perform early indirect call promotion
  // here, before globalopt. Otherwise imported available_externally functions
  // look unreferenced and are removed. If we are going to load the sample
  // profile then defer until later.
  // TODO: See if we can move later and consolidate with the location where
  // we perform ICP when we are loading a sample profile.
  // TODO: We pass HasSampleProfile (whether there was a sample profile file
  // passed to the compile) to the SamplePGO flag of ICP. This is used to
  // determine whether the new direct calls are annotated with prof metadata.
  // Ideally this should be determined from whether the IR is annotated with
  // sample profile, and not whether the a sample profile was provided on the
  // command line. E.g. for flattened profiles where we will not be reloading
  // the sample profile in the ThinLTO backend, we ideally shouldn't have to
  // provide the sample profile file.
  if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink && !LoadSampleProfile)
    MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, HasSampleProfile));

  // Do basic inference of function attributes from known properties of system
  // libraries and other oracles.
  MPM.addPass(InferFunctionAttrsPass());
  MPM.addPass(CoroEarlyPass());

  // Create an early function pass manager to cleanup the output of the
  // frontend.
  FunctionPassManager EarlyFPM;
  // Lower llvm.expect to metadata before attempting transforms.
  // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
  EarlyFPM.addPass(LowerExpectIntrinsicPass());
  EarlyFPM.addPass(SimplifyCFGPass());
  EarlyFPM.addPass(SROAPass());
  EarlyFPM.addPass(EarlyCSEPass());
  if (Level == OptimizationLevel::O3)
    EarlyFPM.addPass(CallSiteSplittingPass());

  // In SamplePGO ThinLTO backend, we need instcombine before profile annotation
  // to convert bitcast to direct calls so that they can be inlined during the
  // profile annotation prepration step.
  // More details about SamplePGO design can be found in:
  // https://research.google.com/pubs/pub45290.html
  // FIXME: revisit how SampleProfileLoad/Inliner/ICP is structured.
  if (LoadSampleProfile)
    EarlyFPM.addPass(InstCombinePass());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM),
                                                PTO.EagerlyInvalidateAnalyses));

  if (LoadSampleProfile) {
    // Annotate sample profile right after early FPM to ensure freshness of
    // the debug info.
    MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
                                        PGOOpt->ProfileRemappingFile, Phase));
    // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
    // RequireAnalysisPass for PSI before subsequent non-module passes.
    MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
    // Do not invoke ICP in the LTOPrelink phase as it makes it hard
    // for the profile annotation to be accurate in the LTO backend.
    if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink &&
        Phase != ThinOrFullLTOPhase::FullLTOPreLink)
      // We perform early indirect call promotion here, before globalopt.
      // This is important for the ThinLTO backend phase because otherwise
      // imported available_externally functions look unreferenced and are
      // removed.
      MPM.addPass(
          PGOIndirectCallPromotion(true /* IsInLTO */, true /* SamplePGO */));
  }

  // Try to perform OpenMP specific optimizations on the module. This is a
  // (quick!) no-op if there are no OpenMP runtime calls present in the module.
  if (Level != OptimizationLevel::O0)
    MPM.addPass(OpenMPOptPass());

  if (AttributorRun & AttributorRunOption::MODULE)
    MPM.addPass(AttributorPass());

  // Lower type metadata and the type.test intrinsic in the ThinLTO
  // post link pipeline after ICP. This is to enable usage of the type
  // tests in ICP sequences.
  if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink)
    MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));

  for (auto &C : PipelineEarlySimplificationEPCallbacks)
    C(MPM, Level);

  // Specialize functions with IPSCCP.
  if (EnableFunctionSpecialization && Level == OptimizationLevel::O3)
    MPM.addPass(FunctionSpecializationPass());

  // Interprocedural constant propagation now that basic cleanup has occurred
  // and prior to optimizing globals.
  // FIXME: This position in the pipeline hasn't been carefully considered in
  // years, it should be re-analyzed.
  MPM.addPass(IPSCCPPass());

  // Attach metadata to indirect call sites indicating the set of functions
  // they may target at run-time. This should follow IPSCCP.
  MPM.addPass(CalledValuePropagationPass());

  // Optimize globals to try and fold them into constants.
  MPM.addPass(GlobalOptPass());

  // Promote any localized globals to SSA registers.
  // FIXME: Should this instead by a run of SROA?
  // FIXME: We should probably run instcombine and simplifycfg afterward to
  // delete control flows that are dead once globals have been folded to
  // constants.
  MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));

  // Remove any dead arguments exposed by cleanups and constant folding
  // globals.
  MPM.addPass(DeadArgumentEliminationPass());

  // Create a small function pass pipeline to cleanup after all the global
  // optimizations.
  FunctionPassManager GlobalCleanupPM;
  GlobalCleanupPM.addPass(InstCombinePass());
  invokePeepholeEPCallbacks(GlobalCleanupPM, Level);

