aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
blob: 01236aa6b5276f622aac85e78394eb12c89bac03 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AArch64TargetTransformInfo.h"
#include "AArch64ExpandImm.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "aarch64tti"

static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
                                               cl::init(true), cl::Hidden);

bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
                                         const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();

  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // Inline a callee if its target-features are a subset of the callers
  // target-features.
  return (CallerBits & CalleeBits) == CalleeBits;
}

/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
  // Check if the immediate can be encoded within an instruction.
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
    return 0;

  if (Val < 0)
    Val = ~Val;

  // Calculate how many moves we will need to materialize this constant.
  SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
  AArch64_IMM::expandMOVImm(Val, 64, Insn);
  return Insn.size();
}

/// Calculate the cost of materializing the given constant.
InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                                              TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  // Sign-extend all constants to a multiple of 64-bit.
  APInt ImmVal = Imm;
  if (BitSize & 0x3f)
    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);

  // Split the constant into 64-bit chunks and calculate the cost for each
  // chunk.
  InstructionCost Cost = 0;
  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
    int64_t Val = Tmp.getSExtValue();
    Cost += getIntImmCost(Val);
  }
  // We need at least one instruction to materialze the constant.
  return std::max<InstructionCost>(1, Cost);
}

InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                                  const APInt &Imm, Type *Ty,
                                                  TTI::TargetCostKind CostKind,
                                                  Instruction *Inst) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  unsigned ImmIdx = ~0U;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    ImmIdx = 0;
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::ICmp:
    ImmIdx = 1;
    break;
  // Always return TCC_Free for the shift value of a shift instruction.
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  if (Idx == ImmIdx) {
    int NumConstants = (BitSize + 63) / 64;
    InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
    return (Cost <= NumConstants * TTI::TCC_Basic)
               ? static_cast<int>(TTI::TCC_Free)
               : Cost;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

InstructionCost
AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                    const APInt &Imm, Type *Ty,
                                    TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  // Most (all?) AArch64 intrinsics do not support folding immediates into the
  // selected instruction, so we compute the materialization cost for the
  // immediate directly.
  if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
    return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    if (Idx == 1) {
      int NumConstants = (BitSize + 63) / 64;
      InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
      return (Cost <= NumConstants * TTI::TCC_Basic)
                 ? static_cast<int>(TTI::TCC_Free)
                 : Cost;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_gc_statepoint:
    if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (TyWidth == 32 || TyWidth == 64)
    return TTI::PSK_FastHardware;
  // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
  return TTI::PSK_Software;
}

InstructionCost
AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                      TTI::TargetCostKind CostKind) {
  auto *RetTy = ICA.getReturnType();
  switch (ICA.getID()) {
  case Intrinsic::umin:
  case Intrinsic::umax: {
    auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
    // umin(x,y) -> sub(x,usubsat(x,y))
    // umax(x,y) -> add(x,usubsat(y,x))
    if (LT.second == MVT::v2i64)
      return LT.first * 2;
    LLVM_FALLTHROUGH;
  }
  case Intrinsic::smin:
  case Intrinsic::smax: {
    static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                        MVT::v8i16, MVT::v2i32, MVT::v4i32};
    auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
    if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
      return LT.first;
    break;
  }
  case Intrinsic::sadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::usub_sat: {
    static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                     MVT::v8i16, MVT::v2i32, MVT::v4i32,
                                     MVT::v2i64};
    auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
    // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
    // need to extend the type, as it uses shr(qadd(shl, shl)).
    unsigned Instrs =
        LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
    if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
      return LT.first * Instrs;
    break;
  }
  case Intrinsic::abs: {
    static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                     MVT::v8i16, MVT::v2i32, MVT::v4i32,
                                     MVT::v2i64};
    auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
    if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
      return LT.first;
    break;
  }
  case Intrinsic::experimental_stepvector: {
    InstructionCost Cost = 1; // Cost of the `index' instruction
    auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
    // Legalisation of illegal vectors involves an `index' instruction plus
    // (LT.first - 1) vector adds.
    if (LT.first > 1) {
      Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
      InstructionCost AddCost =
          getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
      Cost += AddCost * (LT.first - 1);
    }
    return Cost;
  }
  case Intrinsic::bitreverse: {
    static const CostTblEntry BitreverseTbl[] = {
        {Intrinsic::bitreverse, MVT::i32, 1},
        {Intrinsic::bitreverse, MVT::i64, 1},
        {Intrinsic::bitreverse, MVT::v8i8, 1},
        {Intrinsic::bitreverse, MVT::v16i8, 1},
        {Intrinsic::bitreverse, MVT::v4i16, 2},
        {Intrinsic::bitreverse, MVT::v8i16, 2},
        {Intrinsic::bitreverse, MVT::v2i32, 2},
        {Intrinsic::bitreverse, MVT::v4i32, 2},
        {Intrinsic::bitreverse, MVT::v1i64, 2},
        {Intrinsic::bitreverse, MVT::v2i64, 2},
    };
    const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy);
    const auto *Entry =
        CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
    // Cost Model is using the legal type(i32) that i8 and i16 will be converted
    // to +1 so that we match the actual lowering cost
    if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
        TLI->getValueType(DL, RetTy, true) == MVT::i16)
      return LegalisationCost.first * Entry->Cost + 1;
    if (Entry)
      return LegalisationCost.first * Entry->Cost;
    break;
  }
  case Intrinsic::ctpop: {
    static const CostTblEntry CtpopCostTbl[] = {
        {ISD::CTPOP, MVT::v2i64, 4},
        {ISD::CTPOP, MVT::v4i32, 3},
        {ISD::CTPOP, MVT::v8i16, 2},
        {ISD::CTPOP, MVT::v16i8, 1},
        {ISD::CTPOP, MVT::i64,   4},
        {ISD::CTPOP, MVT::v2i32, 3},
        {ISD::CTPOP, MVT::v4i16, 2},
        {ISD::CTPOP, MVT::v8i8,  1},
        {ISD::CTPOP, MVT::i32,   5},
    };
    auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
    MVT MTy = LT.second;
    if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
      // Extra cost of +1 when illegal vector types are legalized by promoting
      // the integer type.
      int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
                                            RetTy->getScalarSizeInBits()
                          ? 1
                          : 0;
      return LT.first * Entry->Cost + ExtraCost;
    }
    break;
  }
  default:
    break;
  }
  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}

/// The function will remove redundant reinterprets casting in the presence
/// of the control flow
static Optional<Instruction *> processPhiNode(InstCombiner &IC,
                                              IntrinsicInst &II) {
  SmallVector<Instruction *, 32> Worklist;
  auto RequiredType = II.getType();

  auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
  assert(PN && "Expected Phi Node!");

