aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h
blob: 2231f8705998d5cb210cd07157ee0c40977361fe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//===- AArch64TargetTransformInfo.h - AArch64 specific TTI ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file a TargetTransformInfo::Concept conforming object specific to the
/// AArch64 target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H

#include "AArch64.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include <cstdint>

namespace llvm {

class APInt;
class Instruction;
class IntrinsicInst;
class Loop;
class SCEV;
class ScalarEvolution;
class Type;
class Value;
class VectorType;

class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
  using BaseT = BasicTTIImplBase<AArch64TTIImpl>;
  using TTI = TargetTransformInfo;

  friend BaseT;

  const AArch64Subtarget *ST;
  const AArch64TargetLowering *TLI;

  const AArch64Subtarget *getST() const { return ST; }
  const AArch64TargetLowering *getTLI() const { return TLI; }

  enum MemIntrinsicType {
    VECTOR_LDST_TWO_ELEMENTS,
    VECTOR_LDST_THREE_ELEMENTS,
    VECTOR_LDST_FOUR_ELEMENTS
  };

  bool isWideningInstruction(Type *Ty, unsigned Opcode,
                             ArrayRef<const Value *> Args);

public:
  explicit AArch64TTIImpl(const AArch64TargetMachine *TM, const Function &F)
      : BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
        TLI(ST->getTargetLowering()) {}

  bool areInlineCompatible(const Function *Caller,
                           const Function *Callee) const;

  /// \name Scalar TTI Implementations
  /// @{

  using BaseT::getIntImmCost;
  InstructionCost getIntImmCost(int64_t Val);
  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
                                TTI::TargetCostKind CostKind);
  InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                    const APInt &Imm, Type *Ty,
                                    TTI::TargetCostKind CostKind,
                                    Instruction *Inst = nullptr);
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                      const APInt &Imm, Type *Ty,
                                      TTI::TargetCostKind CostKind);
  TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);

  /// @}

  /// \name Vector TTI Implementations
  /// @{

  bool enableInterleavedAccessVectorization() { return true; }

  unsigned getNumberOfRegisters(unsigned ClassID) const {
    bool Vector = (ClassID == 1);
    if (Vector) {
      if (ST->hasNEON())
        return 32;
      return 0;
    }
    return 31;
  }

  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                        TTI::TargetCostKind CostKind);

  Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
                                               IntrinsicInst &II) const;

  Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
      APInt &UndefElts2, APInt &UndefElts3,
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
          SimplifyAndSetOp) const;

  TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
    switch (K) {
    case TargetTransformInfo::RGK_Scalar:
      return TypeSize::getFixed(64);
    case TargetTransformInfo::RGK_FixedWidthVector:
      if (ST->hasSVE())
        return TypeSize::getFixed(
            std::max(ST->getMinSVEVectorSizeInBits(), 128u));
      return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
    case TargetTransformInfo::RGK_ScalableVector:
      return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
    }
    llvm_unreachable("Unsupported register kind");
  }

  unsigned getMinVectorRegisterBitWidth() const {
    return ST->getMinVectorRegisterBitWidth();
  }

  Optional<unsigned> getVScaleForTuning() const {
    return ST->getVScaleForTuning();
  }

  bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;

  /// Try to return an estimate cost factor that can be used as a multiplier
  /// when scalarizing an operation for a vector with ElementCount \p VF.
  /// For scalable vectors this currently takes the most pessimistic view based
  /// upon the maximum possible value for vscale.
  unsigned getMaxNumElements(ElementCount VF) const {
    if (!VF.isScalable())
      return VF.getFixedValue();

    return VF.getKnownMinValue() * ST->getVScaleForTuning();
  }

  unsigned getMaxInterleaveFactor(unsigned VF);

  bool prefersVectorizedAddressing() const;

  InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
                                        Align Alignment, unsigned AddressSpace,
                                        TTI::TargetCostKind CostKind);

  InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                         const Value *Ptr, bool VariableMask,
                                         Align Alignment,
                                         TTI::TargetCostKind CostKind,
                                         const Instruction *I = nullptr);

  InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                   TTI::CastContextHint CCH,
                                   TTI::TargetCostKind CostKind,
                                   const Instruction *I = nullptr);

  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                           VectorType *VecTy, unsigned Index);

  InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
                                 const Instruction *I = nullptr);

  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
                                     unsigned Index);

  InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
                                         bool IsUnsigned,
                                         TTI::TargetCostKind CostKind);

  InstructionCost getArithmeticReductionCostSVE(unsigned Opcode,
                                                VectorType *ValTy,
                                                TTI::TargetCostKind CostKind);

  InstructionCost getSpliceCost(VectorType *Tp, int Index);

  InstructionCost getArithmeticInstrCost(
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
      TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
      TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
      TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
      TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
      ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
      const Instruction *CxtI = nullptr);

  InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                            const SCEV *Ptr);

  InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                     CmpInst::Predicate VecPred,
                                     TTI::TargetCostKind CostKind,
                                     const Instruction *I = nullptr);

  TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
                                                    bool IsZeroCmp) const;
  bool useNeonVector(const Type *Ty) const;

  InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src,
                                  MaybeAlign Alignment, unsigned AddressSpace,
                                  TTI::TargetCostKind CostKind,
                                  const Instruction *I = nullptr);

  InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys);

  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                               TTI::UnrollingPreferences &UP,
                               OptimizationRemarkEmitter *ORE);

  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                             TTI::PeelingPreferences &PP);

  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType);

  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);

  bool isElementTypeLegalForScalableVector(Type *Ty) const {
    if (Ty->isPointerTy())
      return true;

    if (Ty->isBFloatTy() && ST->hasBF16())
      return true;

    if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
      return true;

    if (Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
        Ty->isIntegerTy(32) || Ty->isIntegerTy(64))
      return true;

    return false;
  }

  bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
    if (!ST->hasSVE())
      return false;

    // For fixed vectors, avoid scalarization if using SVE for them.
    if (isa<FixedVectorType>(DataType) && !ST->useSVEForFixedLengthVectors())
      return false; // Fall back to scalarization of masked operations.

    return isElementTypeLegalForScalableVector(DataType->getScalarType());
  }

  bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
    return isLegalMaskedLoadStore(DataType, Alignment);
  }

  bool isLegalMaskedStore(Type *DataType, Align Alignment) {
    return isLegalMaskedLoadStore(DataType, Alignment);
  }

  bool isLegalMaskedGatherScatter(Type *DataType) const {
    if (!ST->hasSVE())
      return false;

    // For fixed vectors, scalarize if not using SVE for them.
    auto *DataTypeFVTy = dyn_cast<FixedVectorType>(DataType);
    if (DataTypeFVTy && (!ST->useSVEForFixedLengthVectors() ||
                         DataTypeFVTy->getNumElements() < 2))
      return false;

    return isElementTypeLegalForScalableVector(DataType->getScalarType());
  }

  bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
    return isLegalMaskedGatherScatter(DataType);
  }
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
    return isLegalMaskedGatherScatter(DataType);
  }

  bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
    // Return true if we can generate a `ld1r` splat load instruction.
    if (!ST->hasNEON() || NumElements.isScalable())
      return false;
    switch (unsigned ElementBits = ElementTy->getScalarSizeInBits()) {
    case 8:
    case 16:
    case 32:
    case 64: {
      // We accept bit-widths >= 64bits and elements {8,16,32,64} bits.
      unsigned VectorBits = NumElements.getFixedValue() * ElementBits;
      return VectorBits >= 64;
    }
    }
    return false;
  }

  bool isLegalNTStore(Type *DataType, Align Alignment) {
    // NOTE: The logic below is mostly geared towards LV, which calls it with
    //       vectors with 2 elements. We might want to improve that, if other
    //       users show up.
    // Nontemporal vector stores can be directly lowered to STNP, if the vector
    // can be halved so that each half fits into a register. That's the case if
    // the element type fits into a register and the number of elements is a
    // power of 2 > 1.
    if (auto *DataTypeVTy = dyn_cast<VectorType>(DataType)) {
      unsigned NumElements =
          cast<FixedVectorType>(DataTypeVTy)->getNumElements();
      unsigned EltSize = DataTypeVTy->getElementType()->getScalarSizeInBits();
      return NumElements > 1 && isPowerOf2_64(NumElements) && EltSize >= 8 &&
             EltSize <= 128 && isPowerOf2_64(EltSize);
    }
    return BaseT::isLegalNTStore(DataType, Alignment);
  }

  bool enableOrderedReductions() const { return true; }

  InstructionCost getInterleavedMemoryOpCost(
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
      bool UseMaskForCond = false, bool UseMaskForGaps = false);

  bool
  shouldConsiderAddressTypePromotion(const Instruction &I,
                                     bool &AllowPromotionWithoutCommonHeader);

  bool shouldExpandReduction(const IntrinsicInst *II) const { return false; }

  unsigned getGISelRematGlobalCost() const {
    return 2;
  }

  PredicationStyle emitGetActiveLaneMask() const {
    if (ST->hasSVE())
      return PredicationStyle::DataAndControlFlow;
    return PredicationStyle::None;
  }

  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
                                   DominatorTree *DT,
                                   LoopVectorizationLegality *LVL);

  bool supportsScalableVectors() const { return ST->hasSVE(); }

  bool enableScalableVectorization() const { return ST->hasSVE(); }

  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
                                   ElementCount VF) const;

  bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
                                       TTI::ReductionFlags Flags) const {
    return ST->hasSVE();
  }

  InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
                                             Optional<FastMathFlags> FMF,
                                             TTI::TargetCostKind CostKind);

  InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
                                 ArrayRef<int> Mask, int Index,
                                 VectorType *SubTp,
                                 ArrayRef<const Value *> Args = None);
  /// @}
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H