aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/ProfileData/SampleProfReader.cpp
blob: c42931174bc0388fef4be267752ad13913dd3153 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the class that reads LLVM sample profiles. It
// supports three file formats: text, binary and gcov.
//
// The textual representation is useful for debugging and testing purposes. The
// binary representation is more compact, resulting in smaller file sizes.
//
// The gcov encoding is the one generated by GCC's AutoFDO profile creation
// tool (https://github.com/google/autofdo)
//
// All three encodings can be used interchangeably as an input sample profile.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <system_error>
#include <vector>

using namespace llvm;
using namespace sampleprof;

/// Dump the function profile for \p FName.
///
/// \param FName Name of the function to print.
/// \param OS Stream to emit the output to.
void SampleProfileReader::dumpFunctionProfile(StringRef FName,
                                              raw_ostream &OS) {
  OS << "Function: " << FName << ": " << Profiles[FName];
}

/// Dump all the function profiles found on stream \p OS.
void SampleProfileReader::dump(raw_ostream &OS) {
  for (const auto &I : Profiles)
    dumpFunctionProfile(I.getKey(), OS);
}

/// Parse \p Input as function head.
///
/// Parse one line of \p Input, and update function name in \p FName,
/// function's total sample count in \p NumSamples, function's entry
/// count in \p NumHeadSamples.
///
/// \returns true if parsing is successful.
static bool ParseHead(const StringRef &Input, StringRef &FName,
                      uint64_t &NumSamples, uint64_t &NumHeadSamples) {
  if (Input[0] == ' ')
    return false;
  size_t n2 = Input.rfind(':');
  size_t n1 = Input.rfind(':', n2 - 1);
  FName = Input.substr(0, n1);
  if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
    return false;
  if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
    return false;
  return true;
}

/// Returns true if line offset \p L is legal (only has 16 bits).
static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }

/// Parse \p Input that contains metadata.
/// Possible metadata:
/// - CFG Checksum information:
///     !CFGChecksum: 12345
/// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash.
static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash) {
  if (!Input.startswith("!CFGChecksum:"))
    return false;

  StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim();
  return !CFGInfo.getAsInteger(10, FunctionHash);
}

enum class LineType {
  CallSiteProfile,
  BodyProfile,
  Metadata,
};

/// Parse \p Input as line sample.
///
/// \param Input input line.
/// \param LineTy Type of this line.
/// \param Depth the depth of the inline stack.
/// \param NumSamples total samples of the line/inlined callsite.
/// \param LineOffset line offset to the start of the function.
/// \param Discriminator discriminator of the line.
/// \param TargetCountMap map from indirect call target to count.
/// \param FunctionHash the function's CFG hash, used by pseudo probe.
///
/// returns true if parsing is successful.
static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth,
                      uint64_t &NumSamples, uint32_t &LineOffset,
                      uint32_t &Discriminator, StringRef &CalleeName,
                      DenseMap<StringRef, uint64_t> &TargetCountMap,
                      uint64_t &FunctionHash) {
  for (Depth = 0; Input[Depth] == ' '; Depth++)
    ;
  if (Depth == 0)
    return false;

  if (Depth == 1 && Input[Depth] == '!') {
    LineTy = LineType::Metadata;
    return parseMetadata(Input.substr(Depth), FunctionHash);
  }

  size_t n1 = Input.find(':');
  StringRef Loc = Input.substr(Depth, n1 - Depth);
  size_t n2 = Loc.find('.');
  if (n2 == StringRef::npos) {
    if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
      return false;
    Discriminator = 0;
  } else {
    if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
      return false;
    if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
      return false;
  }

  StringRef Rest = Input.substr(n1 + 2);
  if (isDigit(Rest[0])) {
    LineTy = LineType::BodyProfile;
    size_t n3 = Rest.find(' ');
    if (n3 == StringRef::npos) {
      if (Rest.getAsInteger(10, NumSamples))
        return false;
    } else {
      if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
        return false;
    }
    // Find call targets and their sample counts.
    // Note: In some cases, there are symbols in the profile which are not
    // mangled. To accommodate such cases, use colon + integer pairs as the
    // anchor points.
    // An example:
    // _M_construct<char *>:1000 string_view<std::allocator<char> >:437
    // ":1000" and ":437" are used as anchor points so the string above will
    // be interpreted as
    // target: _M_construct<char *>
    // count: 1000
    // target: string_view<std::allocator<char> >
    // count: 437
    while (n3 != StringRef::npos) {
      n3 += Rest.substr(n3).find_first_not_of(' ');
      Rest = Rest.substr(n3);
      n3 = Rest.find_first_of(':');
      if (n3 == StringRef::npos || n3 == 0)
        return false;

      StringRef Target;
      uint64_t count, n4;
      while (true) {
        // Get the segment after the current colon.
        StringRef AfterColon = Rest.substr(n3 + 1);
        // Get the target symbol before the current colon.
        Target = Rest.substr(0, n3);
        // Check if the word after the current colon is an integer.
        n4 = AfterColon.find_first_of(' ');
        n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
        StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
        if (!WordAfterColon.getAsInteger(10, count))
          break;

        // Try to find the next colon.
        uint64_t n5 = AfterColon.find_first_of(':');
        if (n5 == StringRef::npos)
          return false;
        n3 += n5 + 1;
      }

      // An anchor point is found. Save the {target, count} pair
      TargetCountMap[Target] = count;
      if (n4 == Rest.size())
        break;
      // Change n3 to the next blank space after colon + integer pair.
      n3 = n4;
    }
  } else {
    LineTy = LineType::CallSiteProfile;
    size_t n3 = Rest.find_last_of(':');
    CalleeName = Rest.substr(0, n3);
    if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
      return false;
  }
  return true;
}