  // Don't create a new Phi unless we can remove the old one.
  if (!PN->hasOneUse())
    return None;

  for (Value *IncValPhi : PN->incoming_values()) {
    auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
    if (!Reinterpret ||
        Reinterpret->getIntrinsicID() !=
            Intrinsic::aarch64_sve_convert_to_svbool ||
        RequiredType != Reinterpret->getArgOperand(0)->getType())
      return None;
  }

  // Create the new Phi
  LLVMContext &Ctx = PN->getContext();
  IRBuilder<> Builder(Ctx);
  Builder.SetInsertPoint(PN);
  PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
  Worklist.push_back(PN);

  for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
    auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
    NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
    Worklist.push_back(Reinterpret);
  }

  // Cleanup Phi Node and reinterprets
  return IC.replaceInstUsesWith(II, NPN);
}

static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC,
                                                            IntrinsicInst &II) {
  // If the reinterpret instruction operand is a PHI Node
  if (isa<PHINode>(II.getArgOperand(0)))
    return processPhiNode(IC, II);

  SmallVector<Instruction *, 32> CandidatesForRemoval;
  Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;

  const auto *IVTy = cast<VectorType>(II.getType());

  // Walk the chain of conversions.
  while (Cursor) {
    // If the type of the cursor has fewer lanes than the final result, zeroing
    // must take place, which breaks the equivalence chain.
    const auto *CursorVTy = cast<VectorType>(Cursor->getType());
    if (CursorVTy->getElementCount().getKnownMinValue() <
        IVTy->getElementCount().getKnownMinValue())
      break;

    // If the cursor has the same type as I, it is a viable replacement.
    if (Cursor->getType() == IVTy)
      EarliestReplacement = Cursor;

    auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);

    // If this is not an SVE conversion intrinsic, this is the end of the chain.
    if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
                                  Intrinsic::aarch64_sve_convert_to_svbool ||
                              IntrinsicCursor->getIntrinsicID() ==
                                  Intrinsic::aarch64_sve_convert_from_svbool))
      break;

    CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
    Cursor = IntrinsicCursor->getOperand(0);
  }

  // If no viable replacement in the conversion chain was found, there is
  // nothing to do.
  if (!EarliestReplacement)
    return None;

  return IC.replaceInstUsesWith(II, EarliestReplacement);
}

static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
                                                 IntrinsicInst &II) {
  IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
  if (!Pg)
    return None;

  if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
    return None;

  const auto PTruePattern =
      cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
  if (PTruePattern != AArch64SVEPredPattern::vl1)
    return None;

  // The intrinsic is inserting into lane zero so use an insert instead.
  auto *IdxTy = Type::getInt64Ty(II.getContext());
  auto *Insert = InsertElementInst::Create(
      II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
  Insert->insertBefore(&II);
  Insert->takeName(&II);

  return IC.replaceInstUsesWith(II, Insert);
}

static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
                                                   IntrinsicInst &II) {
  LLVMContext &Ctx = II.getContext();
  IRBuilder<> Builder(Ctx);
  Builder.SetInsertPoint(&II);

  // Check that the predicate is all active
  auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
  if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
    return None;

  const auto PTruePattern =
      cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
  if (PTruePattern != AArch64SVEPredPattern::all)
    return None;

  // Check that we have a compare of zero..
  auto *DupX = dyn_cast<IntrinsicInst>(II.getArgOperand(2));
  if (!DupX || DupX->getIntrinsicID() != Intrinsic::aarch64_sve_dup_x)
    return None;

  auto *DupXArg = dyn_cast<ConstantInt>(DupX->getArgOperand(0));
  if (!DupXArg || !DupXArg->isZero())
    return None;

  // ..against a dupq
  auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
  if (!DupQLane ||
      DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
    return None;

  // Where the dupq is a lane 0 replicate of a vector insert
  if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
    return None;

  auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
  if (!VecIns ||
      VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert)
    return None;

  // Where the vector insert is a fixed constant vector insert into undef at
  // index zero
  if (!isa<UndefValue>(VecIns->getArgOperand(0)))
    return None;

  if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
    return None;

  auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
  if (!ConstVec)
    return None;

  auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
  auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
  if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
    return None;

  unsigned NumElts = VecTy->getNumElements();
  unsigned PredicateBits = 0;

  // Expand intrinsic operands to a 16-bit byte level predicate
  for (unsigned I = 0; I < NumElts; ++I) {
    auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
    if (!Arg)
      return None;
    if (!Arg->isZero())
      PredicateBits |= 1 << (I * (16 / NumElts));
  }

  // If all bits are zero bail early with an empty predicate
  if (PredicateBits == 0) {
    auto *PFalse = Constant::getNullValue(II.getType());
    PFalse->takeName(&II);
    return IC.replaceInstUsesWith(II, PFalse);
  }

  // Calculate largest predicate type used (where byte predicate is largest)
  unsigned Mask = 8;
  for (unsigned I = 0; I < 16; ++I)
    if ((PredicateBits & (1 << I)) != 0)
      Mask |= (I % 8);

  unsigned PredSize = Mask & -Mask;
  auto *PredType = ScalableVectorType::get(
      Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));

  // Ensure all relevant bits are set
  for (unsigned I = 0; I < 16; I += PredSize)
    if ((PredicateBits & (1 << I)) == 0)
      return None;

  auto *PTruePat =
      ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
  auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
                                        {PredType}, {PTruePat});
  auto *ConvertToSVBool = Builder.CreateIntrinsic(
      Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
  auto *ConvertFromSVBool =
      Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
                              {II.getType()}, {ConvertToSVBool});

  ConvertFromSVBool->takeName(&II);
  return IC.replaceInstUsesWith(II, ConvertFromSVBool);
}

static Optional<Instruction *> instCombineSVELast(InstCombiner &IC,
                                                  IntrinsicInst &II) {
  Value *Pg = II.getArgOperand(0);
  Value *Vec = II.getArgOperand(1);
  bool IsAfter = II.getIntrinsicID() == Intrinsic::aarch64_sve_lasta;

  // lastX(splat(X)) --> X
  if (auto *SplatVal = getSplatValue(Vec))
    return IC.replaceInstUsesWith(II, SplatVal);

  auto *C = dyn_cast<Constant>(Pg);
  if (IsAfter && C && C->isNullValue()) {
    // The intrinsic is extracting lane 0 so use an extract instead.
    auto *IdxTy = Type::getInt64Ty(II.getContext());
    auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
    Extract->insertBefore(&II);
    Extract->takeName(&II);
    return IC.replaceInstUsesWith(II, Extract);
  }

  auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
  if (!IntrPG)
    return None;

  if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
    return None;

  const auto PTruePattern =
      cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();

