aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp
blob: 9f359c23298100569eebd0d4d81edfeedddb46bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AMDGPULegalizerInfo.h"

#include "AMDGPU.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"

#define DEBUG_TYPE "amdgpu-legalinfo"

using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;
using namespace MIPatternMatch;

// Hack until load/store selection patterns support any tuple of legal types.
static cl::opt<bool> EnableNewLegality(
  "amdgpu-global-isel-new-legality",
  cl::desc("Use GlobalISel desired legality, rather than try to use"
           "rules compatible with selection patterns"),
  cl::init(false),
  cl::ReallyHidden);

static constexpr unsigned MaxRegisterSize = 1024;

// Round the number of elements to the next power of two elements
static LLT getPow2VectorType(LLT Ty) {
  unsigned NElts = Ty.getNumElements();
  unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
  return Ty.changeNumElements(Pow2NElts);
}

// Round the number of bits to the next power of two bits
static LLT getPow2ScalarType(LLT Ty) {
  unsigned Bits = Ty.getSizeInBits();
  unsigned Pow2Bits = 1 <<  Log2_32_Ceil(Bits);
  return LLT::scalar(Pow2Bits);
}

/// \returs true if this is an odd sized vector which should widen by adding an
/// additional element. This is mostly to handle <3 x s16> -> <4 x s16>. This
/// excludes s1 vectors, which should always be scalarized.
static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    if (!Ty.isVector())
      return false;

    const LLT EltTy = Ty.getElementType();
    const unsigned EltSize = EltTy.getSizeInBits();
    return Ty.getNumElements() % 2 != 0 &&
           EltSize > 1 && EltSize < 32 &&
           Ty.getSizeInBits() % 32 != 0;
  };
}

static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return Ty.getSizeInBits() % 32 == 0;
  };
}

static LegalityPredicate isWideVec16(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getScalarType();
    return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
  };
}

static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getElementType();
    return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy));
  };
}

static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getElementType();
    unsigned Size = Ty.getSizeInBits();
    unsigned Pieces = (Size + 63) / 64;
    unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
    return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy));
  };
}

// Increase the number of vector elements to reach the next multiple of 32-bit
// type.
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];

    const LLT EltTy = Ty.getElementType();
    const int Size = Ty.getSizeInBits();
    const int EltSize = EltTy.getSizeInBits();
    const int NextMul32 = (Size + 31) / 32;

    assert(EltSize < 32);

    const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
    return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy));
  };
}

static LLT getBitcastRegisterType(const LLT Ty) {
  const unsigned Size = Ty.getSizeInBits();

  LLT CoercedTy;
  if (Size <= 32) {
    // <2 x s8> -> s16
    // <4 x s8> -> s32
    return LLT::scalar(Size);
  }

  return LLT::scalarOrVector(Size / 32, 32);
}

static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return std::make_pair(TypeIdx, getBitcastRegisterType(Ty));
  };
}

static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    unsigned Size = Ty.getSizeInBits();
    assert(Size % 32 == 0);
    return std::make_pair(TypeIdx, LLT::scalarOrVector(Size / 32, 32));
  };
}

static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
  };
}

static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
  };
}

static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
  };
}

static bool isRegisterSize(unsigned Size) {
  return Size % 32 == 0 && Size <= MaxRegisterSize;
}

static bool isRegisterVectorElementType(LLT EltTy) {
  const int EltSize = EltTy.getSizeInBits();
  return EltSize == 16 || EltSize % 32 == 0;
}

static bool isRegisterVectorType(LLT Ty) {
  const int EltSize = Ty.getElementType().getSizeInBits();
  return EltSize == 32 || EltSize == 64 ||
         (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
         EltSize == 128 || EltSize == 256;
}

static bool isRegisterType(LLT Ty) {
  if (!isRegisterSize(Ty.getSizeInBits()))
    return false;

  if (Ty.isVector())
    return isRegisterVectorType(Ty);

  return true;
}

// Any combination of 32 or 64-bit elements up the maximum register size, and
// multiples of v2s16.
static LegalityPredicate isRegisterType(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    return isRegisterType(Query.Types[TypeIdx]);
  };
}

static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    if (!QueryTy.isVector())
      return false;
    const LLT EltTy = QueryTy.getElementType();
    return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32;
  };
}

static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
           Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits();
  };
}

// TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
// handle some operations by just promoting the register during
// selection. There are also d16 loads on GFX9+ which preserve the high bits.
static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS,
                                    bool IsLoad) {
  switch (AS) {
  case AMDGPUAS::PRIVATE_ADDRESS:
    // FIXME: Private element size.
    return ST.enableFlatScratch() ? 128 : 32;
  case AMDGPUAS::LOCAL_ADDRESS:
    return ST.useDS128() ? 128 : 64;
  case AMDGPUAS::GLOBAL_ADDRESS:
  case AMDGPUAS::CONSTANT_ADDRESS:
  case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
    // Treat constant and global as identical. SMRD loads are sometimes usable for
    // global loads (ideally constant address space should be eliminated)
    // depending on the context. Legality cannot be context dependent, but
    // RegBankSelect can split the load as necessary depending on the pointer
    // register bank/uniformity and if the memory is invariant or not written in a
    // kernel.
    return IsLoad ? 512 : 128;
  default:
    // Flat addresses may contextually need to be split to 32-bit parts if they
    // may alias scratch depending on the subtarget.
    return 128;
  }
}

static bool isLoadStoreSizeLegal(const GCNSubtarget &ST,
                                 const LegalityQuery &Query,
                                 unsigned Opcode) {
  const LLT Ty = Query.Types[0];

  // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD
  const bool IsLoad = Opcode != AMDGPU::G_STORE;

  unsigned RegSize = Ty.getSizeInBits();
  unsigned MemSize = Query.MMODescrs[0].SizeInBits;
  unsigned AlignBits = Query.MMODescrs[0].AlignInBits;
  unsigned AS = Query.Types[1].getAddressSpace();

  // All of these need to be custom lowered to cast the pointer operand.
  if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
    return false;

  // TODO: We should be able to widen loads if the alignment is high enough, but
  // we also need to modify the memory access size.
#if 0
  // Accept widening loads based on alignment.
  if (IsLoad && MemSize < Size)
    MemSize = std::max(MemSize, Align);
#endif

  // Only 1-byte and 2-byte to 32-bit extloads are valid.
  if (MemSize != RegSize && RegSize != 32)
    return false;

  if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
    return false;

  switch (MemSize) {
  case 8:
  case 16:
  case 32:
  case 64:
  case 128:
    break;
  case 96:
    if (!ST.hasDwordx3LoadStores())
      return false;
    break;
  case 256:
  case 512:
    // These may contextually need to be broken down.
    break;
  default:
    return false;
  }

  assert(RegSize >= MemSize);

  if (AlignBits < MemSize) {
    const SITargetLowering *TLI = ST.getTargetLowering();
    if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
                                                 Align(AlignBits / 8)))
      return false;
  }

  return true;
}

// The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so
// workaround this. Eventually it should ignore the type for loads and only care
// about the size. Return true in cases where we will workaround this for now by
// bitcasting.
static bool loadStoreBitcastWorkaround(const LLT Ty) {
  if (EnableNewLegality)
    return false;

  const unsigned Size = Ty.getSizeInBits();
  if (Size <= 64)
    return false;
  if (!Ty.isVector())
    return true;

  LLT EltTy = Ty.getElementType();
  if (EltTy.isPointer())
    return true;

  unsigned EltSize = EltTy.getSizeInBits();
  return EltSize != 32 && EltSize != 64;
}

static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query,
                             unsigned Opcode) {
  const LLT Ty = Query.Types[0];
  return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query, Opcode) &&
         !loadStoreBitcastWorkaround(Ty);
}

/// Return true if a load or store of the type should be lowered with a bitcast
/// to a different type.
static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty,
                                       const unsigned MemSizeInBits) {
  const unsigned Size = Ty.getSizeInBits();
    if (Size != MemSizeInBits)
      return Size <= 32 && Ty.isVector();

  if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty))
    return true;
  return Ty.isVector() && (Size <= 32 || isRegisterSize(Size)) &&
         !isRegisterVectorElementType(Ty.getElementType());
}

/// Return true if we should legalize a load by widening an odd sized memory
/// access up to the alignment. Note this case when the memory access itself
/// changes, not the size of the result register.
static bool shouldWidenLoad(const GCNSubtarget &ST, unsigned SizeInBits,
                            unsigned AlignInBits, unsigned AddrSpace,
                            unsigned Opcode) {
  // We don't want to widen cases that are naturally legal.
  if (isPowerOf2_32(SizeInBits))
    return false;

  // If we have 96-bit memory operations, we shouldn't touch them. Note we may
  // end up widening these for a scalar load during RegBankSelect, since there
  // aren't 96-bit scalar loads.
  if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
    return false;

  if (SizeInBits >= maxSizeForAddrSpace(ST, AddrSpace, Opcode))
    return false;

  // A load is known dereferenceable up to the alignment, so it's legal to widen
  // to it.
  //
  // TODO: Could check dereferenceable for less aligned cases.
  unsigned RoundedSize = NextPowerOf2(SizeInBits);
  if (AlignInBits < RoundedSize)
    return false;

  // Do not widen if it would introduce a slow unaligned load.
  const SITargetLowering *TLI = ST.getTargetLowering();
  bool Fast = false;
  return TLI->allowsMisalignedMemoryAccessesImpl(
             RoundedSize, AddrSpace, Align(AlignInBits / 8),
             MachineMemOperand::MOLoad, &Fast) &&
         Fast;
}

static bool shouldWidenLoad(const GCNSubtarget &ST, const LegalityQuery &Query,
                            unsigned Opcode) {
  if (Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic)
    return false;

  return shouldWidenLoad(ST, Query.MMODescrs[0].SizeInBits,
                         Query.MMODescrs[0].AlignInBits,
                         Query.Types[1].getAddressSpace(), Opcode);
}

AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
                                         const GCNTargetMachine &TM)
  :  ST(ST_) {
  using namespace TargetOpcode;

  auto GetAddrSpacePtr = [&TM](unsigned AS) {
    return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
  };

  const LLT S1 = LLT::scalar(1);
  const LLT S8 = LLT::scalar(8);
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);
  const LLT S128 = LLT::scalar(128);
  const LLT S256 = LLT::scalar(256);
  const LLT S512 = LLT::scalar(512);
  const LLT MaxScalar = LLT::scalar(MaxRegisterSize);

  const LLT V2S8 = LLT::vector(2, 8);
  const LLT V2S16 = LLT::vector(2, 16);
  const LLT V4S16 = LLT::vector(4, 16);

  const LLT V2S32 = LLT::vector(2, 32);
  const LLT V3S32 = LLT::vector(3, 32);
  const LLT V4S32 = LLT::vector(4, 32);
  const LLT V5S32 = LLT::vector(5, 32);
  const LLT V6S32 = LLT::vector(6, 32);
  const LLT V7S32 = LLT::vector(7, 32);
  const LLT V8S32 = LLT::vector(8, 32);
  const LLT V9S32 = LLT::vector(9, 32);
  const LLT V10S32 = LLT::vector(10, 32);
  const LLT V11S32 = LLT::vector(11, 32);
  const LLT V12S32 = LLT::vector(12, 32);
  const LLT V13S32 = LLT::vector(13, 32);
  const LLT V14S32 = LLT::vector(14, 32);
  const LLT V15S32 = LLT::vector(15, 32);
  const LLT V16S32 = LLT::vector(16, 32);
  const LLT V32S32 = LLT::vector(32, 32);

  const LLT V2S64 = LLT::vector(2, 64);
  const LLT V3S64 = LLT::vector(3, 64);
  const LLT V4S64 = LLT::vector(4, 64);
  const LLT V5S64 = LLT::vector(5, 64);
  const LLT V6S64 = LLT::vector(6, 64);
  const LLT V7S64 = LLT::vector(7, 64);
  const LLT V8S64 = LLT::vector(8, 64);
  const LLT V16S64 = LLT::vector(16, 64);

  std::initializer_list<LLT> AllS32Vectors =
    {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
     V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
  std::initializer_list<LLT> AllS64Vectors =
    {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};

  const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
  const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
  const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
  const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
  const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
  const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
  const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);

  const LLT CodePtr = FlatPtr;

  const std::initializer_list<LLT> AddrSpaces64 = {
    GlobalPtr, ConstantPtr, FlatPtr
  };

  const std::initializer_list<LLT> AddrSpaces32 = {
    LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
  };

  const std::initializer_list<LLT> FPTypesBase = {
    S32, S64
  };

  const std::initializer_list<LLT> FPTypes16 = {
    S32, S64, S16
  };

  const std::initializer_list<LLT> FPTypesPK16 = {
    S32, S64, S16, V2S16
  };

  const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32;

  setAction({G_BRCOND, S1}, Legal); // VCC branches
  setAction({G_BRCOND, S32}, Legal); // SCC branches

  // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
  // elements for v3s16
  getActionDefinitionsBuilder(G_PHI)
    .legalFor({S32, S64, V2S16, S16, V4S16, S1, S128, S256})
    .legalFor(AllS32Vectors)
    .legalFor(AllS64Vectors)
    .legalFor(AddrSpaces64)
    .legalFor(AddrSpaces32)
    .legalIf(isPointer(0))
    .clampScalar(0, S16, S256)
    .widenScalarToNextPow2(0, 32)
    .clampMaxNumElements(0, S32, 16)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .scalarize(0);

  if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
    // Full set of gfx9 features.
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32, S16, V2S16})
      .clampScalar(0, S16, S32)
      .clampMaxNumElements(0, S16, 2)
      .scalarize(0)
      .widenScalarToNextPow2(0, 32);

    getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT, G_SADDSAT, G_SSUBSAT})
      .legalFor({S32, S16, V2S16}) // Clamp modifier
      .minScalarOrElt(0, S16)
      .clampMaxNumElements(0, S16, 2)
      .scalarize(0)
      .widenScalarToNextPow2(0, 32)
      .lower();
  } else if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32, S16})
      .clampScalar(0, S16, S32)
      .scalarize(0)
      .widenScalarToNextPow2(0, 32); // FIXME: min should be 16

    // Technically the saturating operations require clamp bit support, but this
    // was introduced at the same time as 16-bit operations.
    getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
      .legalFor({S32, S16}) // Clamp modifier
      .minScalar(0, S16)
      .scalarize(0)
      .widenScalarToNextPow2(0, 16)
      .lower();

    // We're just lowering this, but it helps get a better result to try to
    // coerce to the desired type first.
    getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
      .minScalar(0, S16)
      .scalarize(0)
      .lower();
  } else {
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32})
      .clampScalar(0, S32, S32)
      .scalarize(0);

    if (ST.hasIntClamp()) {
      getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
        .legalFor({S32}) // Clamp modifier.
        .scalarize(0)
        .minScalarOrElt(0, S32)
        .lower();
    } else {
      // Clamp bit support was added in VI, along with 16-bit operations.
      getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
        .minScalar(0, S32)
        .scalarize(0)
        .lower();
    }

    // FIXME: DAG expansion gets better results. The widening uses the smaller
    // range values and goes for the min/max lowering directly.
    getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
      .minScalar(0, S32)
      .scalarize(0)
      .lower();
  }

  getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM})
    .customFor({S32, S64})
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(0, 32)
    .scalarize(0);

  auto &Mulh = getActionDefinitionsBuilder({G_UMULH, G_SMULH})
                   .legalFor({S32})
                   .maxScalarOrElt(0, S32);

  if (ST.hasVOP3PInsts()) {
    Mulh
      .clampMaxNumElements(0, S8, 2)
      .lowerFor({V2S8});
  }

  Mulh
    .scalarize(0)
    .lower();

  // Report legal for any types we can handle anywhere. For the cases only legal
  // on the SALU, RegBankSelect will be able to re-legalize.
  getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
    .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
    .clampScalar(0, S32, S64)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
    .widenScalarToNextPow2(0)
    .scalarize(0);

  getActionDefinitionsBuilder({G_UADDO, G_USUBO,
                               G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
    .legalFor({{S32, S1}, {S32, S32}})
    .minScalar(0, S32)
    // TODO: .scalarize(0)
    .lower();

  getActionDefinitionsBuilder(G_BITCAST)
    // Don't worry about the size constraint.
    .legalIf(all(isRegisterType(0), isRegisterType(1)))
    .lower();


  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({S1, S32, S64, S16, GlobalPtr,
               LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
    .legalIf(isPointer(0))
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder(G_FCONSTANT)
    .legalFor({S32, S64, S16})
    .clampScalar(0, S16, S64);

  getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
      .legalIf(isRegisterType(0))
      // s1 and s16 are special cases because they have legal operations on
      // them, but don't really occupy registers in the normal way.
      .legalFor({S1, S16})
      .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
      .clampScalarOrElt(0, S32, MaxScalar)
      .widenScalarToNextPow2(0, 32)
      .clampMaxNumElements(0, S32, 16);

  setAction({G_FRAME_INDEX, PrivatePtr}, Legal);

  // If the amount is divergent, we have to do a wave reduction to get the
  // maximum value, so this is expanded during RegBankSelect.
  getActionDefinitionsBuilder(G_DYN_STACKALLOC)
    .legalFor({{PrivatePtr, S32}});

  getActionDefinitionsBuilder(G_GLOBAL_VALUE)
    .customIf(typeIsNot(0, PrivatePtr));

  setAction({G_BLOCK_ADDR, CodePtr}, Legal);

  auto &FPOpActions = getActionDefinitionsBuilder(
    { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
    .legalFor({S32, S64});
  auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
    .customFor({S32, S64});
  auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
    .customFor({S32, S64});

  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts())
      FPOpActions.legalFor({S16, V2S16});
    else
      FPOpActions.legalFor({S16});

    TrigActions.customFor({S16});
    FDIVActions.customFor({S16});
  }

  auto &MinNumMaxNum = getActionDefinitionsBuilder({
      G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});

  if (ST.hasVOP3PInsts()) {
    MinNumMaxNum.customFor(FPTypesPK16)
      .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
      .clampMaxNumElements(0, S16, 2)
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else if (ST.has16BitInsts()) {
    MinNumMaxNum.customFor(FPTypes16)
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else {
    MinNumMaxNum.customFor(FPTypesBase)
      .clampScalar(0, S32, S64)
      .scalarize(0);
  }

  if (ST.hasVOP3PInsts())
    FPOpActions.clampMaxNumElements(0, S16, 2);

  FPOpActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  TrigActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  FDIVActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  getActionDefinitionsBuilder({G_FNEG, G_FABS})
    .legalFor(FPTypesPK16)
    .clampMaxNumElements(0, S16, 2)
    .scalarize(0)
    .clampScalar(0, S16, S64);

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
      .legalFor({S32, S64, S16})
      .scalarize(0)
      .clampScalar(0, S16, S64);
  } else {
    getActionDefinitionsBuilder(G_FSQRT)
      .legalFor({S32, S64})
      .scalarize(0)
      .clampScalar(0, S32, S64);

    if (ST.hasFractBug()) {
      getActionDefinitionsBuilder(G_FFLOOR)
        .customFor({S64})
        .legalFor({S32, S64})
        .scalarize(0)
        .clampScalar(0, S32, S64);
    } else {
      getActionDefinitionsBuilder(G_FFLOOR)
        .legalFor({S32, S64})
        .scalarize(0)
        .clampScalar(0, S32, S64);
    }
  }

  getActionDefinitionsBuilder(G_FPTRUNC)
    .legalFor({{S32, S64}, {S16, S32}})
    .scalarize(0)
    .lower();

  getActionDefinitionsBuilder(G_FPEXT)
    .legalFor({{S64, S32}, {S32, S16}})
    .narrowScalarFor({{S64, S16}}, changeTo(0, S32))
    .scalarize(0);

  getActionDefinitionsBuilder(G_FSUB)
      // Use actual fsub instruction
      .legalFor({S32})
      // Must use fadd + fneg
      .lowerFor({S64, S16, V2S16})
      .scalarize(0)
      .clampScalar(0, S32, S64);

  // Whether this is legal depends on the floating point mode for the function.
  auto &FMad = getActionDefinitionsBuilder(G_FMAD);
  if (ST.hasMadF16() && ST.hasMadMacF32Insts())
    FMad.customFor({S32, S16});
  else if (ST.hasMadMacF32Insts())
    FMad.customFor({S32});
  else if (ST.hasMadF16())
    FMad.customFor({S16});
  FMad.scalarize(0)
      .lower();

  auto &FRem = getActionDefinitionsBuilder(G_FREM);
  if (ST.has16BitInsts()) {
    FRem.customFor({S16, S32, S64});
  } else {
    FRem.minScalar(0, S32)
        .customFor({S32, S64});
  }
  FRem.scalarize(0);

  // TODO: Do we need to clamp maximum bitwidth?
  getActionDefinitionsBuilder(G_TRUNC)
    .legalIf(isScalar(0))
    .legalFor({{V2S16, V2S32}})
    .clampMaxNumElements(0, S16, 2)
    // Avoid scalarizing in cases that should be truly illegal. In unresolvable
    // situations (like an invalid implicit use), we don't want to infinite loop
    // in the legalizer.
    .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0))
    .alwaysLegal();

  getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
    .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
               {S32, S1}, {S64, S1}, {S16, S1}})
    .scalarize(0)
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(1, 32);