  GlobalCleanupPM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM),
                                                PTO.EagerlyInvalidateAnalyses));

  // Add all the requested passes for instrumentation PGO, if requested.
  if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
      (PGOOpt->Action == PGOOptions::IRInstr ||
       PGOOpt->Action == PGOOptions::IRUse)) {
    addPGOInstrPasses(MPM, Level,
                      /* RunProfileGen */ PGOOpt->Action == PGOOptions::IRInstr,
                      /* IsCS */ false, PGOOpt->ProfileFile,
                      PGOOpt->ProfileRemappingFile, Phase);
    MPM.addPass(PGOIndirectCallPromotion(false, false));
  }
  if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
      PGOOpt->CSAction == PGOOptions::CSIRInstr)
    MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->CSProfileGenFile));

  // Synthesize function entry counts for non-PGO compilation.
  if (EnableSyntheticCounts && !PGOOpt)
    MPM.addPass(SyntheticCountsPropagation());

  if (EnableModuleInliner)
    MPM.addPass(buildModuleInlinerPipeline(Level, Phase));
  else
    MPM.addPass(buildInlinerPipeline(Level, Phase));

  MPM.addPass(CoroCleanupPass());

  if (EnableMemProfiler && Phase != ThinOrFullLTOPhase::ThinLTOPreLink) {
    MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
    MPM.addPass(ModuleMemProfilerPass());
  }

  return MPM;
}

/// TODO: Should LTO cause any differences to this set of passes?
void PassBuilder::addVectorPasses(OptimizationLevel Level,
                                  FunctionPassManager &FPM, bool IsFullLTO) {
  FPM.addPass(LoopVectorizePass(
      LoopVectorizeOptions(!PTO.LoopInterleaving, !PTO.LoopVectorization)));

  if (IsFullLTO) {
    // The vectorizer may have significantly shortened a loop body; unroll
    // again. Unroll small loops to hide loop backedge latency and saturate any
    // parallel execution resources of an out-of-order processor. We also then
    // need to clean up redundancies and loop invariant code.
    // FIXME: It would be really good to use a loop-integrated instruction
    // combiner for cleanup here so that the unrolling and LICM can be pipelined
    // across the loop nests.
    // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
    if (EnableUnrollAndJam && PTO.LoopUnrolling)
      FPM.addPass(createFunctionToLoopPassAdaptor(
          LoopUnrollAndJamPass(Level.getSpeedupLevel())));
    FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
        Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
        PTO.ForgetAllSCEVInLoopUnroll)));
    FPM.addPass(WarnMissedTransformationsPass());
  }

  if (!IsFullLTO) {
    // Eliminate loads by forwarding stores from the previous iteration to loads
    // of the current iteration.
    FPM.addPass(LoopLoadEliminationPass());
  }
  // Cleanup after the loop optimization passes.
  FPM.addPass(InstCombinePass());

  if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
    ExtraVectorPassManager ExtraPasses;
    // At higher optimization levels, try to clean up any runtime overlap and
    // alignment checks inserted by the vectorizer. We want to track correlated
    // runtime checks for two inner loops in the same outer loop, fold any
    // common computations, hoist loop-invariant aspects out of any outer loop,
    // and unswitch the runtime checks if possible. Once hoisted, we may have
    // dead (or speculatable) control flows or more combining opportunities.
    ExtraPasses.addPass(EarlyCSEPass());
    ExtraPasses.addPass(CorrelatedValuePropagationPass());
    ExtraPasses.addPass(InstCombinePass());
    LoopPassManager LPM;
    LPM.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
                         /*AllowSpeculation=*/true));
    LPM.addPass(SimpleLoopUnswitchPass(/* NonTrivial */ Level ==
                                       OptimizationLevel::O3));
    ExtraPasses.addPass(
        RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
    ExtraPasses.addPass(
        createFunctionToLoopPassAdaptor(std::move(LPM), /*UseMemorySSA=*/true,
                                        /*UseBlockFrequencyInfo=*/true));
    ExtraPasses.addPass(
        SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
    ExtraPasses.addPass(InstCombinePass());
    FPM.addPass(std::move(ExtraPasses));
  }

  // Now that we've formed fast to execute loop structures, we do further
  // optimizations. These are run afterward as they might block doing complex
  // analyses and transforms such as what are needed for loop vectorization.