/// Load samples from a text file.
///
/// See the documentation at the top of the file for an explanation of
/// the expected format.
///
/// \returns true if the file was loaded successfully, false otherwise.
std::error_code SampleProfileReaderText::readImpl() {
  line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
  sampleprof_error Result = sampleprof_error::success;

  InlineCallStack InlineStack;
  int CSProfileCount = 0;
  int RegularProfileCount = 0;
  uint32_t ProbeProfileCount = 0;

  // SeenMetadata tracks whether we have processed metadata for the current
  // top-level function profile.
  bool SeenMetadata = false;

  for (; !LineIt.is_at_eof(); ++LineIt) {
    if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#')
      continue;
    // Read the header of each function.
    //
    // Note that for function identifiers we are actually expecting
    // mangled names, but we may not always get them. This happens when
    // the compiler decides not to emit the function (e.g., it was inlined
    // and removed). In this case, the binary will not have the linkage
    // name for the function, so the profiler will emit the function's
    // unmangled name, which may contain characters like ':' and '>' in its
    // name (member functions, templates, etc).
    //
    // The only requirement we place on the identifier, then, is that it
    // should not begin with a number.
    if ((*LineIt)[0] != ' ') {
      uint64_t NumSamples, NumHeadSamples;
      StringRef FName;
      if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
        reportError(LineIt.line_number(),
                    "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
        return sampleprof_error::malformed;
      }
      SeenMetadata = false;
      SampleContext FContext(FName);
      if (FContext.hasContext())
        ++CSProfileCount;
      else
        ++RegularProfileCount;
      Profiles[FContext] = FunctionSamples();
      FunctionSamples &FProfile = Profiles[FContext];
      FProfile.setName(FContext.getName());
      FProfile.setContext(FContext);
      MergeResult(Result, FProfile.addTotalSamples(NumSamples));
      MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples));
      InlineStack.clear();
      InlineStack.push_back(&FProfile);
    } else {
      uint64_t NumSamples;
      StringRef FName;
      DenseMap<StringRef, uint64_t> TargetCountMap;
      uint32_t Depth, LineOffset, Discriminator;
      LineType LineTy;
      uint64_t FunctionHash;
      if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset,
                     Discriminator, FName, TargetCountMap, FunctionHash)) {
        reportError(LineIt.line_number(),
                    "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
                        *LineIt);
        return sampleprof_error::malformed;
      }
      if (SeenMetadata && LineTy != LineType::Metadata) {
        // Metadata must be put at the end of a function profile.
        reportError(LineIt.line_number(),
                    "Found non-metadata after metadata: " + *LineIt);
        return sampleprof_error::malformed;
      }
      while (InlineStack.size() > Depth) {
        InlineStack.pop_back();
      }
      switch (LineTy) {
      case LineType::CallSiteProfile: {
        FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
            LineLocation(LineOffset, Discriminator))[std::string(FName)];
        FSamples.setName(FName);
        MergeResult(Result, FSamples.addTotalSamples(NumSamples));
        InlineStack.push_back(&FSamples);
        break;
      }
      case LineType::BodyProfile: {
        while (InlineStack.size() > Depth) {
          InlineStack.pop_back();
        }
        FunctionSamples &FProfile = *InlineStack.back();
        for (const auto &name_count : TargetCountMap) {
          MergeResult(Result, FProfile.addCalledTargetSamples(
                                  LineOffset, Discriminator, name_count.first,
                                  name_count.second));
        }
        MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator,
                                                    NumSamples));
        break;
      }
      case LineType::Metadata: {
        FunctionSamples &FProfile = *InlineStack.back();
        FProfile.setFunctionHash(FunctionHash);
        ++ProbeProfileCount;
        SeenMetadata = true;
        break;
      }
      }
    }
  }

  assert((RegularProfileCount == 0 || CSProfileCount == 0) &&
         "Cannot have both context-sensitive and regular profile");
  ProfileIsCS = (CSProfileCount > 0);
  assert((ProbeProfileCount == 0 || ProbeProfileCount == Profiles.size()) &&
         "Cannot have both probe-based profiles and regular profiles");
  ProfileIsProbeBased = (ProbeProfileCount > 0);
  FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;

  if (Result == sampleprof_error::success)
    computeSummary();

  return Result;
}

bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
  bool result = false;

  // Check that the first non-comment line is a valid function header.
  line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
  if (!LineIt.is_at_eof()) {
    if ((*LineIt)[0] != ' ') {
      uint64_t NumSamples, NumHeadSamples;
      StringRef FName;
      result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
    }
  }

  return result;
}

template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
  unsigned NumBytesRead = 0;
  std::error_code EC;
  uint64_t Val = decodeULEB128(Data, &NumBytesRead);

  if (Val > std::numeric_limits<T>::max())
    EC = sampleprof_error::malformed;
  else if (Data + NumBytesRead > End)
    EC = sampleprof_error::truncated;
  else
    EC = sampleprof_error::success;

  if (EC) {
    reportError(0, EC.message());
    return EC;
  }

  Data += NumBytesRead;
  return static_cast<T>(Val);
}

ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
  std::error_code EC;
  StringRef Str(reinterpret_cast<const char *>(Data));
  if (Data + Str.size() + 1 > End) {
    EC = sampleprof_error::truncated;
    reportError(0, EC.message());
    return EC;
  }