  // TODO: Split s1->s64 during regbankselect for VALU.
  auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
    .legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
    .lowerFor({{S32, S64}})
    .lowerIf(typeIs(1, S1))
    .customFor({{S64, S64}});
  if (ST.has16BitInsts())
    IToFP.legalFor({{S16, S16}});
  IToFP.clampScalar(1, S32, S64)
       .minScalar(0, S32)
       .scalarize(0)
       .widenScalarToNextPow2(1);

  auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
    .legalFor({{S32, S32}, {S32, S64}, {S32, S16}})
    .customFor({{S64, S64}})
    .narrowScalarFor({{S64, S16}}, changeTo(0, S32));
  if (ST.has16BitInsts())
    FPToI.legalFor({{S16, S16}});
  else
    FPToI.minScalar(1, S32);

  FPToI.minScalar(0, S32)
       .scalarize(0)
       .lower();

  // Lower roundeven into G_FRINT
  getActionDefinitionsBuilder({G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
    .scalarize(0)
    .lower();

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S16, S32, S64})
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S32, S64})
      .clampScalar(0, S32, S64)
      .scalarize(0);
  } else {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S32})
      .customFor({S64})
      .clampScalar(0, S32, S64)
      .scalarize(0);
  }

  getActionDefinitionsBuilder(G_PTR_ADD)
    .legalIf(all(isPointer(0), sameSize(0, 1)))
    .scalarize(0)
    .scalarSameSizeAs(1, 0);

  getActionDefinitionsBuilder(G_PTRMASK)
    .legalIf(all(sameSize(0, 1), typeInSet(1, {S64, S32})))
    .scalarSameSizeAs(1, 0)
    .scalarize(0);

  auto &CmpBuilder =
    getActionDefinitionsBuilder(G_ICMP)
    // The compare output type differs based on the register bank of the output,
    // so make both s1 and s32 legal.
    //
    // Scalar compares producing output in scc will be promoted to s32, as that
    // is the allocatable register type that will be needed for the copy from
    // scc. This will be promoted during RegBankSelect, and we assume something
    // before that won't try to use s32 result types.
    //
    // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
    // bank.
    .legalForCartesianProduct(
      {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
    .legalForCartesianProduct(
      {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
  if (ST.has16BitInsts()) {
    CmpBuilder.legalFor({{S1, S16}});
  }

  CmpBuilder
    .widenScalarToNextPow2(1)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));

  getActionDefinitionsBuilder(G_FCMP)
    .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
    .widenScalarToNextPow2(1)
    .clampScalar(1, S32, S64)
    .scalarize(0);

  // FIXME: fpow has a selection pattern that should move to custom lowering.
  auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2});
  if (ST.has16BitInsts())
    Exp2Ops.legalFor({S32, S16});
  else
    Exp2Ops.legalFor({S32});
  Exp2Ops.clampScalar(0, MinScalarFPTy, S32);
  Exp2Ops.scalarize(0);

  auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW});
  if (ST.has16BitInsts())
    ExpOps.customFor({{S32}, {S16}});
  else
    ExpOps.customFor({S32});
  ExpOps.clampScalar(0, MinScalarFPTy, S32)
        .scalarize(0);

  getActionDefinitionsBuilder(G_FPOWI)
    .clampScalar(0, MinScalarFPTy, S32)
    .lower();

  // The 64-bit versions produce 32-bit results, but only on the SALU.
  getActionDefinitionsBuilder(G_CTPOP)
    .legalFor({{S32, S32}, {S32, S64}})
    .clampScalar(0, S32, S32)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .widenScalarToNextPow2(0, 32)
    .widenScalarToNextPow2(1, 32);

  // The hardware instructions return a different result on 0 than the generic
  // instructions expect. The hardware produces -1, but these produce the
  // bitwidth.
  getActionDefinitionsBuilder({G_CTLZ, G_CTTZ})
    .scalarize(0)
    .clampScalar(0, S32, S32)
    .clampScalar(1, S32, S64)
    .widenScalarToNextPow2(0, 32)
    .widenScalarToNextPow2(1, 32)
    .lower();

  // The 64-bit versions produce 32-bit results, but only on the SALU.
  getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF})
    .legalFor({{S32, S32}, {S32, S64}})
    .clampScalar(0, S32, S32)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .widenScalarToNextPow2(0, 32)
    .widenScalarToNextPow2(1, 32);

  getActionDefinitionsBuilder(G_BITREVERSE)
    .legalFor({S32})
    .clampScalar(0, S32, S32)
    .scalarize(0);

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder(G_BSWAP)
      .legalFor({S16, S32, V2S16})
      .clampMaxNumElements(0, S16, 2)
      // FIXME: Fixing non-power-of-2 before clamp is workaround for
      // narrowScalar limitation.
      .widenScalarToNextPow2(0)
      .clampScalar(0, S16, S32)
      .scalarize(0);

    if (ST.hasVOP3PInsts()) {
      getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
        .legalFor({S32, S16, V2S16})
        .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
        .clampMaxNumElements(0, S16, 2)
        .minScalar(0, S16)
        .widenScalarToNextPow2(0)
        .scalarize(0)
        .lower();
    } else {
      getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
        .legalFor({S32, S16})
        .widenScalarToNextPow2(0)
        .minScalar(0, S16)
        .scalarize(0)
        .lower();
    }
  } else {
    // TODO: Should have same legality without v_perm_b32
    getActionDefinitionsBuilder(G_BSWAP)
      .legalFor({S32})
      .lowerIf(scalarNarrowerThan(0, 32))
      // FIXME: Fixing non-power-of-2 before clamp is workaround for
      // narrowScalar limitation.
      .widenScalarToNextPow2(0)
      .maxScalar(0, S32)
      .scalarize(0)
      .lower();

    getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
      .legalFor({S32})
      .minScalar(0, S32)
      .widenScalarToNextPow2(0)
      .scalarize(0)
      .lower();
  }

  getActionDefinitionsBuilder(G_INTTOPTR)
    // List the common cases
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0)
    // Accept any address space as long as the size matches
    .legalIf(sameSize(0, 1))
    .widenScalarIf(smallerThan(1, 0),
      [](const LegalityQuery &Query) {
        return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
      })
    .narrowScalarIf(largerThan(1, 0),
      [](const LegalityQuery &Query) {
        return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
      });

  getActionDefinitionsBuilder(G_PTRTOINT)
    // List the common cases
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0)
    // Accept any address space as long as the size matches
    .legalIf(sameSize(0, 1))
    .widenScalarIf(smallerThan(0, 1),
      [](const LegalityQuery &Query) {
        return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
      })
    .narrowScalarIf(
      largerThan(0, 1),
      [](const LegalityQuery &Query) {
        return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
      });

  getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
    .scalarize(0)
    .custom();

  const auto needToSplitMemOp = [=](const LegalityQuery &Query,
                                    bool IsLoad) -> bool {
    const LLT DstTy = Query.Types[0];

    // Split vector extloads.
    unsigned MemSize = Query.MMODescrs[0].SizeInBits;
    unsigned AlignBits = Query.MMODescrs[0].AlignInBits;

    if (MemSize < DstTy.getSizeInBits())
      MemSize = std::max(MemSize, AlignBits);

    if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
      return true;

    const LLT PtrTy = Query.Types[1];
    unsigned AS = PtrTy.getAddressSpace();
    if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
      return true;

    // Catch weird sized loads that don't evenly divide into the access sizes
    // TODO: May be able to widen depending on alignment etc.
    unsigned NumRegs = (MemSize + 31) / 32;
    if (NumRegs == 3) {
      if (!ST.hasDwordx3LoadStores())
        return true;
    } else {
      // If the alignment allows, these should have been widened.
      if (!isPowerOf2_32(NumRegs))
        return true;
    }

    if (AlignBits < MemSize) {
      const SITargetLowering *TLI = ST.getTargetLowering();
      return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
                                                      Align(AlignBits / 8));
    }

    return false;
  };

  unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
  unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
  unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;

  // TODO: Refine based on subtargets which support unaligned access or 128-bit
  // LDS
  // TODO: Unsupported flat for SI.

  for (unsigned Op : {G_LOAD, G_STORE}) {
    const bool IsStore = Op == G_STORE;

    auto &Actions = getActionDefinitionsBuilder(Op);
    // Explicitly list some common cases.
    // TODO: Does this help compile time at all?
    Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32},
                                      {V2S32, GlobalPtr, 64, GlobalAlign32},
                                      {V4S32, GlobalPtr, 128, GlobalAlign32},
                                      {S64, GlobalPtr, 64, GlobalAlign32},
                                      {V2S64, GlobalPtr, 128, GlobalAlign32},
                                      {V2S16, GlobalPtr, 32, GlobalAlign32},
                                      {S32, GlobalPtr, 8, GlobalAlign8},
                                      {S32, GlobalPtr, 16, GlobalAlign16},

                                      {S32, LocalPtr, 32, 32},
                                      {S64, LocalPtr, 64, 32},
                                      {V2S32, LocalPtr, 64, 32},
                                      {S32, LocalPtr, 8, 8},
                                      {S32, LocalPtr, 16, 16},
                                      {V2S16, LocalPtr, 32, 32},

                                      {S32, PrivatePtr, 32, 32},
                                      {S32, PrivatePtr, 8, 8},
                                      {S32, PrivatePtr, 16, 16},
                                      {V2S16, PrivatePtr, 32, 32},

                                      {S32, ConstantPtr, 32, GlobalAlign32},
                                      {V2S32, ConstantPtr, 64, GlobalAlign32},
                                      {V4S32, ConstantPtr, 128, GlobalAlign32},
                                      {S64, ConstantPtr, 64, GlobalAlign32},
                                      {V2S32, ConstantPtr, 32, GlobalAlign32}});
    Actions.legalIf(
      [=](const LegalityQuery &Query) -> bool {
        return isLoadStoreLegal(ST, Query, Op);
      });

    // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
    // 64-bits.
    //
    // TODO: Should generalize bitcast action into coerce, which will also cover
    // inserting addrspacecasts.
    Actions.customIf(typeIs(1, Constant32Ptr));

    // Turn any illegal element vectors into something easier to deal
    // with. These will ultimately produce 32-bit scalar shifts to extract the
    // parts anyway.
    //
    // For odd 16-bit element vectors, prefer to split those into pieces with
    // 16-bit vector parts.
    Actions.bitcastIf(
      [=](const LegalityQuery &Query) -> bool {
        return shouldBitcastLoadStoreType(ST, Query.Types[0],
                                          Query.MMODescrs[0].SizeInBits);
      }, bitcastToRegisterType(0));

    if (!IsStore) {
      // Widen suitably aligned loads by loading extra bytes. The standard
      // legalization actions can't properly express widening memory operands.
      Actions.customIf([=](const LegalityQuery &Query) -> bool {
        return shouldWidenLoad(ST, Query, G_LOAD);
      });
    }

    // FIXME: load/store narrowing should be moved to lower action
    Actions
        .narrowScalarIf(
            [=](const LegalityQuery &Query) -> bool {
              return !Query.Types[0].isVector() &&
                     needToSplitMemOp(Query, Op == G_LOAD);
            },
            [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
              const LLT DstTy = Query.Types[0];
              const LLT PtrTy = Query.Types[1];

              const unsigned DstSize = DstTy.getSizeInBits();
              unsigned MemSize = Query.MMODescrs[0].SizeInBits;