  // Can the intrinsic's predicate be converted to a known constant index?
  unsigned Idx;
  switch (PTruePattern) {
  default:
    return None;
  case AArch64SVEPredPattern::vl1:
    Idx = 0;
    break;
  case AArch64SVEPredPattern::vl2:
    Idx = 1;
    break;
  case AArch64SVEPredPattern::vl3:
    Idx = 2;
    break;
  case AArch64SVEPredPattern::vl4:
    Idx = 3;
    break;
  case AArch64SVEPredPattern::vl5:
    Idx = 4;
    break;
  case AArch64SVEPredPattern::vl6:
    Idx = 5;
    break;
  case AArch64SVEPredPattern::vl7:
    Idx = 6;
    break;
  case AArch64SVEPredPattern::vl8:
    Idx = 7;
    break;
  case AArch64SVEPredPattern::vl16:
    Idx = 15;
    break;
  }

  // Increment the index if extracting the element after the last active
  // predicate element.
  if (IsAfter)
    ++Idx;

  // Ignore extracts whose index is larger than the known minimum vector
  // length. NOTE: This is an artificial constraint where we prefer to
  // maintain what the user asked for until an alternative is proven faster.
  auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
  if (Idx >= PgVTy->getMinNumElements())
    return None;

  // The intrinsic is extracting a fixed lane so use an extract instead.
  auto *IdxTy = Type::getInt64Ty(II.getContext());
  auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
  Extract->insertBefore(&II);
  Extract->takeName(&II);
  return IC.replaceInstUsesWith(II, Extract);
}

static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
                                                IntrinsicInst &II) {
  LLVMContext &Ctx = II.getContext();
  IRBuilder<> Builder(Ctx);
  Builder.SetInsertPoint(&II);
  // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
  // can work with RDFFR_PP for ptest elimination.
  auto *AllPat =
      ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
  auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
                                        {II.getType()}, {AllPat});
  auto *RDFFR =
      Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
  RDFFR->takeName(&II);
  return IC.replaceInstUsesWith(II, RDFFR);
}

static Optional<Instruction *>
instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
  const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();

  if (Pattern == AArch64SVEPredPattern::all) {
    LLVMContext &Ctx = II.getContext();
    IRBuilder<> Builder(Ctx);
    Builder.SetInsertPoint(&II);

    Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
    auto *VScale = Builder.CreateVScale(StepVal);
    VScale->takeName(&II);
    return IC.replaceInstUsesWith(II, VScale);
  }

  unsigned MinNumElts = 0;
  switch (Pattern) {
  default:
    return None;
  case AArch64SVEPredPattern::vl1:
  case AArch64SVEPredPattern::vl2:
  case AArch64SVEPredPattern::vl3:
  case AArch64SVEPredPattern::vl4:
  case AArch64SVEPredPattern::vl5:
  case AArch64SVEPredPattern::vl6:
  case AArch64SVEPredPattern::vl7:
  case AArch64SVEPredPattern::vl8:
    MinNumElts = Pattern;
    break;
  case AArch64SVEPredPattern::vl16:
    MinNumElts = 16;
    break;
  }

  return NumElts >= MinNumElts
             ? Optional<Instruction *>(IC.replaceInstUsesWith(
                   II, ConstantInt::get(II.getType(), MinNumElts)))
             : None;
}

static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
                                                   IntrinsicInst &II) {
  IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
  IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1));

  if (Op1 && Op2 &&
      Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
      Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
      Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {

    IRBuilder<> Builder(II.getContext());
    Builder.SetInsertPoint(&II);

    Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
    Type *Tys[] = {Op1->getArgOperand(0)->getType()};

    auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);

    PTest->takeName(&II);
    return IC.replaceInstUsesWith(II, PTest);
  }

  return None;
}

static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
                                                       IntrinsicInst &II) {
  auto *OpPredicate = II.getOperand(0);
  auto *OpMultiplicand = II.getOperand(1);
  auto *OpMultiplier = II.getOperand(2);

  IRBuilder<> Builder(II.getContext());
  Builder.SetInsertPoint(&II);

  // Return true if a given instruction is an aarch64_sve_dup_x intrinsic call
  // with a unit splat value, false otherwise.
  auto IsUnitDupX = [](auto *I) {
    auto *IntrI = dyn_cast<IntrinsicInst>(I);
    if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup_x)
      return false;

    auto *SplatValue = IntrI->getOperand(0);
    return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
  };

  // Return true if a given instruction is an aarch64_sve_dup intrinsic call
  // with a unit splat value, false otherwise.
  auto IsUnitDup = [](auto *I) {
    auto *IntrI = dyn_cast<IntrinsicInst>(I);
    if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
      return false;

    auto *SplatValue = IntrI->getOperand(2);
    return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
  };

  // The OpMultiplier variable should always point to the dup (if any), so
  // swap if necessary.
  if (IsUnitDup(OpMultiplicand) || IsUnitDupX(OpMultiplicand))
    std::swap(OpMultiplier, OpMultiplicand);

  if (IsUnitDupX(OpMultiplier)) {
    // [f]mul pg (dupx 1) %n => %n
    OpMultiplicand->takeName(&II);
    return IC.replaceInstUsesWith(II, OpMultiplicand);
  } else if (IsUnitDup(OpMultiplier)) {
    // [f]mul pg (dup pg 1) %n => %n
    auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
    auto *DupPg = DupInst->getOperand(1);
    // TODO: this is naive. The optimization is still valid if DupPg
    // 'encompasses' OpPredicate, not only if they're the same predicate.
    if (OpPredicate == DupPg) {
      OpMultiplicand->takeName(&II);
      return IC.replaceInstUsesWith(II, OpMultiplicand);
    }
  }

  return None;
}

static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
                                                 IntrinsicInst &II) {
  auto *OpVal = II.getOperand(0);
  auto *OpIndices = II.getOperand(1);
  VectorType *VTy = cast<VectorType>(II.getType());

  // Check whether OpIndices is an aarch64_sve_dup_x intrinsic call with
  // constant splat value < minimal element count of result.
  auto *DupXIntrI = dyn_cast<IntrinsicInst>(OpIndices);
  if (!DupXIntrI || DupXIntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup_x)
    return None;

  auto *SplatValue = dyn_cast<ConstantInt>(DupXIntrI->getOperand(0));
  if (!SplatValue ||
      SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
    return None;

  // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
  // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
  IRBuilder<> Builder(II.getContext());
  Builder.SetInsertPoint(&II);
  auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
  auto *VectorSplat =
      Builder.CreateVectorSplat(VTy->getElementCount(), Extract);