  // Cleanup after loop vectorization, etc. Simplification passes like CVP and
  // GVN, loop transforms, and others have already run, so it's now better to
  // convert to more optimized IR using more aggressive simplify CFG options.
  // The extra sinking transform can create larger basic blocks, so do this
  // before SLP vectorization.
  FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
                                  .forwardSwitchCondToPhi(true)
                                  .convertSwitchRangeToICmp(true)
                                  .convertSwitchToLookupTable(true)
                                  .needCanonicalLoops(false)
                                  .hoistCommonInsts(true)
                                  .sinkCommonInsts(true)));

  if (IsFullLTO) {
    FPM.addPass(SCCPPass());
    FPM.addPass(InstCombinePass());
    FPM.addPass(BDCEPass());
  }

  // Optimize parallel scalar instruction chains into SIMD instructions.
  if (PTO.SLPVectorization) {
    FPM.addPass(SLPVectorizerPass());
    if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
      FPM.addPass(EarlyCSEPass());
    }
  }
  // Enhance/cleanup vector code.
  FPM.addPass(VectorCombinePass());

  if (!IsFullLTO) {
    FPM.addPass(InstCombinePass());
    // Unroll small loops to hide loop backedge latency and saturate any
    // parallel execution resources of an out-of-order processor. We also then
    // need to clean up redundancies and loop invariant code.
    // FIXME: It would be really good to use a loop-integrated instruction
    // combiner for cleanup here so that the unrolling and LICM can be pipelined
    // across the loop nests.
    // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
    if (EnableUnrollAndJam && PTO.LoopUnrolling) {
      FPM.addPass(createFunctionToLoopPassAdaptor(
          LoopUnrollAndJamPass(Level.getSpeedupLevel())));
    }
    FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
        Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
        PTO.ForgetAllSCEVInLoopUnroll)));
    FPM.addPass(WarnMissedTransformationsPass());
    FPM.addPass(InstCombinePass());
    FPM.addPass(
        RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
    FPM.addPass(createFunctionToLoopPassAdaptor(
        LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
                 /*AllowSpeculation=*/true),
        /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
  }

  // Now that we've vectorized and unrolled loops, we may have more refined
  // alignment information, try to re-derive it here.
  FPM.addPass(AlignmentFromAssumptionsPass());

  if (IsFullLTO)
    FPM.addPass(InstCombinePass());
}

ModulePassManager
PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
                                             ThinOrFullLTOPhase LTOPhase) {
  const bool LTOPreLink = (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink ||
                           LTOPhase == ThinOrFullLTOPhase::FullLTOPreLink);
  ModulePassManager MPM;

  // Optimize globals now that the module is fully simplified.
  MPM.addPass(GlobalOptPass());
  MPM.addPass(GlobalDCEPass());

  // Run partial inlining pass to partially inline functions that have
  // large bodies.
  if (RunPartialInlining)
    MPM.addPass(PartialInlinerPass());

  // Remove avail extern fns and globals definitions since we aren't compiling
  // an object file for later LTO. For LTO we want to preserve these so they
  // are eligible for inlining at link-time. Note if they are unreferenced they
  // will be removed by GlobalDCE later, so this only impacts referenced
  // available externally globals. Eventually they will be suppressed during
  // codegen, but eliminating here enables more opportunity for GlobalDCE as it
  // may make globals referenced by available external functions dead and saves
  // running remaining passes on the eliminated functions. These should be
  // preserved during prelinking for link-time inlining decisions.
  if (!LTOPreLink)
    MPM.addPass(EliminateAvailableExternallyPass());

  if (EnableOrderFileInstrumentation)
    MPM.addPass(InstrOrderFilePass());

  // Do RPO function attribute inference across the module to forward-propagate
  // attributes where applicable.
  // FIXME: Is this really an optimization rather than a canonicalization?
  MPM.addPass(ReversePostOrderFunctionAttrsPass());

  // Do a post inline PGO instrumentation and use pass. This is a context
  // sensitive PGO pass. We don't want to do this in LTOPreLink phrase as
  // cross-module inline has not been done yet. The context sensitive
  // instrumentation is after all the inlines are done.
  if (!LTOPreLink && PGOOpt) {
    if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
      addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
                        /* IsCS */ true, PGOOpt->CSProfileGenFile,
                        PGOOpt->ProfileRemappingFile, LTOPhase);
    else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
      addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
                        /* IsCS */ true, PGOOpt->ProfileFile,
                        PGOOpt->ProfileRemappingFile, LTOPhase);
  }

  // Re-compute GlobalsAA here prior to function passes. This is particularly
  // useful as the above will have inlined, DCE'ed, and function-attr
  // propagated everything. We should at this point have a reasonably minimal
  // and richly annotated call graph. By computing aliasing and mod/ref
  // information for all local globals here, the late loop passes and notably
  // the vectorizer will be able to use them to help recognize vectorizable
  // memory operations.
  MPM.addPass(RecomputeGlobalsAAPass());

  for (auto &C : OptimizerEarlyEPCallbacks)
    C(MPM, Level);

  FunctionPassManager OptimizePM;
  OptimizePM.addPass(Float2IntPass());
  OptimizePM.addPass(LowerConstantIntrinsicsPass());

  if (EnableMatrix) {
    OptimizePM.addPass(LowerMatrixIntrinsicsPass());
    OptimizePM.addPass(EarlyCSEPass());
  }

  // FIXME: We need to run some loop optimizations to re-rotate loops after
  // simplifycfg and others undo their rotation.