              // Split extloads.
              if (DstSize > MemSize)
                return std::make_pair(0, LLT::scalar(MemSize));

              if (!isPowerOf2_32(DstSize)) {
                // We're probably decomposing an odd sized store. Try to split
                // to the widest type. TODO: Account for alignment. As-is it
                // should be OK, since the new parts will be further legalized.
                unsigned FloorSize = PowerOf2Floor(DstSize);
                return std::make_pair(0, LLT::scalar(FloorSize));
              }

              if (DstSize > 32 && (DstSize % 32 != 0)) {
                // FIXME: Need a way to specify non-extload of larger size if
                // suitably aligned.
                return std::make_pair(0, LLT::scalar(32 * (DstSize / 32)));
              }

              unsigned MaxSize = maxSizeForAddrSpace(ST,
                                                     PtrTy.getAddressSpace(),
                                                     Op == G_LOAD);
              if (MemSize > MaxSize)
                return std::make_pair(0, LLT::scalar(MaxSize));

              unsigned Align = Query.MMODescrs[0].AlignInBits;
              return std::make_pair(0, LLT::scalar(Align));
            })
        .fewerElementsIf(
            [=](const LegalityQuery &Query) -> bool {
              return Query.Types[0].isVector() &&
                     needToSplitMemOp(Query, Op == G_LOAD);
            },
            [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
              const LLT DstTy = Query.Types[0];
              const LLT PtrTy = Query.Types[1];

              LLT EltTy = DstTy.getElementType();
              unsigned MaxSize = maxSizeForAddrSpace(ST,
                                                     PtrTy.getAddressSpace(),
                                                     Op == G_LOAD);

              // FIXME: Handle widened to power of 2 results better. This ends
              // up scalarizing.
              // FIXME: 3 element stores scalarized on SI

              // Split if it's too large for the address space.
              if (Query.MMODescrs[0].SizeInBits > MaxSize) {
                unsigned NumElts = DstTy.getNumElements();
                unsigned EltSize = EltTy.getSizeInBits();

                if (MaxSize % EltSize == 0) {
                  return std::make_pair(
                    0, LLT::scalarOrVector(MaxSize / EltSize, EltTy));
                }

                unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize;

                // FIXME: Refine when odd breakdowns handled
                // The scalars will need to be re-legalized.
                if (NumPieces == 1 || NumPieces >= NumElts ||
                    NumElts % NumPieces != 0)
                  return std::make_pair(0, EltTy);

                return std::make_pair(0,
                                      LLT::vector(NumElts / NumPieces, EltTy));
              }

              // FIXME: We could probably handle weird extending loads better.
              unsigned MemSize = Query.MMODescrs[0].SizeInBits;
              if (DstTy.getSizeInBits() > MemSize)
                return std::make_pair(0, EltTy);

              unsigned EltSize = EltTy.getSizeInBits();
              unsigned DstSize = DstTy.getSizeInBits();
              if (!isPowerOf2_32(DstSize)) {
                // We're probably decomposing an odd sized store. Try to split
                // to the widest type. TODO: Account for alignment. As-is it
                // should be OK, since the new parts will be further legalized.
                unsigned FloorSize = PowerOf2Floor(DstSize);
                return std::make_pair(
                  0, LLT::scalarOrVector(FloorSize / EltSize, EltTy));
              }

              // Need to split because of alignment.
              unsigned Align = Query.MMODescrs[0].AlignInBits;
              if (EltSize > Align &&
                  (EltSize / Align < DstTy.getNumElements())) {
                return std::make_pair(0, LLT::vector(EltSize / Align, EltTy));
              }

              // May need relegalization for the scalars.
              return std::make_pair(0, EltTy);
            })
    .lowerIfMemSizeNotPow2()
    .minScalar(0, S32);

    if (IsStore)
      Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32));

    Actions
        .widenScalarToNextPow2(0)
        .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0))
        .lower();
  }

  auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
                       .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8},
                                                  {S32, GlobalPtr, 16, 2 * 8},
                                                  {S32, LocalPtr, 8, 8},
                                                  {S32, LocalPtr, 16, 16},
                                                  {S32, PrivatePtr, 8, 8},
                                                  {S32, PrivatePtr, 16, 16},
                                                  {S32, ConstantPtr, 8, 8},
                                                  {S32, ConstantPtr, 16, 2 * 8}});
  if (ST.hasFlatAddressSpace()) {
    ExtLoads.legalForTypesWithMemDesc(
        {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}});
  }

  ExtLoads.clampScalar(0, S32, S32)
          .widenScalarToNextPow2(0)
          .unsupportedIfMemSizeNotPow2()
          .lower();

  auto &Atomics = getActionDefinitionsBuilder(
    {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
     G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
     G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
     G_ATOMICRMW_UMIN})
    .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
               {S64, GlobalPtr}, {S64, LocalPtr},
               {S32, RegionPtr}, {S64, RegionPtr}});
  if (ST.hasFlatAddressSpace()) {
    Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
  }

  if (ST.hasLDSFPAtomics()) {
    getActionDefinitionsBuilder(G_ATOMICRMW_FADD)
      .legalFor({{S32, LocalPtr}, {S32, RegionPtr}});
  }

  // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
  // demarshalling
  getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
    .customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
                {S32, FlatPtr}, {S64, FlatPtr}})
    .legalFor({{S32, LocalPtr}, {S64, LocalPtr},
               {S32, RegionPtr}, {S64, RegionPtr}});
  // TODO: Pointer types, any 32-bit or 64-bit vector

  // Condition should be s32 for scalar, s1 for vector.
  getActionDefinitionsBuilder(G_SELECT)
    .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16,
          GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
          LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32})
    .clampScalar(0, S16, S64)
    .scalarize(1)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .fewerElementsIf(numElementsNotEven(0), scalarize(0))
    .clampMaxNumElements(0, S32, 2)
    .clampMaxNumElements(0, LocalPtr, 2)
    .clampMaxNumElements(0, PrivatePtr, 2)
    .scalarize(0)
    .widenScalarToNextPow2(0)
    .legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));

  // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
  // be more flexible with the shift amount type.
  auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
    .legalFor({{S32, S32}, {S64, S32}});
  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts()) {
      Shifts.legalFor({{S16, S16}, {V2S16, V2S16}})
            .clampMaxNumElements(0, S16, 2);
    } else
      Shifts.legalFor({{S16, S16}});

    // TODO: Support 16-bit shift amounts for all types
    Shifts.widenScalarIf(
      [=](const LegalityQuery &Query) {
        // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a
        // 32-bit amount.
        const LLT ValTy = Query.Types[0];
        const LLT AmountTy = Query.Types[1];
        return ValTy.getSizeInBits() <= 16 &&
               AmountTy.getSizeInBits() < 16;
      }, changeTo(1, S16));
    Shifts.maxScalarIf(typeIs(0, S16), 1, S16);
    Shifts.clampScalar(1, S32, S32);
    Shifts.clampScalar(0, S16, S64);
    Shifts.widenScalarToNextPow2(0, 16);

    getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
      .minScalar(0, S16)
      .scalarize(0)
      .lower();
  } else {
    // Make sure we legalize the shift amount type first, as the general
    // expansion for the shifted type will produce much worse code if it hasn't
    // been truncated already.
    Shifts.clampScalar(1, S32, S32);
    Shifts.clampScalar(0, S32, S64);
    Shifts.widenScalarToNextPow2(0, 32);

    getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
      .minScalar(0, S32)
      .scalarize(0)
      .lower();
  }
  Shifts.scalarize(0);

  for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
    unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
    unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
    unsigned IdxTypeIdx = 2;

    getActionDefinitionsBuilder(Op)
      .customIf([=](const LegalityQuery &Query) {
          const LLT EltTy = Query.Types[EltTypeIdx];
          const LLT VecTy = Query.Types[VecTypeIdx];
          const LLT IdxTy = Query.Types[IdxTypeIdx];
          const unsigned EltSize = EltTy.getSizeInBits();
          return (EltSize == 32 || EltSize == 64) &&
                  VecTy.getSizeInBits() % 32 == 0 &&
                  VecTy.getSizeInBits() <= MaxRegisterSize &&
                  IdxTy.getSizeInBits() == 32;
        })
      .bitcastIf(all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltNarrowerThan(VecTypeIdx, 32)),
                 bitcastToVectorElement32(VecTypeIdx))
      //.bitcastIf(vectorSmallerThan(1, 32), bitcastToScalar(1))
      .bitcastIf(
        all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltWiderThan(VecTypeIdx, 64)),
        [=](const LegalityQuery &Query) {
          // For > 64-bit element types, try to turn this into a 64-bit
          // element vector since we may be able to do better indexing
          // if this is scalar. If not, fall back to 32.
          const LLT EltTy = Query.Types[EltTypeIdx];
          const LLT VecTy = Query.Types[VecTypeIdx];
          const unsigned DstEltSize = EltTy.getSizeInBits();
          const unsigned VecSize = VecTy.getSizeInBits();

          const unsigned TargetEltSize = DstEltSize % 64 == 0 ? 64 : 32;
          return std::make_pair(
            VecTypeIdx, LLT::vector(VecSize / TargetEltSize, TargetEltSize));
        })
      .clampScalar(EltTypeIdx, S32, S64)
      .clampScalar(VecTypeIdx, S32, S64)
      .clampScalar(IdxTypeIdx, S32, S32)
      .clampMaxNumElements(VecTypeIdx, S32, 32)
      // TODO: Clamp elements for 64-bit vectors?
      // It should only be necessary with variable indexes.
      // As a last resort, lower to the stack
      .lower();
  }

  getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
    .unsupportedIf([=](const LegalityQuery &Query) {
        const LLT &EltTy = Query.Types[1].getElementType();
        return Query.Types[0] != EltTy;
      });

  for (unsigned Op : {G_EXTRACT, G_INSERT}) {
    unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
    unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;

    // FIXME: Doesn't handle extract of illegal sizes.
    getActionDefinitionsBuilder(Op)
      .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
      // FIXME: Multiples of 16 should not be legal.
      .legalIf([=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          const LLT LitTy = Query.Types[LitTyIdx];
          return (BigTy.getSizeInBits() % 32 == 0) &&
                 (LitTy.getSizeInBits() % 16 == 0);
        })
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          return (BigTy.getScalarSizeInBits() < 16);
        },
        LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT LitTy = Query.Types[LitTyIdx];
          return (LitTy.getScalarSizeInBits() < 16);
        },
        LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
      .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
      .widenScalarToNextPow2(BigTyIdx, 32);