  Data += Str.size() + 1;
  return Str;
}

template <typename T>
ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
  std::error_code EC;

  if (Data + sizeof(T) > End) {
    EC = sampleprof_error::truncated;
    reportError(0, EC.message());
    return EC;
  }

  using namespace support;
  T Val = endian::readNext<T, little, unaligned>(Data);
  return Val;
}

template <typename T>
inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
  std::error_code EC;
  auto Idx = readNumber<uint32_t>();
  if (std::error_code EC = Idx.getError())
    return EC;
  if (*Idx >= Table.size())
    return sampleprof_error::truncated_name_table;
  return *Idx;
}

ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() {
  auto Idx = readStringIndex(NameTable);
  if (std::error_code EC = Idx.getError())
    return EC;

  return NameTable[*Idx];
}

ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() {
  if (!FixedLengthMD5)
    return SampleProfileReaderBinary::readStringFromTable();

  // read NameTable index.
  auto Idx = readStringIndex(NameTable);
  if (std::error_code EC = Idx.getError())
    return EC;

  // Check whether the name to be accessed has been accessed before,
  // if not, read it from memory directly.
  StringRef &SR = NameTable[*Idx];
  if (SR.empty()) {
    const uint8_t *SavedData = Data;
    Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t));
    auto FID = readUnencodedNumber<uint64_t>();
    if (std::error_code EC = FID.getError())
      return EC;
    // Save the string converted from uint64_t in MD5StringBuf. All the
    // references to the name are all StringRefs refering to the string
    // in MD5StringBuf.
    MD5StringBuf->push_back(std::to_string(*FID));
    SR = MD5StringBuf->back();
    Data = SavedData;
  }
  return SR;
}

ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() {
  auto Idx = readStringIndex(NameTable);
  if (std::error_code EC = Idx.getError())
    return EC;

  return StringRef(NameTable[*Idx]);
}

std::error_code
SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
  auto NumSamples = readNumber<uint64_t>();
  if (std::error_code EC = NumSamples.getError())
    return EC;
  FProfile.addTotalSamples(*NumSamples);

  // Read the samples in the body.
  auto NumRecords = readNumber<uint32_t>();
  if (std::error_code EC = NumRecords.getError())
    return EC;

  for (uint32_t I = 0; I < *NumRecords; ++I) {
    auto LineOffset = readNumber<uint64_t>();
    if (std::error_code EC = LineOffset.getError())
      return EC;

    if (!isOffsetLegal(*LineOffset)) {
      return std::error_code();
    }

    auto Discriminator = readNumber<uint64_t>();
    if (std::error_code EC = Discriminator.getError())
      return EC;

    auto NumSamples = readNumber<uint64_t>();
    if (std::error_code EC = NumSamples.getError())
      return EC;

    auto NumCalls = readNumber<uint32_t>();
    if (std::error_code EC = NumCalls.getError())
      return EC;

    for (uint32_t J = 0; J < *NumCalls; ++J) {
      auto CalledFunction(readStringFromTable());
      if (std::error_code EC = CalledFunction.getError())
        return EC;

      auto CalledFunctionSamples = readNumber<uint64_t>();
      if (std::error_code EC = CalledFunctionSamples.getError())
        return EC;

      FProfile.addCalledTargetSamples(*LineOffset, *Discriminator,
                                      *CalledFunction, *CalledFunctionSamples);
    }

    FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples);
  }

  // Read all the samples for inlined function calls.
  auto NumCallsites = readNumber<uint32_t>();
  if (std::error_code EC = NumCallsites.getError())
    return EC;

  for (uint32_t J = 0; J < *NumCallsites; ++J) {
    auto LineOffset = readNumber<uint64_t>();
    if (std::error_code EC = LineOffset.getError())
      return EC;

    auto Discriminator = readNumber<uint64_t>();
    if (std::error_code EC = Discriminator.getError())
      return EC;

    auto FName(readStringFromTable());
    if (std::error_code EC = FName.getError())
      return EC;

    FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
        LineLocation(*LineOffset, *Discriminator))[std::string(*FName)];
    CalleeProfile.setName(*FName);
    if (std::error_code EC = readProfile(CalleeProfile))
      return EC;
  }

  return sampleprof_error::success;
}

std::error_code
SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
  Data = Start;
  auto NumHeadSamples = readNumber<uint64_t>();
  if (std::error_code EC = NumHeadSamples.getError())
    return EC;

  auto FName(readStringFromTable());
  if (std::error_code EC = FName.getError())
    return EC;

  Profiles[*FName] = FunctionSamples();
  FunctionSamples &FProfile = Profiles[*FName];
  FProfile.setName(*FName);

  FProfile.addHeadSamples(*NumHeadSamples);

  if (std::error_code EC = readProfile(FProfile))
    return EC;
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderBinary::readImpl() {
  while (!at_eof()) {
    if (std::error_code EC = readFuncProfile(Data))
      return EC;
  }

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readOneSection(
    const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) {
  Data = Start;
  End = Start + Size;
  switch (Entry.Type) {
  case SecProfSummary:
    if (std::error_code EC = readSummary())
      return EC;
    if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
      Summary->setPartialProfile(true);
    break;
  case SecNameTable: {
    FixedLengthMD5 =
        hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5);
    bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name);
    assert((!FixedLengthMD5 || UseMD5) &&
           "If FixedLengthMD5 is true, UseMD5 has to be true");
    if (std::error_code EC = readNameTableSec(UseMD5))
      return EC;
    break;
  }
  case SecLBRProfile:
    if (std::error_code EC = readFuncProfiles())
      return EC;
    break;
  case SecFuncOffsetTable:
    if (std::error_code EC = readFuncOffsetTable())
      return EC;
    break;
  case SecFuncMetadata:
    ProfileIsProbeBased =
        hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased);
    FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
    if (std::error_code EC = readFuncMetadata())
      return EC;
    break;
  case SecProfileSymbolList:
    if (std::error_code EC = readProfileSymbolList())
      return EC;
    break;
  default:
    if (std::error_code EC = readCustomSection(Entry))
      return EC;
    break;
  }
  return sampleprof_error::success;
}

void SampleProfileReaderExtBinaryBase::collectFuncsFrom(const Module &M) {
  UseAllFuncs = false;
  FuncsToUse.clear();
  for (auto &F : M)
    FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
}

std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() {
  // If there are more than one FuncOffsetTable, the profile read associated
  // with previous FuncOffsetTable has to be done before next FuncOffsetTable
  // is read.
  FuncOffsetTable.clear();

  auto Size = readNumber<uint64_t>();
  if (std::error_code EC = Size.getError())
    return EC;