  // Optimize the loop execution. These passes operate on entire loop nests
  // rather than on each loop in an inside-out manner, and so they are actually
  // function passes.

  for (auto &C : VectorizerStartEPCallbacks)
    C(OptimizePM, Level);

  LoopPassManager LPM;
  // First rotate loops that may have been un-rotated by prior passes.
  // Disable header duplication at -Oz.
  LPM.addPass(LoopRotatePass(Level != OptimizationLevel::Oz, LTOPreLink));
  // Some loops may have become dead by now. Try to delete them.
  // FIXME: see discussion in https://reviews.llvm.org/D112851,
  //        this may need to be revisited once we run GVN before loop deletion
  //        in the simplification pipeline.
  LPM.addPass(LoopDeletionPass());
  OptimizePM.addPass(createFunctionToLoopPassAdaptor(
      std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/false));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.  This is
  // currently only performed for loops marked with the metadata
  // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
  OptimizePM.addPass(LoopDistributePass());

  // Populates the VFABI attribute with the scalar-to-vector mappings
  // from the TargetLibraryInfo.
  OptimizePM.addPass(InjectTLIMappings());

  addVectorPasses(Level, OptimizePM, /* IsFullLTO */ false);

  // LoopSink pass sinks instructions hoisted by LICM, which serves as a
  // canonicalization pass that enables other optimizations. As a result,
  // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
  // result too early.
  OptimizePM.addPass(LoopSinkPass());

  // And finally clean up LCSSA form before generating code.
  OptimizePM.addPass(InstSimplifyPass());

  // This hoists/decomposes div/rem ops. It should run after other sink/hoist
  // passes to avoid re-sinking, but before SimplifyCFG because it can allow
  // flattening of blocks.
  OptimizePM.addPass(DivRemPairsPass());

  // LoopSink (and other loop passes since the last simplifyCFG) might have
  // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
  OptimizePM.addPass(
      SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));

  // Add the core optimizing pipeline.
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM),
                                                PTO.EagerlyInvalidateAnalyses));

  for (auto &C : OptimizerLastEPCallbacks)
    C(MPM, Level);

  // Split out cold code. Splitting is done late to avoid hiding context from
  // other optimizations and inadvertently regressing performance. The tradeoff
  // is that this has a higher code size cost than splitting early.
  if (EnableHotColdSplit && !LTOPreLink)
    MPM.addPass(HotColdSplittingPass());

  // Search the code for similar regions of code. If enough similar regions can
  // be found where extracting the regions into their own function will decrease
  // the size of the program, we extract the regions, a deduplicate the
  // structurally similar regions.
  if (EnableIROutliner)
    MPM.addPass(IROutlinerPass());

  // Merge functions if requested.
  if (PTO.MergeFunctions)
    MPM.addPass(MergeFunctionsPass());

  // Now we need to do some global optimization transforms.
  // FIXME: It would seem like these should come first in the optimization
  // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
  // ordering here.
  MPM.addPass(GlobalDCEPass());
  MPM.addPass(ConstantMergePass());

  if (PTO.CallGraphProfile && !LTOPreLink)
    MPM.addPass(CGProfilePass());

  // TODO: Relative look table converter pass caused an issue when full lto is
  // enabled. See https://reviews.llvm.org/D94355 for more details.
  // Until the issue fixed, disable this pass during pre-linking phase.
  if (!LTOPreLink)
    MPM.addPass(RelLookupTableConverterPass());

  return MPM;
}

ModulePassManager
PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
                                           bool LTOPreLink) {
  assert(Level != OptimizationLevel::O0 &&
         "Must request optimizations for the default pipeline!");

  ModulePassManager MPM;

  // Convert @llvm.global.annotations to !annotation metadata.
  MPM.addPass(Annotation2MetadataPass());

  // Force any function attributes we want the rest of the pipeline to observe.
  MPM.addPass(ForceFunctionAttrsPass());

  // Apply module pipeline start EP callback.
  for (auto &C : PipelineStartEPCallbacks)
    C(MPM, Level);

  if (PGOOpt && PGOOpt->DebugInfoForProfiling)
    MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));

  const ThinOrFullLTOPhase LTOPhase = LTOPreLink
                                          ? ThinOrFullLTOPhase::FullLTOPreLink
                                          : ThinOrFullLTOPhase::None;
  // Add the core simplification pipeline.
  MPM.addPass(buildModuleSimplificationPipeline(Level, LTOPhase));

  // Now add the optimization pipeline.
  MPM.addPass(buildModuleOptimizationPipeline(Level, LTOPhase));

  if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
      PGOOpt->Action == PGOOptions::SampleUse)
    MPM.addPass(PseudoProbeUpdatePass());

  // Emit annotation remarks.
  addAnnotationRemarksPass(MPM);

  if (LTOPreLink)
    addRequiredLTOPreLinkPasses(MPM);

  return MPM;
}

ModulePassManager
PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
  assert(Level != OptimizationLevel::O0 &&
         "Must request optimizations for the default pipeline!");