  }

  auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
    .legalForCartesianProduct(AllS32Vectors, {S32})
    .legalForCartesianProduct(AllS64Vectors, {S64})
    .clampNumElements(0, V16S32, V32S32)
    .clampNumElements(0, V2S64, V16S64)
    .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));

  if (ST.hasScalarPackInsts()) {
    BuildVector
      // FIXME: Should probably widen s1 vectors straight to s32
      .minScalarOrElt(0, S16)
      // Widen source elements and produce a G_BUILD_VECTOR_TRUNC
      .minScalar(1, S32);

    getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
      .legalFor({V2S16, S32})
      .lower();
    BuildVector.minScalarOrElt(0, S32);
  } else {
    BuildVector.customFor({V2S16, S16});
    BuildVector.minScalarOrElt(0, S32);

    getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
      .customFor({V2S16, S32})
      .lower();
  }

  BuildVector.legalIf(isRegisterType(0));

  // FIXME: Clamp maximum size
  getActionDefinitionsBuilder(G_CONCAT_VECTORS)
    .legalIf(all(isRegisterType(0), isRegisterType(1)))
    .clampMaxNumElements(0, S32, 32)
    .clampMaxNumElements(1, S16, 2) // TODO: Make 4?
    .clampMaxNumElements(0, S16, 64);

  // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse
  // pre-legalize.
  if (ST.hasVOP3PInsts()) {
    getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
      .customFor({V2S16, V2S16})
      .lower();
  } else
    getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
      const LLT Ty = Query.Types[TypeIdx];
      if (Ty.isVector()) {
        const LLT &EltTy = Ty.getElementType();
        if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512)
          return true;
        if (!isPowerOf2_32(EltTy.getSizeInBits()))
          return true;
      }
      return false;
    };

    auto &Builder = getActionDefinitionsBuilder(Op)
      .legalIf(all(isRegisterType(0), isRegisterType(1)))
      .lowerFor({{S16, V2S16}})
      .lowerIf([=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          return BigTy.getSizeInBits() == 32;
        })
      // Try to widen to s16 first for small types.
      // TODO: Only do this on targets with legal s16 shifts
      .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
      .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
      .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
                           elementTypeIs(1, S16)),
                       changeTo(1, V2S16))
      // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
      // worth considering the multiples of 64 since 2*192 and 2*384 are not
      // valid.
      .clampScalar(LitTyIdx, S32, S512)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
      // Break up vectors with weird elements into scalars
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); },
        scalarize(0))
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); },
        scalarize(1))
      .clampScalar(BigTyIdx, S32, MaxScalar);

    if (Op == G_MERGE_VALUES) {
      Builder.widenScalarIf(
        // TODO: Use 16-bit shifts if legal for 8-bit values?
        [=](const LegalityQuery &Query) {
          const LLT Ty = Query.Types[LitTyIdx];
          return Ty.getSizeInBits() < 32;
        },
        changeTo(LitTyIdx, S32));
    }

    Builder.widenScalarIf(
      [=](const LegalityQuery &Query) {
        const LLT Ty = Query.Types[BigTyIdx];
        return !isPowerOf2_32(Ty.getSizeInBits()) &&
          Ty.getSizeInBits() % 16 != 0;
      },
      [=](const LegalityQuery &Query) {
        // Pick the next power of 2, or a multiple of 64 over 128.
        // Whichever is smaller.
        const LLT &Ty = Query.Types[BigTyIdx];
        unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
        if (NewSizeInBits >= 256) {
          unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
          if (RoundedTo < NewSizeInBits)
            NewSizeInBits = RoundedTo;
        }
        return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
      })
      // Any vectors left are the wrong size. Scalarize them.
      .scalarize(0)
      .scalarize(1);
  }

  // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
  // RegBankSelect.
  auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG)
    .legalFor({{S32}, {S64}});

  if (ST.hasVOP3PInsts()) {
    SextInReg.lowerFor({{V2S16}})
      // Prefer to reduce vector widths for 16-bit vectors before lowering, to
      // get more vector shift opportunities, since we'll get those when
      // expanded.
      .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16));
  } else if (ST.has16BitInsts()) {
    SextInReg.lowerFor({{S32}, {S64}, {S16}});
  } else {
    // Prefer to promote to s32 before lowering if we don't have 16-bit
    // shifts. This avoid a lot of intermediate truncate and extend operations.
    SextInReg.lowerFor({{S32}, {S64}});
  }

  SextInReg
    .scalarize(0)
    .clampScalar(0, S32, S64)
    .lower();

  getActionDefinitionsBuilder(G_FSHR)
    .legalFor({{S32, S32}})
    .scalarize(0)
    .lower();

  getActionDefinitionsBuilder(G_READCYCLECOUNTER)
    .legalFor({S64});

  getActionDefinitionsBuilder(G_FENCE)
    .alwaysLegal();

  getActionDefinitionsBuilder({
      // TODO: Verify V_BFI_B32 is generated from expanded bit ops
      G_FCOPYSIGN,

      G_ATOMIC_CMPXCHG_WITH_SUCCESS,
      G_ATOMICRMW_NAND,
      G_ATOMICRMW_FSUB,
      G_READ_REGISTER,
      G_WRITE_REGISTER,

      G_SADDO, G_SSUBO,

       // TODO: Implement
      G_FMINIMUM, G_FMAXIMUM,
      G_FSHL
    }).lower();

  getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
        G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
        G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
    .unsupported();

  computeTables();
  verify(*ST.getInstrInfo());
}

bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
                                         MachineInstr &MI) const {
  MachineIRBuilder &B = Helper.MIRBuilder;
  MachineRegisterInfo &MRI = *B.getMRI();

  switch (MI.getOpcode()) {
  case TargetOpcode::G_ADDRSPACE_CAST:
    return legalizeAddrSpaceCast(MI, MRI, B);
  case TargetOpcode::G_FRINT:
    return legalizeFrint(MI, MRI, B);
  case TargetOpcode::G_FCEIL:
    return legalizeFceil(MI, MRI, B);
  case TargetOpcode::G_FREM:
    return legalizeFrem(MI, MRI, B);
  case TargetOpcode::G_INTRINSIC_TRUNC:
    return legalizeIntrinsicTrunc(MI, MRI, B);
  case TargetOpcode::G_SITOFP:
    return legalizeITOFP(MI, MRI, B, true);
  case TargetOpcode::G_UITOFP:
    return legalizeITOFP(MI, MRI, B, false);
  case TargetOpcode::G_FPTOSI:
    return legalizeFPTOI(MI, MRI, B, true);
  case TargetOpcode::G_FPTOUI:
    return legalizeFPTOI(MI, MRI, B, false);
  case TargetOpcode::G_FMINNUM:
  case TargetOpcode::G_FMAXNUM:
  case TargetOpcode::G_FMINNUM_IEEE:
  case TargetOpcode::G_FMAXNUM_IEEE:
    return legalizeMinNumMaxNum(Helper, MI);
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    return legalizeExtractVectorElt(MI, MRI, B);
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return legalizeInsertVectorElt(MI, MRI, B);
  case TargetOpcode::G_SHUFFLE_VECTOR:
    return legalizeShuffleVector(MI, MRI, B);
  case TargetOpcode::G_FSIN:
  case TargetOpcode::G_FCOS:
    return legalizeSinCos(MI, MRI, B);
  case TargetOpcode::G_GLOBAL_VALUE:
    return legalizeGlobalValue(MI, MRI, B);
  case TargetOpcode::G_LOAD:
    return legalizeLoad(Helper, MI);
  case TargetOpcode::G_FMAD:
    return legalizeFMad(MI, MRI, B);
  case TargetOpcode::G_FDIV:
    return legalizeFDIV(MI, MRI, B);
  case TargetOpcode::G_UDIV:
  case TargetOpcode::G_UREM:
    return legalizeUDIV_UREM(MI, MRI, B);
  case TargetOpcode::G_SDIV:
  case TargetOpcode::G_SREM:
    return legalizeSDIV_SREM(MI, MRI, B);
  case TargetOpcode::G_ATOMIC_CMPXCHG:
    return legalizeAtomicCmpXChg(MI, MRI, B);
  case TargetOpcode::G_FLOG:
    return legalizeFlog(MI, B, numbers::ln2f);
  case TargetOpcode::G_FLOG10:
    return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f);
  case TargetOpcode::G_FEXP:
    return legalizeFExp(MI, B);
  case TargetOpcode::G_FPOW:
    return legalizeFPow(MI, B);
  case TargetOpcode::G_FFLOOR:
    return legalizeFFloor(MI, MRI, B);
  case TargetOpcode::G_BUILD_VECTOR:
    return legalizeBuildVector(MI, MRI, B);
  default:
    return false;
  }

  llvm_unreachable("expected switch to return");
}

Register AMDGPULegalizerInfo::getSegmentAperture(
  unsigned AS,
  MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const LLT S32 = LLT::scalar(32);

  assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);

  if (ST.hasApertureRegs()) {
    // FIXME: Use inline constants (src_{shared, private}_base) instead of
    // getreg.
    unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
        AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
        AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
    unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
        AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
        AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
    unsigned Encoding =
        AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
        Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
        WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;

    Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);

    B.buildInstr(AMDGPU::S_GETREG_B32)
      .addDef(GetReg)
      .addImm(Encoding);
    MRI.setType(GetReg, S32);

    auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
    return B.buildShl(S32, GetReg, ShiftAmt).getReg(0);
  }

  Register QueuePtr = MRI.createGenericVirtualRegister(
    LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));

  if (!loadInputValue(QueuePtr, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
    return Register();

  // Offset into amd_queue_t for group_segment_aperture_base_hi /
  // private_segment_aperture_base_hi.
  uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;

  // TODO: can we be smarter about machine pointer info?
  MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      PtrInfo,
      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
          MachineMemOperand::MOInvariant,
      4, commonAlignment(Align(64), StructOffset));

  Register LoadAddr;

  B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
  return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
}

bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();

  const LLT S32 = LLT::scalar(32);
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  LLT DstTy = MRI.getType(Dst);
  LLT SrcTy = MRI.getType(Src);
  unsigned DestAS = DstTy.getAddressSpace();
  unsigned SrcAS = SrcTy.getAddressSpace();

  // TODO: Avoid reloading from the queue ptr for each cast, or at least each
  // vector element.
  assert(!DstTy.isVector());

  const AMDGPUTargetMachine &TM
    = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());

  if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
    MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
    return true;
  }

  if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    // Truncate.
    B.buildExtract(Dst, Src, 0);
    MI.eraseFromParent();
    return true;
  }

  if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
    uint32_t AddrHiVal = Info->get32BitAddressHighBits();

    // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
    // another. Merge operands are required to be the same type, but creating an
    // extra ptrtoint would be kind of pointless.
    auto HighAddr = B.buildConstant(
      LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
    B.buildMerge(Dst, {Src, HighAddr});
    MI.eraseFromParent();
    return true;
  }

  if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
    assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
           DestAS == AMDGPUAS::PRIVATE_ADDRESS);
    unsigned NullVal = TM.getNullPointerValue(DestAS);

    auto SegmentNull = B.buildConstant(DstTy, NullVal);
    auto FlatNull = B.buildConstant(SrcTy, 0);