  VectorSplat->takeName(&II);
  return IC.replaceInstUsesWith(II, VectorSplat);
}

Optional<Instruction *>
AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
                                     IntrinsicInst &II) const {
  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  default:
    break;
  case Intrinsic::aarch64_sve_convert_from_svbool:
    return instCombineConvertFromSVBool(IC, II);
  case Intrinsic::aarch64_sve_dup:
    return instCombineSVEDup(IC, II);
  case Intrinsic::aarch64_sve_cmpne:
  case Intrinsic::aarch64_sve_cmpne_wide:
    return instCombineSVECmpNE(IC, II);
  case Intrinsic::aarch64_sve_rdffr:
    return instCombineRDFFR(IC, II);
  case Intrinsic::aarch64_sve_lasta:
  case Intrinsic::aarch64_sve_lastb:
    return instCombineSVELast(IC, II);
  case Intrinsic::aarch64_sve_cntd:
    return instCombineSVECntElts(IC, II, 2);
  case Intrinsic::aarch64_sve_cntw:
    return instCombineSVECntElts(IC, II, 4);
  case Intrinsic::aarch64_sve_cnth:
    return instCombineSVECntElts(IC, II, 8);
  case Intrinsic::aarch64_sve_cntb:
    return instCombineSVECntElts(IC, II, 16);
  case Intrinsic::aarch64_sve_ptest_any:
  case Intrinsic::aarch64_sve_ptest_first:
  case Intrinsic::aarch64_sve_ptest_last:
    return instCombineSVEPTest(IC, II);
  case Intrinsic::aarch64_sve_mul:
  case Intrinsic::aarch64_sve_fmul:
    return instCombineSVEVectorMul(IC, II);
  case Intrinsic::aarch64_sve_tbl:
    return instCombineSVETBL(IC, II);
  }

  return None;
}

bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
                                           ArrayRef<const Value *> Args) {

  // A helper that returns a vector type from the given type. The number of
  // elements in type Ty determine the vector width.
  auto toVectorTy = [&](Type *ArgTy) {
    return VectorType::get(ArgTy->getScalarType(),
                           cast<VectorType>(DstTy)->getElementCount());
  };

  // Exit early if DstTy is not a vector type whose elements are at least
  // 16-bits wide.
  if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
    return false;

  // Determine if the operation has a widening variant. We consider both the
  // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
  // instructions.
  //
  // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
  //       verify that their extending operands are eliminated during code
  //       generation.
  switch (Opcode) {
  case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
  case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
    break;
  default:
    return false;
  }

  // To be a widening instruction (either the "wide" or "long" versions), the
  // second operand must be a sign- or zero extend having a single user. We
  // only consider extends having a single user because they may otherwise not
  // be eliminated.
  if (Args.size() != 2 ||
      (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
      !Args[1]->hasOneUse())
    return false;
  auto *Extend = cast<CastInst>(Args[1]);

  // Legalize the destination type and ensure it can be used in a widening
  // operation.
  auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
  unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
  if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
    return false;

  // Legalize the source type and ensure it can be used in a widening
  // operation.
  auto *SrcTy = toVectorTy(Extend->getSrcTy());
  auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
  unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
  if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
    return false;

  // Get the total number of vector elements in the legalized types.
  InstructionCost NumDstEls =
      DstTyL.first * DstTyL.second.getVectorMinNumElements();
  InstructionCost NumSrcEls =
      SrcTyL.first * SrcTyL.second.getVectorMinNumElements();

  // Return true if the legalized types have the same number of vector elements
  // and the destination element type size is twice that of the source type.
  return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}

InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
                                                 Type *Src,
                                                 TTI::CastContextHint CCH,
                                                 TTI::TargetCostKind CostKind,
                                                 const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // If the cast is observable, and it is used by a widening instruction (e.g.,
  // uaddl, saddw, etc.), it may be free.
  if (I && I->hasOneUse()) {
    auto *SingleUser = cast<Instruction>(*I->user_begin());
    SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
    if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
      // If the cast is the second operand, it is free. We will generate either
      // a "wide" or "long" version of the widening instruction.
      if (I == SingleUser->getOperand(1))
        return 0;
      // If the cast is not the second operand, it will be free if it looks the
      // same as the second operand. In this case, we will generate a "long"
      // version of the widening instruction.
      if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
        if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
            cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
          return 0;
    }
  }

  // TODO: Allow non-throughput costs that aren't binary.
  auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
    if (CostKind != TTI::TCK_RecipThroughput)
      return Cost == 0 ? 0 : 1;
    return Cost;
  };

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return AdjustCost(
        BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));

  static const TypeConversionCostTblEntry
  ConversionTbl[] = {
    { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
    { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
    { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
    { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },

    // Truncations on nxvmiN
    { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
    { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
    { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
    { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
    { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
    { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
    { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
    { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
    { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
    { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
    { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
    { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
    { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
    { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
    { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
    { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },

    // The number of shll instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // LowerVectorINT_TO_FP:
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },

    // Complex: to v2f32
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },

    // Complex: to v4f32
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },

    // Complex: to v8f32
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },

    // Complex: to v16f32
    { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },

    // Complex: to v2f64
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },


    // LowerVectorFP_TO_INT
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },

    // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },

    // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
    { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },

    // Complex, from nxv2f32.
    { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },

    // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },

    // Complex, from nxv2f64.
    { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },

    // Complex, from nxv4f32.
    { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
    { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
    { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },

    // Complex, from nxv8f64. Illegal -> illegal conversions not required.
    { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
    { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
    { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
    { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },

    // Complex, from nxv4f64. Illegal -> illegal conversions not required.
    { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
    { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
    { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
    { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
    { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
    { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },

    // Complex, from nxv8f32. Illegal -> illegal conversions not required.
    { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
    { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
    { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
    { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },

    // Complex, from nxv8f16.
    { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
    { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
    { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
    { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
    { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },

    // Complex, from nxv4f16.
    { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
    { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
    { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },

    // Complex, from nxv2f16.
    { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },

    // Truncate from nxvmf32 to nxvmf16.
    { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
    { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
    { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },

    // Truncate from nxvmf64 to nxvmf16.
    { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
    { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
    { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },

    // Truncate from nxvmf64 to nxvmf32.
    { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
    { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
    { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },

    // Extend from nxvmf16 to nxvmf32.
    { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
    { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
    { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},

    // Extend from nxvmf16 to nxvmf64.
    { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
    { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
    { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},

    // Extend from nxvmf32 to nxvmf64.
    { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
    { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
    { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},

  };

  if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
                                                 DstTy.getSimpleVT(),
                                                 SrcTy.getSimpleVT()))
    return AdjustCost(Entry->Cost);

  return AdjustCost(
      BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
}

InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
                                                         Type *Dst,
                                                         VectorType *VecTy,
                                                         unsigned Index) {

  // Make sure we were given a valid extend opcode.
  assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
         "Invalid opcode");

  // We are extending an element we extract from a vector, so the source type
  // of the extend is the element type of the vector.
  auto *Src = VecTy->getElementType();

  // Sign- and zero-extends are for integer types only.
  assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");

  // Get the cost for the extract. We compute the cost (if any) for the extend
  // below.
  InstructionCost Cost =
      getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);

  // Legalize the types.
  auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
  auto DstVT = TLI->getValueType(DL, Dst);
  auto SrcVT = TLI->getValueType(DL, Src);
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  // If the resulting type is still a vector and the destination type is legal,
  // we may get the extension for free. If not, get the default cost for the
  // extend.
  if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
    return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
                                   CostKind);