  ModulePassManager MPM;

  // Convert @llvm.global.annotations to !annotation metadata.
  MPM.addPass(Annotation2MetadataPass());

  // Force any function attributes we want the rest of the pipeline to observe.
  MPM.addPass(ForceFunctionAttrsPass());

  if (PGOOpt && PGOOpt->DebugInfoForProfiling)
    MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));

  // Apply module pipeline start EP callback.
  for (auto &C : PipelineStartEPCallbacks)
    C(MPM, Level);

  // If we are planning to perform ThinLTO later, we don't bloat the code with
  // unrolling/vectorization/... now. Just simplify the module as much as we
  // can.
  MPM.addPass(buildModuleSimplificationPipeline(
      Level, ThinOrFullLTOPhase::ThinLTOPreLink));

  // Run partial inlining pass to partially inline functions that have
  // large bodies.
  // FIXME: It isn't clear whether this is really the right place to run this
  // in ThinLTO. Because there is another canonicalization and simplification
  // phase that will run after the thin link, running this here ends up with
  // less information than will be available later and it may grow functions in
  // ways that aren't beneficial.
  if (RunPartialInlining)
    MPM.addPass(PartialInlinerPass());

  // Reduce the size of the IR as much as possible.
  MPM.addPass(GlobalOptPass());

  if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
      PGOOpt->Action == PGOOptions::SampleUse)
    MPM.addPass(PseudoProbeUpdatePass());

  // Handle OptimizerLastEPCallbacks added by clang on PreLink. Actual
  // optimization is going to be done in PostLink stage, but clang can't
  // add callbacks there in case of in-process ThinLTO called by linker.
  for (auto &C : OptimizerLastEPCallbacks)
    C(MPM, Level);

  // Emit annotation remarks.
  addAnnotationRemarksPass(MPM);

  addRequiredLTOPreLinkPasses(MPM);

  return MPM;
}

ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
    OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary) {
  ModulePassManager MPM;

  // Convert @llvm.global.annotations to !annotation metadata.
  MPM.addPass(Annotation2MetadataPass());

  if (ImportSummary) {
    // These passes import type identifier resolutions for whole-program
    // devirtualization and CFI. They must run early because other passes may
    // disturb the specific instruction patterns that these passes look for,
    // creating dependencies on resolutions that may not appear in the summary.
    //
    // For example, GVN may transform the pattern assume(type.test) appearing in
    // two basic blocks into assume(phi(type.test, type.test)), which would
    // transform a dependency on a WPD resolution into a dependency on a type
    // identifier resolution for CFI.
    //
    // Also, WPD has access to more precise information than ICP and can
    // devirtualize more effectively, so it should operate on the IR first.
    //
    // The WPD and LowerTypeTest passes need to run at -O0 to lower type
    // metadata and intrinsics.
    MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
    MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
  }

  if (Level == OptimizationLevel::O0) {
    // Run a second time to clean up any type tests left behind by WPD for use
    // in ICP.
    MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
    // Drop available_externally and unreferenced globals. This is necessary
    // with ThinLTO in order to avoid leaving undefined references to dead
    // globals in the object file.
    MPM.addPass(EliminateAvailableExternallyPass());
    MPM.addPass(GlobalDCEPass());
    return MPM;
  }

  // Force any function attributes we want the rest of the pipeline to observe.
  MPM.addPass(ForceFunctionAttrsPass());

  // Add the core simplification pipeline.
  MPM.addPass(buildModuleSimplificationPipeline(
      Level, ThinOrFullLTOPhase::ThinLTOPostLink));

  // Now add the optimization pipeline.
  MPM.addPass(buildModuleOptimizationPipeline(
      Level, ThinOrFullLTOPhase::ThinLTOPostLink));

  // Emit annotation remarks.
  addAnnotationRemarksPass(MPM);

  return MPM;
}

ModulePassManager
PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
  assert(Level != OptimizationLevel::O0 &&
         "Must request optimizations for the default pipeline!");
  // FIXME: We should use a customized pre-link pipeline!
  return buildPerModuleDefaultPipeline(Level,
                                       /* LTOPreLink */ true);
}

ModulePassManager
PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
                                     ModuleSummaryIndex *ExportSummary) {
  ModulePassManager MPM;

  // Convert @llvm.global.annotations to !annotation metadata.
  MPM.addPass(Annotation2MetadataPass());

  for (auto &C : FullLinkTimeOptimizationEarlyEPCallbacks)
    C(MPM, Level);

  // Create a function that performs CFI checks for cross-DSO calls with targets
  // in the current module.
  MPM.addPass(CrossDSOCFIPass());

  if (Level == OptimizationLevel::O0) {
    // The WPD and LowerTypeTest passes need to run at -O0 to lower type
    // metadata and intrinsics.
    MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
    MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
    // Run a second time to clean up any type tests left behind by WPD for use
    // in ICP.
    MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));

    for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
      C(MPM, Level);