    // Extract low 32-bits of the pointer.
    auto PtrLo32 = B.buildExtract(DstTy, Src, 0);

    auto CmpRes =
        B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0));
    B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));

    MI.eraseFromParent();
    return true;
  }

  if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
    return false;

  if (!ST.hasFlatAddressSpace())
    return false;

  auto SegmentNull =
      B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
  auto FlatNull =
      B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));

  Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
  if (!ApertureReg.isValid())
    return false;

  auto CmpRes =
      B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0));

  // Coerce the type of the low half of the result so we can use merge_values.
  Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0);

  // TODO: Should we allow mismatched types but matching sizes in merges to
  // avoid the ptrtoint?
  auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg});
  B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFrint(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  Register Src = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(Src);
  assert(Ty.isScalar() && Ty.getSizeInBits() == 64);

  APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
  APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");

  auto C1 = B.buildFConstant(Ty, C1Val);
  auto CopySign = B.buildFCopysign(Ty, C1, Src);

  // TODO: Should this propagate fast-math-flags?
  auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
  auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);

  auto C2 = B.buildFConstant(Ty, C2Val);
  auto Fabs = B.buildFAbs(Ty, Src);

  auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
  B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFceil(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {

  const LLT S1 = LLT::scalar(1);
  const LLT S64 = LLT::scalar(64);

  Register Src = MI.getOperand(1).getReg();
  assert(MRI.getType(Src) == S64);

  // result = trunc(src)
  // if (src > 0.0 && src != result)
  //   result += 1.0

  auto Trunc = B.buildIntrinsicTrunc(S64, Src);

  const auto Zero = B.buildFConstant(S64, 0.0);
  const auto One = B.buildFConstant(S64, 1.0);
  auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
  auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
  auto And = B.buildAnd(S1, Lt0, NeTrunc);
  auto Add = B.buildSelect(S64, And, One, Zero);

  // TODO: Should this propagate fast-math-flags?
  B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
  return true;
}

bool AMDGPULegalizerInfo::legalizeFrem(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
    Register DstReg = MI.getOperand(0).getReg();
    Register Src0Reg = MI.getOperand(1).getReg();
    Register Src1Reg = MI.getOperand(2).getReg();
    auto Flags = MI.getFlags();
    LLT Ty = MRI.getType(DstReg);

    auto Div = B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
    auto Trunc = B.buildIntrinsicTrunc(Ty, Div, Flags);
    auto Neg = B.buildFNeg(Ty, Trunc, Flags);
    B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
    MI.eraseFromParent();
    return true;
}

static MachineInstrBuilder extractF64Exponent(Register Hi,
                                              MachineIRBuilder &B) {
  const unsigned FractBits = 52;
  const unsigned ExpBits = 11;
  LLT S32 = LLT::scalar(32);

  auto Const0 = B.buildConstant(S32, FractBits - 32);
  auto Const1 = B.buildConstant(S32, ExpBits);

  auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
    .addUse(Hi)
    .addUse(Const0.getReg(0))
    .addUse(Const1.getReg(0));

  return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
}

bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  const LLT S1 = LLT::scalar(1);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);

  Register Src = MI.getOperand(1).getReg();
  assert(MRI.getType(Src) == S64);

  // TODO: Should this use extract since the low half is unused?
  auto Unmerge = B.buildUnmerge({S32, S32}, Src);
  Register Hi = Unmerge.getReg(1);

  // Extract the upper half, since this is where we will find the sign and
  // exponent.
  auto Exp = extractF64Exponent(Hi, B);

  const unsigned FractBits = 52;

  // Extract the sign bit.
  const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
  auto SignBit = B.buildAnd(S32, Hi, SignBitMask);

  const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);

  const auto Zero32 = B.buildConstant(S32, 0);

  // Extend back to 64-bits.
  auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit});

  auto Shr = B.buildAShr(S64, FractMask, Exp);
  auto Not = B.buildNot(S64, Shr);
  auto Tmp0 = B.buildAnd(S64, Src, Not);
  auto FiftyOne = B.buildConstant(S32, FractBits - 1);

  auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
  auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);

  auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
  B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeITOFP(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B, bool Signed) const {

  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  const LLT S64 = LLT::scalar(64);
  const LLT S32 = LLT::scalar(32);

  assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);

  auto Unmerge = B.buildUnmerge({S32, S32}, Src);

  auto CvtHi = Signed ?
    B.buildSITOFP(S64, Unmerge.getReg(1)) :
    B.buildUITOFP(S64, Unmerge.getReg(1));

  auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));

  auto ThirtyTwo = B.buildConstant(S32, 32);
  auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
    .addUse(CvtHi.getReg(0))
    .addUse(ThirtyTwo.getReg(0));

  // TODO: Should this propagate fast-math-flags?
  B.buildFAdd(Dst, LdExp, CvtLo);
  MI.eraseFromParent();
  return true;
}

// TODO: Copied from DAG implementation. Verify logic and document how this
// actually works.
bool AMDGPULegalizerInfo::legalizeFPTOI(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B, bool Signed) const {

  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  const LLT S64 = LLT::scalar(64);
  const LLT S32 = LLT::scalar(32);

  assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);

  unsigned Flags = MI.getFlags();

  auto Trunc = B.buildIntrinsicTrunc(S64, Src, Flags);
  auto K0 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0x3df0000000000000)));
  auto K1 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0xc1f0000000000000)));

  auto Mul = B.buildFMul(S64, Trunc, K0, Flags);
  auto FloorMul = B.buildFFloor(S64, Mul, Flags);
  auto Fma = B.buildFMA(S64, FloorMul, K1, Trunc, Flags);

  auto Hi = Signed ?
    B.buildFPTOSI(S32, FloorMul) :
    B.buildFPTOUI(S32, FloorMul);
  auto Lo = B.buildFPTOUI(S32, Fma);

  B.buildMerge(Dst, { Lo, Hi });
  MI.eraseFromParent();

  return true;
}

bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper,
                                               MachineInstr &MI) const {
  MachineFunction &MF = Helper.MIRBuilder.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
                        MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;

  // With ieee_mode disabled, the instructions have the correct behavior
  // already for G_FMINNUM/G_FMAXNUM
  if (!MFI->getMode().IEEE)
    return !IsIEEEOp;

  if (IsIEEEOp)
    return true;

  return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
}

bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  // TODO: Should move some of this into LegalizerHelper.

  // TODO: Promote dynamic indexing of s16 to s32

  // FIXME: Artifact combiner probably should have replaced the truncated
  // constant before this, so we shouldn't need
  // getConstantVRegValWithLookThrough.
  Optional<ValueAndVReg> MaybeIdxVal =
      getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
  if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
    return true;
  const int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();

  Register Dst = MI.getOperand(0).getReg();
  Register Vec = MI.getOperand(1).getReg();

  LLT VecTy = MRI.getType(Vec);
  LLT EltTy = VecTy.getElementType();
  assert(EltTy == MRI.getType(Dst));

  if (IdxVal < VecTy.getNumElements())
    B.buildExtract(Dst, Vec, IdxVal * EltTy.getSizeInBits());
  else
    B.buildUndef(Dst);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  // TODO: Should move some of this into LegalizerHelper.

  // TODO: Promote dynamic indexing of s16 to s32

  // FIXME: Artifact combiner probably should have replaced the truncated
  // constant before this, so we shouldn't need
  // getConstantVRegValWithLookThrough.
  Optional<ValueAndVReg> MaybeIdxVal =
      getConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
  if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
    return true;

  int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
  Register Dst = MI.getOperand(0).getReg();
  Register Vec = MI.getOperand(1).getReg();
  Register Ins = MI.getOperand(2).getReg();

  LLT VecTy = MRI.getType(Vec);
  LLT EltTy = VecTy.getElementType();
  assert(EltTy == MRI.getType(Ins));

  if (IdxVal < VecTy.getNumElements())
    B.buildInsert(Dst, Vec, Ins, IdxVal * EltTy.getSizeInBits());
  else
    B.buildUndef(Dst);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeShuffleVector(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  const LLT V2S16 = LLT::vector(2, 16);

  Register Dst = MI.getOperand(0).getReg();
  Register Src0 = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(Dst);
  LLT SrcTy = MRI.getType(Src0);

  if (SrcTy == V2S16 && DstTy == V2S16 &&
      AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask()))
    return true;

  MachineIRBuilder HelperBuilder(MI);
  GISelObserverWrapper DummyObserver;
  LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder);
  return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized;
}

bool AMDGPULegalizerInfo::legalizeSinCos(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {

  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(DstReg);
  unsigned Flags = MI.getFlags();

  Register TrigVal;
  auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi);
  if (ST.hasTrigReducedRange()) {
    auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
    TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
      .addUse(MulVal.getReg(0))
      .setMIFlags(Flags).getReg(0);
  } else
    TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);

  Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
    Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
  B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
    .addUse(TrigVal)
    .setMIFlags(Flags);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy,
                                                  MachineIRBuilder &B,
                                                  const GlobalValue *GV,
                                                  int64_t Offset,
                                                  unsigned GAFlags) const {
  assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
  // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
  // to the following code sequence:
  //
  // For constant address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol
  //   s_addc_u32 s1, s1, 0
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   a fixup or relocation is emitted to replace $symbol with a literal
  //   constant, which is a pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // For global address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
  //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   fixups or relocations are emitted to replace $symbol@*@lo and
  //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
  //   which is a 64-bit pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // What we want here is an offset from the value returned by s_getpc
  // (which is the address of the s_add_u32 instruction) to the global
  // variable, but since the encoding of $symbol starts 4 bytes after the start
  // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
  // small. This requires us to add 4 to the global variable offset in order to
  // compute the correct address. Similarly for the s_addc_u32 instruction, the
  // encoding of $symbol starts 12 bytes after the start of the s_add_u32
  // instruction.

  LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);

  Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
    B.getMRI()->createGenericVirtualRegister(ConstPtrTy);

  MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
    .addDef(PCReg);

  MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
  if (GAFlags == SIInstrInfo::MO_NONE)
    MIB.addImm(0);
  else
    MIB.addGlobalAddress(GV, Offset + 12, GAFlags + 1);

  B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);

  if (PtrTy.getSizeInBits() == 32)
    B.buildExtract(DstReg, PCReg, 0);
  return true;
 }

bool AMDGPULegalizerInfo::legalizeGlobalValue(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  Register DstReg = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(DstReg);
  unsigned AS = Ty.getAddressSpace();

  const GlobalValue *GV = MI.getOperand(1).getGlobal();
  MachineFunction &MF = B.getMF();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
    if (!MFI->isModuleEntryFunction()) {
      const Function &Fn = MF.getFunction();
      DiagnosticInfoUnsupported BadLDSDecl(
        Fn, "local memory global used by non-kernel function", MI.getDebugLoc(),
        DS_Warning);
      Fn.getContext().diagnose(BadLDSDecl);

      // We currently don't have a way to correctly allocate LDS objects that
      // aren't directly associated with a kernel. We do force inlining of
      // functions that use local objects. However, if these dead functions are
      // not eliminated, we don't want a compile time error. Just emit a warning
      // and a trap, since there should be no callable path here.
      B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
      B.buildUndef(DstReg);
      MI.eraseFromParent();
      return true;
    }

    // TODO: We could emit code to handle the initialization somewhere.
    if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) {
      const SITargetLowering *TLI = ST.getTargetLowering();
      if (!TLI->shouldUseLDSConstAddress(GV)) {
        MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO);
        return true; // Leave in place;
      }

      if (AS == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) {
        Type *Ty = GV->getValueType();
        // HIP uses an unsized array `extern __shared__ T s[]` or similar
        // zero-sized type in other languages to declare the dynamic shared
        // memory which size is not known at the compile time. They will be
        // allocated by the runtime and placed directly after the static
        // allocated ones. They all share the same offset.
        if (B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
          // Adjust alignment for that dynamic shared memory array.
          MFI->setDynLDSAlign(B.getDataLayout(), *cast<GlobalVariable>(GV));
          LLT S32 = LLT::scalar(32);
          auto Sz =
              B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {S32}, false);
          B.buildIntToPtr(DstReg, Sz);
          MI.eraseFromParent();
          return true;
        }
      }

      B.buildConstant(
          DstReg,
          MFI->allocateLDSGlobal(B.getDataLayout(), *cast<GlobalVariable>(GV)));
      MI.eraseFromParent();
      return true;
    }

    const Function &Fn = MF.getFunction();
    DiagnosticInfoUnsupported BadInit(
      Fn, "unsupported initializer for address space", MI.getDebugLoc());
    Fn.getContext().diagnose(BadInit);
    return true;
  }

  const SITargetLowering *TLI = ST.getTargetLowering();

  if (TLI->shouldEmitFixup(GV)) {
    buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
    MI.eraseFromParent();
    return true;
  }

  if (TLI->shouldEmitPCReloc(GV)) {
    buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
    MI.eraseFromParent();
    return true;
  }

  LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
  Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);

  MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
      MachinePointerInfo::getGOT(MF),
      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
          MachineMemOperand::MOInvariant,
      8 /*Size*/, Align(8));

  buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);

  if (Ty.getSizeInBits() == 32) {
    // Truncate if this is a 32-bit constant adrdess.
    auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
    B.buildExtract(DstReg, Load, 0);
  } else
    B.buildLoad(DstReg, GOTAddr, *GOTMMO);

  MI.eraseFromParent();
  return true;
}

static LLT widenToNextPowerOf2(LLT Ty) {
  if (Ty.isVector())
    return Ty.changeNumElements(PowerOf2Ceil(Ty.getNumElements()));
  return LLT::scalar(PowerOf2Ceil(Ty.getSizeInBits()));
}

bool AMDGPULegalizerInfo::legalizeLoad(LegalizerHelper &Helper,
                                       MachineInstr &MI) const {
  MachineIRBuilder &B = Helper.MIRBuilder;
  MachineRegisterInfo &MRI = *B.getMRI();
  GISelChangeObserver &Observer = Helper.Observer;

  Register PtrReg = MI.getOperand(1).getReg();
  LLT PtrTy = MRI.getType(PtrReg);
  unsigned AddrSpace = PtrTy.getAddressSpace();

  if (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
    auto Cast = B.buildAddrSpaceCast(ConstPtr, PtrReg);
    Observer.changingInstr(MI);
    MI.getOperand(1).setReg(Cast.getReg(0));
    Observer.changedInstr(MI);
    return true;
  }

  Register ValReg = MI.getOperand(0).getReg();
  LLT ValTy = MRI.getType(ValReg);

  MachineMemOperand *MMO = *MI.memoperands_begin();
  const unsigned ValSize = ValTy.getSizeInBits();
  const unsigned MemSize = 8 * MMO->getSize();
  const Align MemAlign = MMO->getAlign();
  const unsigned AlignInBits = 8 * MemAlign.value();

  // Widen non-power-of-2 loads to the alignment if needed
  if (shouldWidenLoad(ST, MemSize, AlignInBits, AddrSpace, MI.getOpcode())) {
    const unsigned WideMemSize = PowerOf2Ceil(MemSize);

    // This was already the correct extending load result type, so just adjust
    // the memory type.
    if (WideMemSize == ValSize) {
      MachineFunction &MF = B.getMF();

      MachineMemOperand *WideMMO =
          MF.getMachineMemOperand(MMO, 0, WideMemSize / 8);
      Observer.changingInstr(MI);
      MI.setMemRefs(MF, {WideMMO});
      Observer.changedInstr(MI);
      return true;
    }

    // Don't bother handling edge case that should probably never be produced.
    if (ValSize > WideMemSize)
      return false;

    LLT WideTy = widenToNextPowerOf2(ValTy);

    Register WideLoad;
    if (!WideTy.isVector()) {
      WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
      B.buildTrunc(ValReg, WideLoad).getReg(0);
    } else {
      // Extract the subvector.

      if (isRegisterType(ValTy)) {
        // If this a case where G_EXTRACT is legal, use it.
        // (e.g. <3 x s32> -> <4 x s32>)
        WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
        B.buildExtract(ValReg, WideLoad, 0);
      } else {
        // For cases where the widened type isn't a nice register value, unmerge
        // from a widened register (e.g. <3 x s16> -> <4 x s16>)
        B.setInsertPt(B.getMBB(), ++B.getInsertPt());
        WideLoad = Helper.widenWithUnmerge(WideTy, ValReg);
        B.setInsertPt(B.getMBB(), MI.getIterator());
        B.buildLoadFromOffset(WideLoad, PtrReg, *MMO, 0);
      }
    }

    MI.eraseFromParent();
    return true;
  }

  return false;
}

bool AMDGPULegalizerInfo::legalizeFMad(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  assert(Ty.isScalar());

  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  // TODO: Always legal with future ftz flag.
  // FIXME: Do we need just output?
  if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals())
    return true;
  if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals())
    return true;

  MachineIRBuilder HelperBuilder(MI);
  GISelObserverWrapper DummyObserver;
  LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
  return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
}

bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
  MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
  Register DstReg = MI.getOperand(0).getReg();
  Register PtrReg = MI.getOperand(1).getReg();
  Register CmpVal = MI.getOperand(2).getReg();
  Register NewVal = MI.getOperand(3).getReg();

  assert(AMDGPU::isFlatGlobalAddrSpace(MRI.getType(PtrReg).getAddressSpace()) &&
         "this should not have been custom lowered");

  LLT ValTy = MRI.getType(CmpVal);
  LLT VecTy = LLT::vector(2, ValTy);

  Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);

  B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
    .addDef(DstReg)
    .addUse(PtrReg)
    .addUse(PackedVal)
    .setMemRefs(MI.memoperands());

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFlog(
  MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const {
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();
  LLT Ty = B.getMRI()->getType(Dst);
  unsigned Flags = MI.getFlags();

  auto Log2Operand = B.buildFLog2(Ty, Src, Flags);
  auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted);

  B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI,
                                       MachineIRBuilder &B) const {
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();
  unsigned Flags = MI.getFlags();
  LLT Ty = B.getMRI()->getType(Dst);

  auto K = B.buildFConstant(Ty, numbers::log2e);
  auto Mul = B.buildFMul(Ty, Src, K, Flags);
  B.buildFExp2(Dst, Mul, Flags);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI,
                                       MachineIRBuilder &B) const {
  Register Dst = MI.getOperand(0).getReg();
  Register Src0 = MI.getOperand(1).getReg();
  Register Src1 = MI.getOperand(2).getReg();
  unsigned Flags = MI.getFlags();
  LLT Ty = B.getMRI()->getType(Dst);
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);

  if (Ty == S32) {
    auto Log = B.buildFLog2(S32, Src0, Flags);
    auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
      .addUse(Log.getReg(0))
      .addUse(Src1)
      .setMIFlags(Flags);
    B.buildFExp2(Dst, Mul, Flags);
  } else if (Ty == S16) {
    // There's no f16 fmul_legacy, so we need to convert for it.
    auto Log = B.buildFLog2(S16, Src0, Flags);
    auto Ext0 = B.buildFPExt(S32, Log, Flags);
    auto Ext1 = B.buildFPExt(S32, Src1, Flags);
    auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
      .addUse(Ext0.getReg(0))
      .addUse(Ext1.getReg(0))
      .setMIFlags(Flags);

    B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags);
  } else
    return false;

  MI.eraseFromParent();
  return true;
}

// Find a source register, ignoring any possible source modifiers.
static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) {
  Register ModSrc = OrigSrc;
  if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) {
    ModSrc = SrcFNeg->getOperand(1).getReg();
    if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
      ModSrc = SrcFAbs->getOperand(1).getReg();
  } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
    ModSrc = SrcFAbs->getOperand(1).getReg();
  return ModSrc;
}

bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {

  const LLT S1 = LLT::scalar(1);
  const LLT S64 = LLT::scalar(64);
  Register Dst = MI.getOperand(0).getReg();
  Register OrigSrc = MI.getOperand(1).getReg();
  unsigned Flags = MI.getFlags();
  assert(ST.hasFractBug() && MRI.getType(Dst) == S64 &&
         "this should not have been custom lowered");

  // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x))
  // is used instead. However, SI doesn't have V_FLOOR_F64, so the most
  // efficient way to implement it is using V_FRACT_F64. The workaround for the
  // V_FRACT bug is:
  //    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
  //
  // Convert floor(x) to (x - fract(x))

  auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false)
    .addUse(OrigSrc)
    .setMIFlags(Flags);

  // Give source modifier matching some assistance before obscuring a foldable
  // pattern.