  // The destination type should be larger than the element type. If not, get
  // the default cost for the extend.
  if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
    return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
                                   CostKind);

  switch (Opcode) {
  default:
    llvm_unreachable("Opcode should be either SExt or ZExt");

  // For sign-extends, we only need a smov, which performs the extension
  // automatically.
  case Instruction::SExt:
    return Cost;

  // For zero-extends, the extend is performed automatically by a umov unless
  // the destination type is i64 and the element type is i8 or i16.
  case Instruction::ZExt:
    if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
      return Cost;
  }

  // If we are unable to perform the extend for free, get the default cost.
  return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
                                 CostKind);
}

InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
                                               TTI::TargetCostKind CostKind,
                                               const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return Opcode == Instruction::PHI ? 0 : 1;
  assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
  // Branches are assumed to be predicted.
  return 0;
}

InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                                   unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Index != -1U) {
    // Legalize the type.
    std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);

    // This type is legalized to a scalar type.
    if (!LT.second.isVector())
      return 0;

    // The type may be split. Normalize the index to the new type.
    unsigned Width = LT.second.getVectorNumElements();
    Index = Index % Width;

    // The element at index zero is already inside the vector.
    if (Index == 0)
      return 0;
  }

  // All other insert/extracts cost this much.
  return ST->getVectorInsertExtractBaseCost();
}

InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
    TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
    const Instruction *CxtI) {
  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                         Opd2Info, Opd1PropInfo,
                                         Opd2PropInfo, Args, CxtI);

  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

  // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
  // add in the widening overhead specified by the sub-target. Since the
  // extends feeding widening instructions are performed automatically, they
  // aren't present in the generated code and have a zero cost. By adding a
  // widening overhead here, we attach the total cost of the combined operation
  // to the widening instruction.
  InstructionCost Cost = 0;
  if (isWideningInstruction(Ty, Opcode, Args))
    Cost += ST->getWideningBaseCost();

  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  switch (ISD) {
  default:
    return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                                Opd2Info,
                                                Opd1PropInfo, Opd2PropInfo);
  case ISD::SDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
        Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
      // On AArch64, scalar signed division by constants power-of-two are
      // normally expanded to the sequence ADD + CMP + SELECT + SRA.
      // The OperandValue properties many not be same as that of previous
      // operation; conservatively assume OP_None.
      Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      return Cost;
    }
    LLVM_FALLTHROUGH;
  case ISD::UDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
      auto VT = TLI->getValueType(DL, Ty);
      if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
        // Vector signed division by constant are expanded to the
        // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
        // to MULHS + SUB + SRL + ADD + SRL.
        InstructionCost MulCost = getArithmeticInstrCost(
            Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info,
            TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
        InstructionCost AddCost = getArithmeticInstrCost(
            Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info,
            TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
        InstructionCost ShrCost = getArithmeticInstrCost(
            Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info,
            TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
        return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
      }
    }

    Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                          Opd2Info,
                                          Opd1PropInfo, Opd2PropInfo);
    if (Ty->isVectorTy()) {
      // On AArch64, vector divisions are not supported natively and are
      // expanded into scalar divisions of each pair of elements.
      Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
                                     Opd1Info, Opd2Info, Opd1PropInfo,
                                     Opd2PropInfo);
      Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
                                     Opd1Info, Opd2Info, Opd1PropInfo,
                                     Opd2PropInfo);
      // TODO: if one of the arguments is scalar, then it's not necessary to
      // double the cost of handling the vector elements.
      Cost += Cost;
    }
    return Cost;

  case ISD::MUL:
    if (LT.second != MVT::v2i64)
      return (Cost + 1) * LT.first;
    // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
    // as elements are extracted from the vectors and the muls scalarized.
    // As getScalarizationOverhead is a bit too pessimistic, we estimate the
    // cost for a i64 vector directly here, which is:
    // - four i64 extracts,
    // - two i64 inserts, and
    // - two muls.
    // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
    // LT.first = 2 the cost is 16.
    return LT.first * 8;
  case ISD::ADD:
  case ISD::XOR:
  case ISD::OR:
  case ISD::AND:
    // These nodes are marked as 'custom' for combining purposes only.
    // We know that they are legal. See LowerAdd in ISelLowering.
    return (Cost + 1) * LT.first;

  case ISD::FADD:
    // These nodes are marked as 'custom' just to lower them to SVE.
    // We know said lowering will incur no additional cost.
    if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty())
      return (Cost + 2) * LT.first;

    return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                                Opd2Info,
                                                Opd1PropInfo, Opd2PropInfo);
  }
}

InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
                                                          ScalarEvolution *SE,
                                                          const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (Ty->isVectorTy() && SE &&
      !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
    return NumVectorInstToHideOverhead;

  // In many cases the address computation is not merged into the instruction
  // addressing mode.
  return 1;
}

InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                                   Type *CondTy,
                                                   CmpInst::Predicate VecPred,
                                                   TTI::TargetCostKind CostKind,
                                                   const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
                                     I);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  // We don't lower some vector selects well that are wider than the register
  // width.
  if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
    // We would need this many instructions to hide the scalarization happening.
    const int AmortizationCost = 20;

    // If VecPred is not set, check if we can get a predicate from the context
    // instruction, if its type matches the requested ValTy.
    if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
      CmpInst::Predicate CurrentPred;
      if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
                            m_Value())))
        VecPred = CurrentPred;
    }
    // Check if we have a compare/select chain that can be lowered using CMxx &
    // BFI pair.
    if (CmpInst::isIntPredicate(VecPred)) {
      static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                          MVT::v8i16, MVT::v2i32, MVT::v4i32,
                                          MVT::v2i64};
      auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
      if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
        return LT.first;
    }

    static const TypeConversionCostTblEntry
    VectorSelectTbl[] = {
      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }
  }
  // The base case handles scalable vectors fine for now, since it treats the
  // cost as 1 * legalization cost.
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}

AArch64TTIImpl::TTI::MemCmpExpansionOptions
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  TTI::MemCmpExpansionOptions Options;
  if (ST->requiresStrictAlign()) {
    // TODO: Add cost modeling for strict align. Misaligned loads expand to
    // a bunch of instructions when strict align is enabled.
    return Options;
  }
  Options.AllowOverlappingLoads = true;
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
  Options.NumLoadsPerBlock = Options.MaxNumLoads;
  // TODO: Though vector loads usually perform well on AArch64, in some targets
  // they may wake up the FP unit, which raises the power consumption.  Perhaps
  // they could be used with no holds barred (-O3).
  Options.LoadSizes = {8, 4, 2, 1};
  return Options;
}