    // Emit annotation remarks.
    addAnnotationRemarksPass(MPM);

    return MPM;
  }

  if (PGOOpt && PGOOpt->Action == PGOOptions::SampleUse) {
    // Load sample profile before running the LTO optimization pipeline.
    MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
                                        PGOOpt->ProfileRemappingFile,
                                        ThinOrFullLTOPhase::FullLTOPostLink));
    // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
    // RequireAnalysisPass for PSI before subsequent non-module passes.
    MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
  }

  // Try to run OpenMP optimizations, quick no-op if no OpenMP metadata present.
  MPM.addPass(OpenMPOptPass());

  // Remove unused virtual tables to improve the quality of code generated by
  // whole-program devirtualization and bitset lowering.
  MPM.addPass(GlobalDCEPass());

  // Force any function attributes we want the rest of the pipeline to observe.
  MPM.addPass(ForceFunctionAttrsPass());

  // Do basic inference of function attributes from known properties of system
  // libraries and other oracles.
  MPM.addPass(InferFunctionAttrsPass());

  if (Level.getSpeedupLevel() > 1) {
    MPM.addPass(createModuleToFunctionPassAdaptor(
        CallSiteSplittingPass(), PTO.EagerlyInvalidateAnalyses));

    // Indirect call promotion. This should promote all the targets that are
    // left by the earlier promotion pass that promotes intra-module targets.
    // This two-step promotion is to save the compile time. For LTO, it should
    // produce the same result as if we only do promotion here.
    MPM.addPass(PGOIndirectCallPromotion(
        true /* InLTO */, PGOOpt && PGOOpt->Action == PGOOptions::SampleUse));

    if (EnableFunctionSpecialization && Level == OptimizationLevel::O3)
      MPM.addPass(FunctionSpecializationPass());
    // Propagate constants at call sites into the functions they call.  This
    // opens opportunities for globalopt (and inlining) by substituting function
    // pointers passed as arguments to direct uses of functions.
    MPM.addPass(IPSCCPPass());

    // Attach metadata to indirect call sites indicating the set of functions
    // they may target at run-time. This should follow IPSCCP.
    MPM.addPass(CalledValuePropagationPass());
  }

  // Now deduce any function attributes based in the current code.
  MPM.addPass(
      createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));

  // Do RPO function attribute inference across the module to forward-propagate
  // attributes where applicable.
  // FIXME: Is this really an optimization rather than a canonicalization?
  MPM.addPass(ReversePostOrderFunctionAttrsPass());

  // Use in-range annotations on GEP indices to split globals where beneficial.
  MPM.addPass(GlobalSplitPass());

  // Run whole program optimization of virtual call when the list of callees
  // is fixed.
  MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));

  // Stop here at -O1.
  if (Level == OptimizationLevel::O1) {
    // The LowerTypeTestsPass needs to run to lower type metadata and the
    // type.test intrinsics. The pass does nothing if CFI is disabled.
    MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
    // Run a second time to clean up any type tests left behind by WPD for use
    // in ICP (which is performed earlier than this in the regular LTO
    // pipeline).
    MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));

    for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
      C(MPM, Level);

    // Emit annotation remarks.
    addAnnotationRemarksPass(MPM);

    return MPM;
  }

  // Optimize globals to try and fold them into constants.
  MPM.addPass(GlobalOptPass());

  // Promote any localized globals to SSA registers.
  MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));

  // Linking modules together can lead to duplicate global constant, only
  // keep one copy of each constant.
  MPM.addPass(ConstantMergePass());

  // Remove unused arguments from functions.
  MPM.addPass(DeadArgumentEliminationPass());

  // Reduce the code after globalopt and ipsccp.  Both can open up significant
  // simplification opportunities, and both can propagate functions through
  // function pointers.  When this happens, we often have to resolve varargs
  // calls, etc, so let instcombine do this.
  FunctionPassManager PeepholeFPM;
  PeepholeFPM.addPass(InstCombinePass());
  if (Level == OptimizationLevel::O3)
    PeepholeFPM.addPass(AggressiveInstCombinePass());
  invokePeepholeEPCallbacks(PeepholeFPM, Level);

  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM),
                                                PTO.EagerlyInvalidateAnalyses));

  // Note: historically, the PruneEH pass was run first to deduce nounwind and
  // generally clean up exception handling overhead. It isn't clear this is
  // valuable as the inliner doesn't currently care whether it is inlining an
  // invoke or a call.
  // Run the inliner now.
  MPM.addPass(ModuleInlinerWrapperPass(
      getInlineParamsFromOptLevel(Level),
      /* MandatoryFirst */ true,
      InlineContext{ThinOrFullLTOPhase::FullLTOPostLink,
                          InlinePass::CGSCCInliner}));