  FuncOffsetTable.reserve(*Size);
  for (uint32_t I = 0; I < *Size; ++I) {
    auto FName(readStringFromTable());
    if (std::error_code EC = FName.getError())
      return EC;

    auto Offset = readNumber<uint64_t>();
    if (std::error_code EC = Offset.getError())
      return EC;

    FuncOffsetTable[*FName] = *Offset;
  }
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() {
  const uint8_t *Start = Data;
  if (UseAllFuncs) {
    while (Data < End) {
      if (std::error_code EC = readFuncProfile(Data))
        return EC;
    }
    assert(Data == End && "More data is read than expected");
    return sampleprof_error::success;
  }

  if (Remapper) {
    for (auto Name : FuncsToUse) {
      Remapper->insert(Name);
    }
  }

  if (useMD5()) {
    for (auto Name : FuncsToUse) {
      auto GUID = std::to_string(MD5Hash(Name));
      auto iter = FuncOffsetTable.find(StringRef(GUID));
      if (iter == FuncOffsetTable.end())
        continue;
      const uint8_t *FuncProfileAddr = Start + iter->second;
      assert(FuncProfileAddr < End && "out of LBRProfile section");
      if (std::error_code EC = readFuncProfile(FuncProfileAddr))
        return EC;
    }
  } else {
    for (auto NameOffset : FuncOffsetTable) {
      auto FuncName = NameOffset.first;
      if (!FuncsToUse.count(FuncName) &&
          (!Remapper || !Remapper->exist(FuncName)))
        continue;
      const uint8_t *FuncProfileAddr = Start + NameOffset.second;
      assert(FuncProfileAddr < End && "out of LBRProfile section");
      if (std::error_code EC = readFuncProfile(FuncProfileAddr))
        return EC;
    }
  }

  Data = End;
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() {
  if (!ProfSymList)
    ProfSymList = std::make_unique<ProfileSymbolList>();

  if (std::error_code EC = ProfSymList->read(Data, End - Data))
    return EC;

  Data = End;
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
    const uint8_t *SecStart, const uint64_t SecSize,
    const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
  Data = SecStart;
  End = SecStart + SecSize;
  auto DecompressSize = readNumber<uint64_t>();
  if (std::error_code EC = DecompressSize.getError())
    return EC;
  DecompressBufSize = *DecompressSize;

  auto CompressSize = readNumber<uint64_t>();
  if (std::error_code EC = CompressSize.getError())
    return EC;

  if (!llvm::zlib::isAvailable())
    return sampleprof_error::zlib_unavailable;

  StringRef CompressedStrings(reinterpret_cast<const char *>(Data),
                              *CompressSize);
  char *Buffer = Allocator.Allocate<char>(DecompressBufSize);
  size_t UCSize = DecompressBufSize;
  llvm::Error E =
      zlib::uncompress(CompressedStrings, Buffer, UCSize);
  if (E)
    return sampleprof_error::uncompress_failed;
  DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
  const uint8_t *BufStart =
      reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());

  for (auto &Entry : SecHdrTable) {
    // Skip empty section.
    if (!Entry.Size)
      continue;

    // Skip sections without context when SkipFlatProf is true.
    if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
      continue;

    const uint8_t *SecStart = BufStart + Entry.Offset;
    uint64_t SecSize = Entry.Size;

    // If the section is compressed, decompress it into a buffer
    // DecompressBuf before reading the actual data. The pointee of
    // 'Data' will be changed to buffer hold by DecompressBuf
    // temporarily when reading the actual data.
    bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress);
    if (isCompressed) {
      const uint8_t *DecompressBuf;
      uint64_t DecompressBufSize;
      if (std::error_code EC = decompressSection(
              SecStart, SecSize, DecompressBuf, DecompressBufSize))
        return EC;
      SecStart = DecompressBuf;
      SecSize = DecompressBufSize;
    }

    if (std::error_code EC = readOneSection(SecStart, SecSize, Entry))
      return EC;
    if (Data != SecStart + SecSize)
      return sampleprof_error::malformed;

    // Change the pointee of 'Data' from DecompressBuf to original Buffer.
    if (isCompressed) {
      Data = BufStart + Entry.Offset;
      End = BufStart + Buffer->getBufferSize();
    }
  }