InstructionCost
AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
                                      Align Alignment, unsigned AddressSpace,
                                      TTI::TargetCostKind CostKind) {
  if (!isa<ScalableVectorType>(Src))
    return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                        CostKind);
  auto LT = TLI->getTypeLegalizationCost(DL, Src);
  if (!LT.first.isValid())
    return InstructionCost::getInvalid();

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
    return InstructionCost::getInvalid();

  return LT.first * 2;
}

InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
    unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
    Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {

  if (!isa<ScalableVectorType>(DataTy))
    return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                         Alignment, CostKind, I);
  auto *VT = cast<VectorType>(DataTy);
  auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
  if (!LT.first.isValid())
    return InstructionCost::getInvalid();

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (cast<VectorType>(DataTy)->getElementCount() ==
      ElementCount::getScalable(1))
    return InstructionCost::getInvalid();

  ElementCount LegalVF = LT.second.getVectorElementCount();
  InstructionCost MemOpCost =
      getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
  return LT.first * MemOpCost * getMaxNumElements(LegalVF);
}

bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
  return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
}

InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
                                                MaybeAlign Alignment,
                                                unsigned AddressSpace,
                                                TTI::TargetCostKind CostKind,
                                                const Instruction *I) {
  EVT VT = TLI->getValueType(DL, Ty, true);
  // Type legalization can't handle structs
  if (VT == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
                                  CostKind);

  auto LT = TLI->getTypeLegalizationCost(DL, Ty);
  if (!LT.first.isValid())
    return InstructionCost::getInvalid();

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
    if (VTy->getElementCount() == ElementCount::getScalable(1))
      return InstructionCost::getInvalid();

  // TODO: consider latency as well for TCK_SizeAndLatency.
  if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
    return LT.first;

  if (CostKind != TTI::TCK_RecipThroughput)
    return 1;

  if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
      LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
    // Unaligned stores are extremely inefficient. We don't split all
    // unaligned 128-bit stores because the negative impact that has shown in
    // practice on inlined block copy code.
    // We make such stores expensive so that we will only vectorize if there
    // are 6 other instructions getting vectorized.
    const int AmortizationCost = 6;

    return LT.first * 2 * AmortizationCost;
  }

  // Check truncating stores and extending loads.
  if (useNeonVector(Ty) &&
      Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
    // v4i8 types are lowered to scalar a load/store and sshll/xtn.
    if (VT == MVT::v4i8)
      return 2;
    // Otherwise we need to scalarize.
    return cast<FixedVectorType>(Ty)->getNumElements() * 2;
  }

  return LT.first;
}

InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  auto *VecVTy = cast<FixedVectorType>(VecTy);

  if (!UseMaskForCond && !UseMaskForGaps &&
      Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    unsigned NumElts = VecVTy->getNumElements();
    auto *SubVecTy =
        FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // ldN/stN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one ldN/stN instruction.
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(SubVecTy, DL))
      return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace, CostKind,
                                           UseMaskForCond, UseMaskForGaps);
}

InstructionCost
AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
  InstructionCost Cost = 0;
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  for (auto *I : Tys) {
    if (!I->isVectorTy())
      continue;
    if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
        128)
      Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
              getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
  }
  return Cost;
}

unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
  return ST->getMaxInterleaveFactor();
}

// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources.  We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                              TargetTransformInfo::UnrollingPreferences &UP) {
  enum { MaxStridedLoads = 7 };
  auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
    int StridedLoads = 0;
    // FIXME? We could make this more precise by looking at the CFG and
    // e.g. not counting loads in each side of an if-then-else diamond.
    for (const auto BB : L->blocks()) {
      for (auto &I : *BB) {
        LoadInst *LMemI = dyn_cast<LoadInst>(&I);
        if (!LMemI)
          continue;

        Value *PtrValue = LMemI->getPointerOperand();
        if (L->isLoopInvariant(PtrValue))
          continue;

        const SCEV *LSCEV = SE.getSCEV(PtrValue);
        const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
        if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
          continue;

        // FIXME? We could take pairing of unrolled load copies into account
        // by looking at the AddRec, but we would probably have to limit this
        // to loops with no stores or other memory optimization barriers.
        ++StridedLoads;
        // We've seen enough strided loads that seeing more won't make a
        // difference.
        if (StridedLoads > MaxStridedLoads / 2)
          return StridedLoads;
      }
    }
    return StridedLoads;
  };

  int StridedLoads = countStridedLoads(L, SE);
  LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
                    << " strided loads\n");
  // Pick the largest power of 2 unroll count that won't result in too many
  // strided loads.
  if (StridedLoads) {
    UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
    LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
                      << UP.MaxCount << '\n');
  }
}

void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  // Enable partial unrolling and runtime unrolling.
  BaseT::getUnrollingPreferences(L, SE, UP);

  // For inner loop, it is more likely to be a hot one, and the runtime check
  // can be promoted out from LICM pass, so the overhead is less, let's try
  // a larger threshold to unroll more loops.
  if (L->getLoopDepth() > 1)
    UP.PartialThreshold *= 2;

  // Disable partial & runtime unrolling on -Os.
  UP.PartialOptSizeThreshold = 0;

  if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
      EnableFalkorHWPFUnrollFix)
    getFalkorUnrollingPreferences(L, SE, UP);

  // Scan the loop: don't unroll loops with calls as this could prevent
  // inlining. Don't unroll vector loops either, as they don't benefit much from
  // unrolling.
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      // Don't unroll vectorised loop.
      if (I.getType()->isVectorTy())
        return;

      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (!isLoweredToCall(F))
            continue;
        }
        return;
      }
    }
  }

  // Enable runtime unrolling for in-order models
  // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
  // checking for that case, we can ensure that the default behaviour is
  // unchanged
  if (ST->getProcFamily() != AArch64Subtarget::Others &&
      !ST->getSchedModel().isOutOfOrder()) {
    UP.Runtime = true;
    UP.Partial = true;
    UP.UpperBound = true;
    UP.UnrollRemainder = true;
    UP.DefaultUnrollRuntimeCount = 4;

    UP.UnrollAndJam = true;
    UP.UnrollAndJamInnerLoopThreshold = 60;
  }
}

void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                           TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                         Type *ExpectedType) {
  switch (Inst->getIntrinsicID()) {
  default:
    return nullptr;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4: {
    // Create a struct type
    StructType *ST = dyn_cast<StructType>(ExpectedType);
    if (!ST)
      return nullptr;
    unsigned NumElts = Inst->getNumArgOperands() - 1;
    if (ST->getNumElements() != NumElts)
      return nullptr;
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
        return nullptr;
    }
    Value *Res = UndefValue::get(ExpectedType);
    IRBuilder<> Builder(Inst);
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      Value *L = Inst->getArgOperand(i);
      Res = Builder.CreateInsertValue(Res, L, i);
    }
    return Res;
  }
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    if (Inst->getType() == ExpectedType)
      return Inst;
    return nullptr;
  }
}

bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                        MemIntrinsicInfo &Info) {
  switch (Inst->getIntrinsicID()) {
  default:
    break;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    Info.ReadMem = true;
    Info.WriteMem = false;
    Info.PtrVal = Inst->getArgOperand(0);
    break;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
    Info.ReadMem = false;
    Info.WriteMem = true;
    Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
    break;
  }

  switch (Inst->getIntrinsicID()) {
  default:
    return false;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_st2:
    Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_st3:
    Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_st4:
    Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
    break;
  }
  return true;
}