  // Optimize globals again after we ran the inliner.
  MPM.addPass(GlobalOptPass());

  // Garbage collect dead functions.
  MPM.addPass(GlobalDCEPass());

  // If we didn't decide to inline a function, check to see if we can
  // transform it to pass arguments by value instead of by reference.
  MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(ArgumentPromotionPass()));

  FunctionPassManager FPM;
  // The IPO Passes may leave cruft around. Clean up after them.
  FPM.addPass(InstCombinePass());
  invokePeepholeEPCallbacks(FPM, Level);

  FPM.addPass(JumpThreadingPass());

  // Do a post inline PGO instrumentation and use pass. This is a context
  // sensitive PGO pass.
  if (PGOOpt) {
    if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
      addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
                        /* IsCS */ true, PGOOpt->CSProfileGenFile,
                        PGOOpt->ProfileRemappingFile,
                        ThinOrFullLTOPhase::FullLTOPostLink);
    else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
      addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
                        /* IsCS */ true, PGOOpt->ProfileFile,
                        PGOOpt->ProfileRemappingFile,
                        ThinOrFullLTOPhase::FullLTOPostLink);
  }

  // Break up allocas
  FPM.addPass(SROAPass());

  // LTO provides additional opportunities for tailcall elimination due to
  // link-time inlining, and visibility of nocapture attribute.
  FPM.addPass(TailCallElimPass());

  // Run a few AA driver optimizations here and now to cleanup the code.
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM),
                                                PTO.EagerlyInvalidateAnalyses));

  MPM.addPass(
      createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));

  // Require the GlobalsAA analysis for the module so we can query it within
  // MainFPM.
  MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
  // Invalidate AAManager so it can be recreated and pick up the newly available
  // GlobalsAA.
  MPM.addPass(
      createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));

  FunctionPassManager MainFPM;
  MainFPM.addPass(createFunctionToLoopPassAdaptor(
      LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
               /*AllowSpeculation=*/true),
      /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));

  if (RunNewGVN)
    MainFPM.addPass(NewGVNPass());
  else
    MainFPM.addPass(GVNPass());

  // Remove dead memcpy()'s.
  MainFPM.addPass(MemCpyOptPass());

  // Nuke dead stores.
  MainFPM.addPass(DSEPass());
  MainFPM.addPass(MergedLoadStoreMotionPass());


  if (EnableConstraintElimination)
    MainFPM.addPass(ConstraintEliminationPass());

  LoopPassManager LPM;
  if (EnableLoopFlatten && Level.getSpeedupLevel() > 1)
    LPM.addPass(LoopFlattenPass());
  LPM.addPass(IndVarSimplifyPass());
  LPM.addPass(LoopDeletionPass());
  // FIXME: Add loop interchange.

  // Unroll small loops and perform peeling.
  LPM.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
                                 /* OnlyWhenForced= */ !PTO.LoopUnrolling,
                                 PTO.ForgetAllSCEVInLoopUnroll));
  // The loop passes in LPM (LoopFullUnrollPass) do not preserve MemorySSA.
  // *All* loop passes must preserve it, in order to be able to use it.
  MainFPM.addPass(createFunctionToLoopPassAdaptor(
      std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/true));

  MainFPM.addPass(LoopDistributePass());

  addVectorPasses(Level, MainFPM, /* IsFullLTO */ true);

  // Run the OpenMPOpt CGSCC pass again late.
  MPM.addPass(
      createModuleToPostOrderCGSCCPassAdaptor(OpenMPOptCGSCCPass()));

  invokePeepholeEPCallbacks(MainFPM, Level);
  MainFPM.addPass(JumpThreadingPass());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM),
                                                PTO.EagerlyInvalidateAnalyses));

  // Lower type metadata and the type.test intrinsic. This pass supports
  // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
  // to be run at link time if CFI is enabled. This pass does nothing if
  // CFI is disabled.
  MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
  // Run a second time to clean up any type tests left behind by WPD for use
  // in ICP (which is performed earlier than this in the regular LTO pipeline).
  MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));

  // Enable splitting late in the FullLTO post-link pipeline.
  if (EnableHotColdSplit)
    MPM.addPass(HotColdSplittingPass());

  // Add late LTO optimization passes.
  // Delete basic blocks, which optimization passes may have killed.
  MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass(
      SimplifyCFGOptions().convertSwitchRangeToICmp(true).hoistCommonInsts(
          true))));

  // Drop bodies of available eternally objects to improve GlobalDCE.
  MPM.addPass(EliminateAvailableExternallyPass());

  // Now that we have optimized the program, discard unreachable functions.
  MPM.addPass(GlobalDCEPass());

  if (PTO.MergeFunctions)
    MPM.addPass(MergeFunctionsPass());

  if (PTO.CallGraphProfile)
    MPM.addPass(CGProfilePass());

  for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
    C(MPM, Level);