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderCompactBinary::readImpl() {
  std::vector<uint64_t> OffsetsToUse;
  if (UseAllFuncs) {
    for (auto FuncEntry : FuncOffsetTable) {
      OffsetsToUse.push_back(FuncEntry.second);
    }
  }
  else {
    for (auto Name : FuncsToUse) {
      auto GUID = std::to_string(MD5Hash(Name));
      auto iter = FuncOffsetTable.find(StringRef(GUID));
      if (iter == FuncOffsetTable.end())
        continue;
      OffsetsToUse.push_back(iter->second);
    }
  }

  for (auto Offset : OffsetsToUse) {
    const uint8_t *SavedData = Data;
    if (std::error_code EC = readFuncProfile(
            reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
            Offset))
      return EC;
    Data = SavedData;
  }
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
  if (Magic == SPMagic())
    return sampleprof_error::success;
  return sampleprof_error::bad_magic;
}

std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
  if (Magic == SPMagic(SPF_Ext_Binary))
    return sampleprof_error::success;
  return sampleprof_error::bad_magic;
}

std::error_code
SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) {
  if (Magic == SPMagic(SPF_Compact_Binary))
    return sampleprof_error::success;
  return sampleprof_error::bad_magic;
}

std::error_code SampleProfileReaderBinary::readNameTable() {
  auto Size = readNumber<uint32_t>();
  if (std::error_code EC = Size.getError())
    return EC;
  NameTable.reserve(*Size + NameTable.size());
  for (uint32_t I = 0; I < *Size; ++I) {
    auto Name(readString());
    if (std::error_code EC = Name.getError())
      return EC;
    NameTable.push_back(*Name);
  }

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() {
  auto Size = readNumber<uint64_t>();
  if (std::error_code EC = Size.getError())
    return EC;
  MD5StringBuf = std::make_unique<std::vector<std::string>>();
  MD5StringBuf->reserve(*Size);
  if (FixedLengthMD5) {
    // Preallocate and initialize NameTable so we can check whether a name
    // index has been read before by checking whether the element in the
    // NameTable is empty, meanwhile readStringIndex can do the boundary
    // check using the size of NameTable.
    NameTable.resize(*Size + NameTable.size());

    MD5NameMemStart = Data;
    Data = Data + (*Size) * sizeof(uint64_t);
    return sampleprof_error::success;
  }
  NameTable.reserve(*Size);
  for (uint32_t I = 0; I < *Size; ++I) {
    auto FID = readNumber<uint64_t>();
    if (std::error_code EC = FID.getError())
      return EC;
    MD5StringBuf->push_back(std::to_string(*FID));
    // NameTable is a vector of StringRef. Here it is pushing back a
    // StringRef initialized with the last string in MD5stringBuf.
    NameTable.push_back(MD5StringBuf->back());
  }
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) {
  if (IsMD5)
    return readMD5NameTable();
  return SampleProfileReaderBinary::readNameTable();
}

std::error_code SampleProfileReaderExtBinaryBase::readFuncMetadata() {
  if (!ProfileIsProbeBased)
    return sampleprof_error::success;
  for (unsigned I = 0; I < Profiles.size(); ++I) {
    auto FName(readStringFromTable());
    if (std::error_code EC = FName.getError())
      return EC;

    auto Checksum = readNumber<uint64_t>();
    if (std::error_code EC = Checksum.getError())
      return EC;

    Profiles[*FName].setFunctionHash(*Checksum);
  }
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderCompactBinary::readNameTable() {
  auto Size = readNumber<uint64_t>();
  if (std::error_code EC = Size.getError())
    return EC;
  NameTable.reserve(*Size);
  for (uint32_t I = 0; I < *Size; ++I) {
    auto FID = readNumber<uint64_t>();
    if (std::error_code EC = FID.getError())
      return EC;
    NameTable.push_back(std::to_string(*FID));
  }
  return sampleprof_error::success;
}

std::error_code
SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) {
  SecHdrTableEntry Entry;
  auto Type = readUnencodedNumber<uint64_t>();
  if (std::error_code EC = Type.getError())
    return EC;
  Entry.Type = static_cast<SecType>(*Type);

  auto Flags = readUnencodedNumber<uint64_t>();
  if (std::error_code EC = Flags.getError())
    return EC;
  Entry.Flags = *Flags;

  auto Offset = readUnencodedNumber<uint64_t>();
  if (std::error_code EC = Offset.getError())
    return EC;
  Entry.Offset = *Offset;

  auto Size = readUnencodedNumber<uint64_t>();
  if (std::error_code EC = Size.getError())
    return EC;
  Entry.Size = *Size;

  Entry.LayoutIndex = Idx;
  SecHdrTable.push_back(std::move(Entry));
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
  auto EntryNum = readUnencodedNumber<uint64_t>();
  if (std::error_code EC = EntryNum.getError())
    return EC;

  for (uint32_t i = 0; i < (*EntryNum); i++)
    if (std::error_code EC = readSecHdrTableEntry(i))
      return EC;

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
  const uint8_t *BufStart =
      reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
  Data = BufStart;
  End = BufStart + Buffer->getBufferSize();

  if (std::error_code EC = readMagicIdent())
    return EC;

  if (std::error_code EC = readSecHdrTable())
    return EC;

  return sampleprof_error::success;
}

uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
  uint64_t Size = 0;
  for (auto &Entry : SecHdrTable) {
    if (Entry.Type == Type)
      Size += Entry.Size;
  }
  return Size;
}

uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
  // Sections in SecHdrTable is not necessarily in the same order as
  // sections in the profile because section like FuncOffsetTable needs
  // to be written after section LBRProfile but needs to be read before
  // section LBRProfile, so we cannot simply use the last entry in
  // SecHdrTable to calculate the file size.
  uint64_t FileSize = 0;
  for (auto &Entry : SecHdrTable) {
    FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
  }
  return FileSize;
}

static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) {
  std::string Flags;
  if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress))
    Flags.append("{compressed,");
  else
    Flags.append("{");

  if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
    Flags.append("flat,");

  switch (Entry.Type) {
  case SecNameTable:
    if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5))
      Flags.append("fixlenmd5,");
    else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name))
      Flags.append("md5,");
    break;
  case SecProfSummary:
    if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
      Flags.append("partial,");
    break;
  default:
    break;
  }
  char &last = Flags.back();
  if (last == ',')
    last = '}';
  else
    Flags.append("}");
  return Flags;
}

bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
  uint64_t TotalSecsSize = 0;
  for (auto &Entry : SecHdrTable) {
    OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
       << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry)
       << "\n";
    ;
    TotalSecsSize += Entry.Size;
  }
  uint64_t HeaderSize = SecHdrTable.front().Offset;
  assert(HeaderSize + TotalSecsSize == getFileSize() &&
         "Size of 'header + sections' doesn't match the total size of profile");