/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
  bool Considerable = false;
  AllowPromotionWithoutCommonHeader = false;
  if (!isa<SExtInst>(&I))
    return false;
  Type *ConsideredSExtType =
      Type::getInt64Ty(I.getParent()->getParent()->getContext());
  if (I.getType() != ConsideredSExtType)
    return false;
  // See if the sext is the one with the right type and used in at least one
  // GetElementPtrInst.
  for (const User *U : I.users()) {
    if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
      Considerable = true;
      // A getelementptr is considered as "complex" if it has more than 2
      // operands. We will promote a SExt used in such complex GEP as we
      // expect some computation to be merged if they are done on 64 bits.
      if (GEPInst->getNumOperands() > 2) {
        AllowPromotionWithoutCommonHeader = true;
        break;
      }
    }
  }
  return Considerable;
}

bool AArch64TTIImpl::isLegalToVectorizeReduction(
    const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
  if (!VF.isScalable())
    return true;

  Type *Ty = RdxDesc.getRecurrenceType();
  if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
    return false;

  switch (RdxDesc.getRecurrenceKind()) {
  case RecurKind::Add:
  case RecurKind::FAdd:
  case RecurKind::And:
  case RecurKind::Or:
  case RecurKind::Xor:
  case RecurKind::SMin:
  case RecurKind::SMax:
  case RecurKind::UMin:
  case RecurKind::UMax:
  case RecurKind::FMin:
  case RecurKind::FMax:
    return true;
  default:
    return false;
  }
}

InstructionCost
AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
                                       bool IsUnsigned,
                                       TTI::TargetCostKind CostKind) {
  if (!isa<ScalableVectorType>(Ty))
    return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
  assert((isa<ScalableVectorType>(Ty) && isa<ScalableVectorType>(CondTy)) &&
         "Both vector needs to be scalable");

  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
  InstructionCost LegalizationCost = 0;
  if (LT.first > 1) {
    Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
    unsigned CmpOpcode =
        Ty->isFPOrFPVectorTy() ? Instruction::FCmp : Instruction::ICmp;
    LegalizationCost =
        getCmpSelInstrCost(CmpOpcode, LegalVTy, LegalVTy,
                           CmpInst::BAD_ICMP_PREDICATE, CostKind) +
        getCmpSelInstrCost(Instruction::Select, LegalVTy, LegalVTy,
                           CmpInst::BAD_ICMP_PREDICATE, CostKind);
    LegalizationCost *= LT.first - 1;
  }

  return LegalizationCost + /*Cost of horizontal reduction*/ 2;
}

InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
    unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
  InstructionCost LegalizationCost = 0;
  if (LT.first > 1) {
    Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
    LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
    LegalizationCost *= LT.first - 1;
  }

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");
  // Add the final reduction cost for the legal horizontal reduction
  switch (ISD) {
  case ISD::ADD:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::FADD:
    return LegalizationCost + 2;
  default:
    return InstructionCost::getInvalid();
  }
}

InstructionCost
AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
                                           Optional<FastMathFlags> FMF,
                                           TTI::TargetCostKind CostKind) {
  if (TTI::requiresOrderedReduction(FMF)) {
    if (!isa<ScalableVectorType>(ValTy))
      return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);

    if (Opcode != Instruction::FAdd)
      return InstructionCost::getInvalid();

    auto *VTy = cast<ScalableVectorType>(ValTy);
    InstructionCost Cost =
        getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
    Cost *= getMaxNumElements(VTy->getElementCount());
    return Cost;
  }

  if (isa<ScalableVectorType>(ValTy))
    return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);

  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
  MVT MTy = LT.second;
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // Horizontal adds can use the 'addv' instruction. We model the cost of these
  // instructions as twice a normal vector add, plus 1 for each legalization
  // step (LT.first). This is the only arithmetic vector reduction operation for
  // which we have an instruction.
  // OR, XOR and AND costs should match the codegen from:
  // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
  // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
  // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
  static const CostTblEntry CostTblNoPairwise[]{
      {ISD::ADD, MVT::v8i8,   2},
      {ISD::ADD, MVT::v16i8,  2},
      {ISD::ADD, MVT::v4i16,  2},
      {ISD::ADD, MVT::v8i16,  2},
      {ISD::ADD, MVT::v4i32,  2},
      {ISD::OR,  MVT::v8i8,  15},
      {ISD::OR,  MVT::v16i8, 17},
      {ISD::OR,  MVT::v4i16,  7},
      {ISD::OR,  MVT::v8i16,  9},
      {ISD::OR,  MVT::v2i32,  3},
      {ISD::OR,  MVT::v4i32,  5},
      {ISD::OR,  MVT::v2i64,  3},
      {ISD::XOR, MVT::v8i8,  15},
      {ISD::XOR, MVT::v16i8, 17},
      {ISD::XOR, MVT::v4i16,  7},
      {ISD::XOR, MVT::v8i16,  9},
      {ISD::XOR, MVT::v2i32,  3},
      {ISD::XOR, MVT::v4i32,  5},
      {ISD::XOR, MVT::v2i64,  3},
      {ISD::AND, MVT::v8i8,  15},
      {ISD::AND, MVT::v16i8, 17},
      {ISD::AND, MVT::v4i16,  7},
      {ISD::AND, MVT::v8i16,  9},
      {ISD::AND, MVT::v2i32,  3},
      {ISD::AND, MVT::v4i32,  5},
      {ISD::AND, MVT::v2i64,  3},
  };
  switch (ISD) {
  default:
    break;
  case ISD::ADD:
    if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
      return (LT.first - 1) + Entry->Cost;
    break;
  case ISD::XOR:
  case ISD::AND:
  case ISD::OR:
    const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
    if (!Entry)
      break;
    auto *ValVTy = cast<FixedVectorType>(ValTy);
    if (!ValVTy->getElementType()->isIntegerTy(1) &&
        MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
        isPowerOf2_32(ValVTy->getNumElements())) {
      InstructionCost ExtraCost = 0;
      if (LT.first != 1) {
        // Type needs to be split, so there is an extra cost of LT.first - 1
        // arithmetic ops.
        auto *Ty = FixedVectorType::get(ValTy->getElementType(),
                                        MTy.getVectorNumElements());
        ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
        ExtraCost *= LT.first - 1;
      }
      return Entry->Cost + ExtraCost;
    }
    break;
  }
  return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}

InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
  static const CostTblEntry ShuffleTbl[] = {
      { TTI::SK_Splice, MVT::nxv16i8,  1 },
      { TTI::SK_Splice, MVT::nxv8i16,  1 },
      { TTI::SK_Splice, MVT::nxv4i32,  1 },
      { TTI::SK_Splice, MVT::nxv2i64,  1 },
      { TTI::SK_Splice, MVT::nxv2f16,  1 },
      { TTI::SK_Splice, MVT::nxv4f16,  1 },
      { TTI::SK_Splice, MVT::nxv8f16,  1 },
      { TTI::SK_Splice, MVT::nxv2bf16, 1 },
      { TTI::SK_Splice, MVT::nxv4bf16, 1 },
      { TTI::SK_Splice, MVT::nxv8bf16, 1 },
      { TTI::SK_Splice, MVT::nxv2f32,  1 },
      { TTI::SK_Splice, MVT::nxv4f32,  1 },
      { TTI::SK_Splice, MVT::nxv2f64,  1 },
  };

  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
  Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  EVT PromotedVT = LT.second.getScalarType() == MVT::i1
                       ? TLI->getPromotedVTForPredicate(EVT(LT.second))
                       : LT.second;
  Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
  InstructionCost LegalizationCost = 0;
  if (Index < 0) {
    LegalizationCost =
        getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
                           CmpInst::BAD_ICMP_PREDICATE, CostKind) +
        getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
                           CmpInst::BAD_ICMP_PREDICATE, CostKind);
  }

  // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
  // Cost performed on a promoted type.
  if (LT.second.getScalarType() == MVT::i1) {
    LegalizationCost +=
        getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
                         TTI::CastContextHint::None, CostKind) +
        getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
                         TTI::CastContextHint::None, CostKind);
  }
  const auto *Entry =
      CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
  assert(Entry && "Illegal Type for Splice");
  LegalizationCost += Entry->Cost;
  return LegalizationCost * LT.first;
}

InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
                                               VectorType *Tp,
                                               ArrayRef<int> Mask, int Index,
                                               VectorType *SubTp) {
  Kind = improveShuffleKindFromMask(Kind, Mask);
  if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
      Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
      Kind == TTI::SK_Reverse) {
    static const CostTblEntry ShuffleTbl[] = {
      // Broadcast shuffle kinds can be performed with 'dup'.
      { TTI::SK_Broadcast, MVT::v8i8,  1 },
      { TTI::SK_Broadcast, MVT::v16i8, 1 },
      { TTI::SK_Broadcast, MVT::v4i16, 1 },
      { TTI::SK_Broadcast, MVT::v8i16, 1 },
      { TTI::SK_Broadcast, MVT::v2i32, 1 },
      { TTI::SK_Broadcast, MVT::v4i32, 1 },
      { TTI::SK_Broadcast, MVT::v2i64, 1 },
      { TTI::SK_Broadcast, MVT::v2f32, 1 },
      { TTI::SK_Broadcast, MVT::v4f32, 1 },
      { TTI::SK_Broadcast, MVT::v2f64, 1 },
      // Transpose shuffle kinds can be performed with 'trn1/trn2' and
      // 'zip1/zip2' instructions.
      { TTI::SK_Transpose, MVT::v8i8,  1 },
      { TTI::SK_Transpose, MVT::v16i8, 1 },
      { TTI::SK_Transpose, MVT::v4i16, 1 },
      { TTI::SK_Transpose, MVT::v8i16, 1 },
      { TTI::SK_Transpose, MVT::v2i32, 1 },
      { TTI::SK_Transpose, MVT::v4i32, 1 },
      { TTI::SK_Transpose, MVT::v2i64, 1 },
      { TTI::SK_Transpose, MVT::v2f32, 1 },
      { TTI::SK_Transpose, MVT::v4f32, 1 },
      { TTI::SK_Transpose, MVT::v2f64, 1 },
      // Select shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
      { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
      // PermuteSingleSrc shuffle kinds.
      { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl
      { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl
      { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl
      { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl
      { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl
      // Reverse can be lowered with `rev`.
      { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov.
      { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT
      { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov.
      { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov.
      { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT
      { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov.
      // Broadcast shuffle kinds for scalable vectors
      { TTI::SK_Broadcast, MVT::nxv16i8,  1 },
      { TTI::SK_Broadcast, MVT::nxv8i16,  1 },
      { TTI::SK_Broadcast, MVT::nxv4i32,  1 },
      { TTI::SK_Broadcast, MVT::nxv2i64,  1 },
      { TTI::SK_Broadcast, MVT::nxv2f16,  1 },
      { TTI::SK_Broadcast, MVT::nxv4f16,  1 },
      { TTI::SK_Broadcast, MVT::nxv8f16,  1 },
      { TTI::SK_Broadcast, MVT::nxv2bf16, 1 },
      { TTI::SK_Broadcast, MVT::nxv4bf16, 1 },
      { TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
      { TTI::SK_Broadcast, MVT::nxv2f32,  1 },
      { TTI::SK_Broadcast, MVT::nxv4f32,  1 },
      { TTI::SK_Broadcast, MVT::nxv2f64,  1 },
      { TTI::SK_Broadcast, MVT::nxv16i1,  1 },
      { TTI::SK_Broadcast, MVT::nxv8i1,   1 },
      { TTI::SK_Broadcast, MVT::nxv4i1,   1 },
      { TTI::SK_Broadcast, MVT::nxv2i1,   1 },
      // Handle the cases for vector.reverse with scalable vectors
      { TTI::SK_Reverse, MVT::nxv16i8,  1 },
      { TTI::SK_Reverse, MVT::nxv8i16,  1 },
      { TTI::SK_Reverse, MVT::nxv4i32,  1 },
      { TTI::SK_Reverse, MVT::nxv2i64,  1 },
      { TTI::SK_Reverse, MVT::nxv2f16,  1 },
      { TTI::SK_Reverse, MVT::nxv4f16,  1 },
      { TTI::SK_Reverse, MVT::nxv8f16,  1 },
      { TTI::SK_Reverse, MVT::nxv2bf16, 1 },
      { TTI::SK_Reverse, MVT::nxv4bf16, 1 },
      { TTI::SK_Reverse, MVT::nxv8bf16, 1 },
      { TTI::SK_Reverse, MVT::nxv2f32,  1 },
      { TTI::SK_Reverse, MVT::nxv4f32,  1 },
      { TTI::SK_Reverse, MVT::nxv2f64,  1 },
      { TTI::SK_Reverse, MVT::nxv16i1,  1 },
      { TTI::SK_Reverse, MVT::nxv8i1,   1 },
      { TTI::SK_Reverse, MVT::nxv4i1,   1 },
      { TTI::SK_Reverse, MVT::nxv2i1,   1 },
    };
    std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
      return LT.first * Entry->Cost;
  }
  if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
    return getSpliceCost(Tp, Index);
  return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
}