  // Emit annotation remarks.
  addAnnotationRemarksPass(MPM);

  return MPM;
}

ModulePassManager PassBuilder::buildO0DefaultPipeline(OptimizationLevel Level,
                                                      bool LTOPreLink) {
  assert(Level == OptimizationLevel::O0 &&
         "buildO0DefaultPipeline should only be used with O0");

  ModulePassManager MPM;

  // Perform pseudo probe instrumentation in O0 mode. This is for the
  // consistency between different build modes. For example, a LTO build can be
  // mixed with an O0 prelink and an O2 postlink. Loading a sample profile in
  // the postlink will require pseudo probe instrumentation in the prelink.
  if (PGOOpt && PGOOpt->PseudoProbeForProfiling)
    MPM.addPass(SampleProfileProbePass(TM));

  if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
                 PGOOpt->Action == PGOOptions::IRUse))
    addPGOInstrPassesForO0(
        MPM,
        /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr),
        /* IsCS */ false, PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile);

  for (auto &C : PipelineStartEPCallbacks)
    C(MPM, Level);

  if (PGOOpt && PGOOpt->DebugInfoForProfiling)
    MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));

  for (auto &C : PipelineEarlySimplificationEPCallbacks)
    C(MPM, Level);

  // Build a minimal pipeline based on the semantics required by LLVM,
  // which is just that always inlining occurs. Further, disable generating
  // lifetime intrinsics to avoid enabling further optimizations during
  // code generation.
  MPM.addPass(AlwaysInlinerPass(
      /*InsertLifetimeIntrinsics=*/false));

  if (PTO.MergeFunctions)
    MPM.addPass(MergeFunctionsPass());

  if (EnableMatrix)
    MPM.addPass(
        createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass(true)));

  if (!CGSCCOptimizerLateEPCallbacks.empty()) {
    CGSCCPassManager CGPM;
    for (auto &C : CGSCCOptimizerLateEPCallbacks)
      C(CGPM, Level);
    if (!CGPM.isEmpty())
      MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
  }
  if (!LateLoopOptimizationsEPCallbacks.empty()) {
    LoopPassManager LPM;
    for (auto &C : LateLoopOptimizationsEPCallbacks)
      C(LPM, Level);
    if (!LPM.isEmpty()) {
      MPM.addPass(createModuleToFunctionPassAdaptor(
          createFunctionToLoopPassAdaptor(std::move(LPM))));
    }
  }
  if (!LoopOptimizerEndEPCallbacks.empty()) {
    LoopPassManager LPM;
    for (auto &C : LoopOptimizerEndEPCallbacks)
      C(LPM, Level);
    if (!LPM.isEmpty()) {
      MPM.addPass(createModuleToFunctionPassAdaptor(
          createFunctionToLoopPassAdaptor(std::move(LPM))));
    }
  }
  if (!ScalarOptimizerLateEPCallbacks.empty()) {
    FunctionPassManager FPM;
    for (auto &C : ScalarOptimizerLateEPCallbacks)
      C(FPM, Level);
    if (!FPM.isEmpty())
      MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  for (auto &C : OptimizerEarlyEPCallbacks)
    C(MPM, Level);

  if (!VectorizerStartEPCallbacks.empty()) {
    FunctionPassManager FPM;
    for (auto &C : VectorizerStartEPCallbacks)
      C(FPM, Level);
    if (!FPM.isEmpty())
      MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  ModulePassManager CoroPM;
  CoroPM.addPass(CoroEarlyPass());
  CGSCCPassManager CGPM;
  CGPM.addPass(CoroSplitPass());
  CoroPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
  CoroPM.addPass(CoroCleanupPass());
  CoroPM.addPass(GlobalDCEPass());
  MPM.addPass(CoroConditionalWrapper(std::move(CoroPM)));

  for (auto &C : OptimizerLastEPCallbacks)
    C(MPM, Level);

  if (LTOPreLink)
    addRequiredLTOPreLinkPasses(MPM);

  MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));

  return MPM;
}

AAManager PassBuilder::buildDefaultAAPipeline() {
  AAManager AA;

  // The order in which these are registered determines their priority when
  // being queried.

  // First we register the basic alias analysis that provides the majority of
  // per-function local AA logic. This is a stateless, on-demand local set of
  // AA techniques.
  AA.registerFunctionAnalysis<BasicAA>();

  // Next we query fast, specialized alias analyses that wrap IR-embedded
  // information about aliasing.
  AA.registerFunctionAnalysis<ScopedNoAliasAA>();
  AA.registerFunctionAnalysis<TypeBasedAA>();

  // Add support for querying global aliasing information when available.
  // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
  // analysis, all that the `AAManager` can do is query for any *cached*
  // results from `GlobalsAA` through a readonly proxy.
  AA.registerModuleAnalysis<GlobalsAA>();

  // Add target-specific alias analyses.
  if (TM)
    TM->registerDefaultAliasAnalyses(AA);

  return AA;
}