  OS << "Header Size: " << HeaderSize << "\n";
  OS << "Total Sections Size: " << TotalSecsSize << "\n";
  OS << "File Size: " << getFileSize() << "\n";
  return true;
}

std::error_code SampleProfileReaderBinary::readMagicIdent() {
  // Read and check the magic identifier.
  auto Magic = readNumber<uint64_t>();
  if (std::error_code EC = Magic.getError())
    return EC;
  else if (std::error_code EC = verifySPMagic(*Magic))
    return EC;

  // Read the version number.
  auto Version = readNumber<uint64_t>();
  if (std::error_code EC = Version.getError())
    return EC;
  else if (*Version != SPVersion())
    return sampleprof_error::unsupported_version;

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderBinary::readHeader() {
  Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
  End = Data + Buffer->getBufferSize();

  if (std::error_code EC = readMagicIdent())
    return EC;

  if (std::error_code EC = readSummary())
    return EC;

  if (std::error_code EC = readNameTable())
    return EC;
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderCompactBinary::readHeader() {
  SampleProfileReaderBinary::readHeader();
  if (std::error_code EC = readFuncOffsetTable())
    return EC;
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() {
  auto TableOffset = readUnencodedNumber<uint64_t>();
  if (std::error_code EC = TableOffset.getError())
    return EC;

  const uint8_t *SavedData = Data;
  const uint8_t *TableStart =
      reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
      *TableOffset;
  Data = TableStart;

  auto Size = readNumber<uint64_t>();
  if (std::error_code EC = Size.getError())
    return EC;

  FuncOffsetTable.reserve(*Size);
  for (uint32_t I = 0; I < *Size; ++I) {
    auto FName(readStringFromTable());
    if (std::error_code EC = FName.getError())
      return EC;

    auto Offset = readNumber<uint64_t>();
    if (std::error_code EC = Offset.getError())
      return EC;

    FuncOffsetTable[*FName] = *Offset;
  }
  End = TableStart;
  Data = SavedData;
  return sampleprof_error::success;
}

void SampleProfileReaderCompactBinary::collectFuncsFrom(const Module &M) {
  UseAllFuncs = false;
  FuncsToUse.clear();
  for (auto &F : M)
    FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
}

std::error_code SampleProfileReaderBinary::readSummaryEntry(
    std::vector<ProfileSummaryEntry> &Entries) {
  auto Cutoff = readNumber<uint64_t>();
  if (std::error_code EC = Cutoff.getError())
    return EC;

  auto MinBlockCount = readNumber<uint64_t>();
  if (std::error_code EC = MinBlockCount.getError())
    return EC;

  auto NumBlocks = readNumber<uint64_t>();
  if (std::error_code EC = NumBlocks.getError())
    return EC;

  Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderBinary::readSummary() {
  auto TotalCount = readNumber<uint64_t>();
  if (std::error_code EC = TotalCount.getError())
    return EC;

  auto MaxBlockCount = readNumber<uint64_t>();
  if (std::error_code EC = MaxBlockCount.getError())
    return EC;

  auto MaxFunctionCount = readNumber<uint64_t>();
  if (std::error_code EC = MaxFunctionCount.getError())
    return EC;

  auto NumBlocks = readNumber<uint64_t>();
  if (std::error_code EC = NumBlocks.getError())
    return EC;

  auto NumFunctions = readNumber<uint64_t>();
  if (std::error_code EC = NumFunctions.getError())
    return EC;

  auto NumSummaryEntries = readNumber<uint64_t>();
  if (std::error_code EC = NumSummaryEntries.getError())
    return EC;

  std::vector<ProfileSummaryEntry> Entries;
  for (unsigned i = 0; i < *NumSummaryEntries; i++) {
    std::error_code EC = readSummaryEntry(Entries);
    if (EC != sampleprof_error::success)
      return EC;
  }
  Summary = std::make_unique<ProfileSummary>(
      ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
      *MaxFunctionCount, *NumBlocks, *NumFunctions);

  return sampleprof_error::success;
}

bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
  const uint8_t *Data =
      reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
  uint64_t Magic = decodeULEB128(Data);
  return Magic == SPMagic();
}

bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
  const uint8_t *Data =
      reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
  uint64_t Magic = decodeULEB128(Data);
  return Magic == SPMagic(SPF_Ext_Binary);
}

bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) {
  const uint8_t *Data =
      reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
  uint64_t Magic = decodeULEB128(Data);
  return Magic == SPMagic(SPF_Compact_Binary);
}

std::error_code SampleProfileReaderGCC::skipNextWord() {
  uint32_t dummy;
  if (!GcovBuffer.readInt(dummy))
    return sampleprof_error::truncated;
  return sampleprof_error::success;
}

template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
  if (sizeof(T) <= sizeof(uint32_t)) {
    uint32_t Val;
    if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
      return static_cast<T>(Val);
  } else if (sizeof(T) <= sizeof(uint64_t)) {
    uint64_t Val;
    if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
      return static_cast<T>(Val);
  }

  std::error_code EC = sampleprof_error::malformed;
  reportError(0, EC.message());
  return EC;
}

ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
  StringRef Str;
  if (!GcovBuffer.readString(Str))
    return sampleprof_error::truncated;
  return Str;
}

std::error_code SampleProfileReaderGCC::readHeader() {
  // Read the magic identifier.
  if (!GcovBuffer.readGCDAFormat())
    return sampleprof_error::unrecognized_format;

  // Read the version number. Note - the GCC reader does not validate this
  // version, but the profile creator generates v704.
  GCOV::GCOVVersion version;
  if (!GcovBuffer.readGCOVVersion(version))
    return sampleprof_error::unrecognized_format;

  if (version != GCOV::V407)
    return sampleprof_error::unsupported_version;

  // Skip the empty integer.
  if (std::error_code EC = skipNextWord())
    return EC;

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
  uint32_t Tag;
  if (!GcovBuffer.readInt(Tag))
    return sampleprof_error::truncated;

  if (Tag != Expected)
    return sampleprof_error::malformed;

  if (std::error_code EC = skipNextWord())
    return EC;

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderGCC::readNameTable() {
  if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
    return EC;

  uint32_t Size;
  if (!GcovBuffer.readInt(Size))
    return sampleprof_error::truncated;

  for (uint32_t I = 0; I < Size; ++I) {
    StringRef Str;
    if (!GcovBuffer.readString(Str))
      return sampleprof_error::truncated;
    Names.push_back(std::string(Str));
  }

  return sampleprof_error::success;
}

std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
  if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
    return EC;

  uint32_t NumFunctions;
  if (!GcovBuffer.readInt(NumFunctions))
    return sampleprof_error::truncated;

  InlineCallStack Stack;
  for (uint32_t I = 0; I < NumFunctions; ++I)
    if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
      return EC;

  computeSummary();
  return sampleprof_error::success;
}

std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
    const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
  uint64_t HeadCount = 0;
  if (InlineStack.size() == 0)
    if (!GcovBuffer.readInt64(HeadCount))
      return sampleprof_error::truncated;

  uint32_t NameIdx;
  if (!GcovBuffer.readInt(NameIdx))
    return sampleprof_error::truncated;

  StringRef Name(Names[NameIdx]);

  uint32_t NumPosCounts;
  if (!GcovBuffer.readInt(NumPosCounts))
    return sampleprof_error::truncated;

  uint32_t NumCallsites;
  if (!GcovBuffer.readInt(NumCallsites))
    return sampleprof_error::truncated;

  FunctionSamples *FProfile = nullptr;
  if (InlineStack.size() == 0) {
    // If this is a top function that we have already processed, do not
    // update its profile again.  This happens in the presence of
    // function aliases.  Since these aliases share the same function
    // body, there will be identical replicated profiles for the
    // original function.  In this case, we simply not bother updating
    // the profile of the original function.
    FProfile = &Profiles[Name];
    FProfile->addHeadSamples(HeadCount);
    if (FProfile->getTotalSamples() > 0)
      Update = false;
  } else {
    // Otherwise, we are reading an inlined instance. The top of the
    // inline stack contains the profile of the caller. Insert this
    // callee in the caller's CallsiteMap.
    FunctionSamples *CallerProfile = InlineStack.front();
    uint32_t LineOffset = Offset >> 16;
    uint32_t Discriminator = Offset & 0xffff;
    FProfile = &CallerProfile->functionSamplesAt(
        LineLocation(LineOffset, Discriminator))[std::string(Name)];
  }
  FProfile->setName(Name);

  for (uint32_t I = 0; I < NumPosCounts; ++I) {
    uint32_t Offset;
    if (!GcovBuffer.readInt(Offset))
      return sampleprof_error::truncated;

    uint32_t NumTargets;
    if (!GcovBuffer.readInt(NumTargets))
      return sampleprof_error::truncated;

    uint64_t Count;
    if (!GcovBuffer.readInt64(Count))
      return sampleprof_error::truncated;

    // The line location is encoded in the offset as:
    //   high 16 bits: line offset to the start of the function.
    //   low 16 bits: discriminator.
    uint32_t LineOffset = Offset >> 16;
    uint32_t Discriminator = Offset & 0xffff;

    InlineCallStack NewStack;
    NewStack.push_back(FProfile);
    llvm::append_range(NewStack, InlineStack);
    if (Update) {
      // Walk up the inline stack, adding the samples on this line to
      // the total sample count of the callers in the chain.
      for (auto CallerProfile : NewStack)
        CallerProfile->addTotalSamples(Count);

      // Update the body samples for the current profile.
      FProfile->addBodySamples(LineOffset, Discriminator, Count);
    }

    // Process the list of functions called at an indirect call site.
    // These are all the targets that a function pointer (or virtual
    // function) resolved at runtime.
    for (uint32_t J = 0; J < NumTargets; J++) {
      uint32_t HistVal;
      if (!GcovBuffer.readInt(HistVal))
        return sampleprof_error::truncated;

      if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
        return sampleprof_error::malformed;

      uint64_t TargetIdx;
      if (!GcovBuffer.readInt64(TargetIdx))
        return sampleprof_error::truncated;
      StringRef TargetName(Names[TargetIdx]);

      uint64_t TargetCount;
      if (!GcovBuffer.readInt64(TargetCount))
        return sampleprof_error::truncated;

      if (Update)
        FProfile->addCalledTargetSamples(LineOffset, Discriminator,
                                         TargetName, TargetCount);
    }
  }

  // Process all the inlined callers into the current function. These
  // are all the callsites that were inlined into this function.
  for (uint32_t I = 0; I < NumCallsites; I++) {
    // The offset is encoded as:
    //   high 16 bits: line offset to the start of the function.
    //   low 16 bits: discriminator.
    uint32_t Offset;
    if (!GcovBuffer.readInt(Offset))
      return sampleprof_error::truncated;
    InlineCallStack NewStack;
    NewStack.push_back(FProfile);
    llvm::append_range(NewStack, InlineStack);
    if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
      return EC;
  }

  return sampleprof_error::success;
}

/// Read a GCC AutoFDO profile.
///
/// This format is generated by the Linux Perf conversion tool at
/// https://github.com/google/autofdo.
std::error_code SampleProfileReaderGCC::readImpl() {
  // Read the string table.
  if (std::error_code EC = readNameTable())
    return EC;

  // Read the source profile.
  if (std::error_code EC = readFunctionProfiles())
    return EC;

  return sampleprof_error::success;
}

bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
  StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
  return Magic == "adcg*704";
}

void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
  // If the reader uses MD5 to represent string, we can't remap it because
  // we don't know what the original function names were.
  if (Reader.useMD5()) {
    Ctx.diagnose(DiagnosticInfoSampleProfile(
        Reader.getBuffer()->getBufferIdentifier(),
        "Profile data remapping cannot be applied to profile data "
        "in compact format (original mangled names are not available).",
        DS_Warning));
    return;
  }

  // CSSPGO-TODO: Remapper is not yet supported.
  // We will need to remap the entire context string.
  assert(Remappings && "should be initialized while creating remapper");
  for (auto &Sample : Reader.getProfiles()) {
    DenseSet<StringRef> NamesInSample;
    Sample.second.findAllNames(NamesInSample);
    for (auto &Name : NamesInSample)
      if (auto Key = Remappings->insert(Name))
        NameMap.insert({Key, Name});
  }

  RemappingApplied = true;
}

Optional<StringRef>
SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) {
  if (auto Key = Remappings->lookup(Fname))
    return NameMap.lookup(Key);
  return None;
}

/// Prepare a memory buffer for the contents of \p Filename.
///
/// \returns an error code indicating the status of the buffer.
static ErrorOr<std::unique_ptr<MemoryBuffer>>
setupMemoryBuffer(const Twine &Filename) {
  auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename);
  if (std::error_code EC = BufferOrErr.getError())
    return EC;
  auto Buffer = std::move(BufferOrErr.get());

  // Sanity check the file.
  if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max())
    return sampleprof_error::too_large;

  return std::move(Buffer);
}

/// Create a sample profile reader based on the format of the input file.
///
/// \param Filename The file to open.
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \param RemapFilename The file used for profile remapping.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReader>>
SampleProfileReader::create(const std::string Filename, LLVMContext &C,
                            const std::string RemapFilename) {
  auto BufferOrError = setupMemoryBuffer(Filename);
  if (std::error_code EC = BufferOrError.getError())
    return EC;
  return create(BufferOrError.get(), C, RemapFilename);
}

/// Create a sample profile remapper from the given input, to remap the
/// function names in the given profile data.
///
/// \param Filename The file to open.
///
/// \param Reader The profile reader the remapper is going to be applied to.
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
SampleProfileReaderItaniumRemapper::create(const std::string Filename,
                                           SampleProfileReader &Reader,
                                           LLVMContext &C) {
  auto BufferOrError = setupMemoryBuffer(Filename);
  if (std::error_code EC = BufferOrError.getError())
    return EC;
  return create(BufferOrError.get(), Reader, C);
}

/// Create a sample profile remapper from the given input, to remap the
/// function names in the given profile data.
///
/// \param B The memory buffer to create the reader from (assumes ownership).
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \param Reader The profile reader the remapper is going to be applied to.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
                                           SampleProfileReader &Reader,
                                           LLVMContext &C) {
  auto Remappings = std::make_unique<SymbolRemappingReader>();
  if (Error E = Remappings->read(*B.get())) {
    handleAllErrors(
        std::move(E), [&](const SymbolRemappingParseError &ParseError) {
          C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
                                                 ParseError.getLineNum(),
                                                 ParseError.getMessage()));
        });
    return sampleprof_error::malformed;
  }

  return std::make_unique<SampleProfileReaderItaniumRemapper>(
      std::move(B), std::move(Remappings), Reader);
}

/// Create a sample profile reader based on the format of the input data.
///
/// \param B The memory buffer to create the reader from (assumes ownership).
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \param RemapFilename The file used for profile remapping.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReader>>
SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
                            const std::string RemapFilename) {
  std::unique_ptr<SampleProfileReader> Reader;
  if (SampleProfileReaderRawBinary::hasFormat(*B))
    Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
  else if (SampleProfileReaderExtBinary::hasFormat(*B))
    Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
  else if (SampleProfileReaderCompactBinary::hasFormat(*B))
    Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C));
  else if (SampleProfileReaderGCC::hasFormat(*B))
    Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
  else if (SampleProfileReaderText::hasFormat(*B))
    Reader.reset(new SampleProfileReaderText(std::move(B), C));
  else
    return sampleprof_error::unrecognized_format;

  if (!RemapFilename.empty()) {
    auto ReaderOrErr =
        SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C);
    if (std::error_code EC = ReaderOrErr.getError()) {
      std::string Msg = "Could not create remapper: " + EC.message();
      C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
      return EC;
    }
    Reader->Remapper = std::move(ReaderOrErr.get());
  }

  FunctionSamples::Format = Reader->getFormat();
  if (std::error_code EC = Reader->readHeader()) {
    return EC;
  }

  return std::move(Reader);
}

// For text and GCC file formats, we compute the summary after reading the
// profile. Binary format has the profile summary in its header.
void SampleProfileReader::computeSummary() {
  SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
  for (const auto &I : Profiles) {
    const FunctionSamples &Profile = I.second;
    Builder.addRecord(Profile);
  }
  Summary = Builder.getSummary();
}