  // TODO: We can avoid the neg on the fract? The input sign to fract
  // shouldn't matter?
  Register ModSrc = stripAnySourceMods(OrigSrc, MRI);

  auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff));

  Register Min = MRI.createGenericVirtualRegister(S64);

  // We don't need to concern ourselves with the snan handling difference, so
  // use the one which will directly select.
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  if (MFI->getMode().IEEE)
    B.buildFMinNumIEEE(Min, Fract, Const, Flags);
  else
    B.buildFMinNum(Min, Fract, Const, Flags);

  Register CorrectedFract = Min;
  if (!MI.getFlag(MachineInstr::FmNoNans)) {
    auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags);
    CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0);
  }

  auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags);
  B.buildFAdd(Dst, OrigSrc, NegFract, Flags);

  MI.eraseFromParent();
  return true;
}

// Turn an illegal packed v2s16 build vector into bit operations.
// TODO: This should probably be a bitcast action in LegalizerHelper.
bool AMDGPULegalizerInfo::legalizeBuildVector(
  MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
  Register Dst = MI.getOperand(0).getReg();
  const LLT S32 = LLT::scalar(32);
  assert(MRI.getType(Dst) == LLT::vector(2, 16));

  Register Src0 = MI.getOperand(1).getReg();
  Register Src1 = MI.getOperand(2).getReg();
  assert(MRI.getType(Src0) == LLT::scalar(16));

  auto Merge = B.buildMerge(S32, {Src0, Src1});
  B.buildBitcast(Dst, Merge);

  MI.eraseFromParent();
  return true;
}

// Check that this is a G_XOR x, -1
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI) {
  if (MI.getOpcode() != TargetOpcode::G_XOR)
    return false;
  auto ConstVal = getConstantVRegSExtVal(MI.getOperand(2).getReg(), MRI);
  return ConstVal && *ConstVal == -1;
}

// Return the use branch instruction, otherwise null if the usage is invalid.
static MachineInstr *
verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br,
                  MachineBasicBlock *&UncondBrTarget, bool &Negated) {
  Register CondDef = MI.getOperand(0).getReg();
  if (!MRI.hasOneNonDBGUse(CondDef))
    return nullptr;

  MachineBasicBlock *Parent = MI.getParent();
  MachineInstr *UseMI = &*MRI.use_instr_nodbg_begin(CondDef);

  if (isNot(MRI, *UseMI)) {
    Register NegatedCond = UseMI->getOperand(0).getReg();
    if (!MRI.hasOneNonDBGUse(NegatedCond))
      return nullptr;

    // We're deleting the def of this value, so we need to remove it.
    UseMI->eraseFromParent();

    UseMI = &*MRI.use_instr_nodbg_begin(NegatedCond);
    Negated = true;
  }

  if (UseMI->getParent() != Parent || UseMI->getOpcode() != AMDGPU::G_BRCOND)
    return nullptr;

  // Make sure the cond br is followed by a G_BR, or is the last instruction.
  MachineBasicBlock::iterator Next = std::next(UseMI->getIterator());
  if (Next == Parent->end()) {
    MachineFunction::iterator NextMBB = std::next(Parent->getIterator());
    if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use.
      return nullptr;
    UncondBrTarget = &*NextMBB;
  } else {
    if (Next->getOpcode() != AMDGPU::G_BR)
      return nullptr;
    Br = &*Next;
    UncondBrTarget = Br->getOperand(0).getMBB();
  }

  return UseMI;
}

bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
                                         const ArgDescriptor *Arg,
                                         const TargetRegisterClass *ArgRC,
                                         LLT ArgTy) const {
  MCRegister SrcReg = Arg->getRegister();
  assert(Register::isPhysicalRegister(SrcReg) && "Physical register expected");
  assert(DstReg.isVirtual() && "Virtual register expected");

  Register LiveIn = getFunctionLiveInPhysReg(B.getMF(), B.getTII(), SrcReg, *ArgRC,
                                             ArgTy);
  if (Arg->isMasked()) {
    // TODO: Should we try to emit this once in the entry block?
    const LLT S32 = LLT::scalar(32);
    const unsigned Mask = Arg->getMask();
    const unsigned Shift = countTrailingZeros<unsigned>(Mask);

    Register AndMaskSrc = LiveIn;

    if (Shift != 0) {
      auto ShiftAmt = B.buildConstant(S32, Shift);
      AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
    }

    B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
  } else {
    B.buildCopy(DstReg, LiveIn);
  }

  return true;
}

bool AMDGPULegalizerInfo::loadInputValue(
    Register DstReg, MachineIRBuilder &B,
    AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  const ArgDescriptor *Arg;
  const TargetRegisterClass *ArgRC;
  LLT ArgTy;
  std::tie(Arg, ArgRC, ArgTy) = MFI->getPreloadedValue(ArgType);

  if (!Arg->isRegister() || !Arg->getRegister().isValid())
    return false; // TODO: Handle these
  return loadInputValue(DstReg, B, Arg, ArgRC, ArgTy);
}

bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
    MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
    AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
  if (!loadInputValue(MI.getOperand(0).getReg(), B, ArgType))
    return false;

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
                                       MachineRegisterInfo &MRI,
                                       MachineIRBuilder &B) const {
  Register Dst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(Dst);
  LLT S16 = LLT::scalar(16);
  LLT S32 = LLT::scalar(32);
  LLT S64 = LLT::scalar(64);

  if (DstTy == S16)
    return legalizeFDIV16(MI, MRI, B);
  if (DstTy == S32)
    return legalizeFDIV32(MI, MRI, B);
  if (DstTy == S64)
    return legalizeFDIV64(MI, MRI, B);

  return false;
}

void AMDGPULegalizerInfo::legalizeUDIV_UREM32Impl(MachineIRBuilder &B,
                                                  Register DstReg,
                                                  Register X,
                                                  Register Y,
                                                  bool IsDiv) const {
  const LLT S1 = LLT::scalar(1);
  const LLT S32 = LLT::scalar(32);

  // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
  // algorithm used here.

  // Initial estimate of inv(y).
  auto FloatY = B.buildUITOFP(S32, Y);
  auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {FloatY});
  auto Scale = B.buildFConstant(S32, BitsToFloat(0x4f7ffffe));
  auto ScaledY = B.buildFMul(S32, RcpIFlag, Scale);
  auto Z = B.buildFPTOUI(S32, ScaledY);

  // One round of UNR.
  auto NegY = B.buildSub(S32, B.buildConstant(S32, 0), Y);
  auto NegYZ = B.buildMul(S32, NegY, Z);
  Z = B.buildAdd(S32, Z, B.buildUMulH(S32, Z, NegYZ));

  // Quotient/remainder estimate.
  auto Q = B.buildUMulH(S32, X, Z);
  auto R = B.buildSub(S32, X, B.buildMul(S32, Q, Y));

  // First quotient/remainder refinement.
  auto One = B.buildConstant(S32, 1);
  auto Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
  if (IsDiv)
    Q = B.buildSelect(S32, Cond, B.buildAdd(S32, Q, One), Q);
  R = B.buildSelect(S32, Cond, B.buildSub(S32, R, Y), R);

  // Second quotient/remainder refinement.
  Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
  if (IsDiv)
    B.buildSelect(DstReg, Cond, B.buildAdd(S32, Q, One), Q);
  else
    B.buildSelect(DstReg, Cond, B.buildSub(S32, R, Y), R);
}

bool AMDGPULegalizerInfo::legalizeUDIV_UREM32(MachineInstr &MI,
                                              MachineRegisterInfo &MRI,
                                              MachineIRBuilder &B) const {
  const bool IsDiv = MI.getOpcode() == AMDGPU::G_UDIV;
  Register DstReg = MI.getOperand(0).getReg();
  Register Num = MI.getOperand(1).getReg();
  Register Den = MI.getOperand(2).getReg();
  legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsDiv);
  MI.eraseFromParent();
  return true;
}

// Build integer reciprocal sequence arounud V_RCP_IFLAG_F32
//
// Return lo, hi of result
//
// %cvt.lo = G_UITOFP Val.lo
// %cvt.hi = G_UITOFP Val.hi
// %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo
// %rcp = G_AMDGPU_RCP_IFLAG %mad
// %mul1 = G_FMUL %rcp, 0x5f7ffffc
// %mul2 = G_FMUL %mul1, 2**(-32)
// %trunc = G_INTRINSIC_TRUNC %mul2
// %mad2 = G_FMAD %trunc, -(2**32), %mul1
// return {G_FPTOUI %mad2, G_FPTOUI %trunc}
static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B,
                                                       Register Val) {
  const LLT S32 = LLT::scalar(32);
  auto Unmerge = B.buildUnmerge(S32, Val);

  auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0));
  auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1));

  auto Mad = B.buildFMAD(S32, CvtHi, // 2**32
                         B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo);

  auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad});
  auto Mul1 =
      B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc)));

  // 2**(-32)
  auto Mul2 =
      B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000)));
  auto Trunc = B.buildIntrinsicTrunc(S32, Mul2);

  // -(2**32)
  auto Mad2 = B.buildFMAD(S32, Trunc,
                          B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1);

  auto ResultLo = B.buildFPTOUI(S32, Mad2);
  auto ResultHi = B.buildFPTOUI(S32, Trunc);

  return {ResultLo.getReg(0), ResultHi.getReg(0)};
}

void AMDGPULegalizerInfo::legalizeUDIV_UREM64Impl(MachineIRBuilder &B,
                                                  Register DstReg,
                                                  Register Numer,
                                                  Register Denom,
                                                  bool IsDiv) const {
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);
  const LLT S1 = LLT::scalar(1);
  Register RcpLo, RcpHi;

  std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom);

  auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi});

  auto Zero64 = B.buildConstant(S64, 0);
  auto NegDenom = B.buildSub(S64, Zero64, Denom);

  auto MulLo1 = B.buildMul(S64, NegDenom, Rcp);
  auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1);

  auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1);
  Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
  Register MulHi1_Hi = UnmergeMulHi1.getReg(1);

  auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo);
  auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
  auto Add1_HiNc = B.buildAdd(S32, RcpHi, MulHi1_Hi);
  auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi});

  auto MulLo2 = B.buildMul(S64, NegDenom, Add1);
  auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2);
  auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2);
  Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
  Register MulHi2_Hi = UnmergeMulHi2.getReg(1);

  auto Zero32 = B.buildConstant(S32, 0);
  auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo);
  auto Add2_HiC =
      B.buildUAdde(S32, S1, Add1_HiNc, MulHi2_Hi, Add1_Lo.getReg(1));
  auto Add2_Hi = B.buildUAdde(S32, S1, Add2_HiC, Zero32, Add2_Lo.getReg(1));
  auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi});

  auto UnmergeNumer = B.buildUnmerge(S32, Numer);
  Register NumerLo = UnmergeNumer.getReg(0);
  Register NumerHi = UnmergeNumer.getReg(1);

  auto MulHi3 = B.buildUMulH(S64, Numer, Add2);
  auto Mul3 = B.buildMul(S64, Denom, MulHi3);
  auto UnmergeMul3 = B.buildUnmerge(S32, Mul3);
  Register Mul3_Lo = UnmergeMul3.getReg(0);
  Register Mul3_Hi = UnmergeMul3.getReg(1);
  auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo);
  auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
  auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi);
  auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi});

  auto UnmergeDenom = B.buildUnmerge(S32, Denom);
  Register DenomLo = UnmergeDenom.getReg(0);
  Register DenomHi = UnmergeDenom.getReg(1);

  auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi);
  auto C1 = B.buildSExt(S32, CmpHi);

  auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo);
  auto C2 = B.buildSExt(S32, CmpLo);

  auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi);
  auto C3 = B.buildSelect(S32, CmpEq, C2, C1);

  // TODO: Here and below portions of the code can be enclosed into if/endif.
  // Currently control flow is unconditional and we have 4 selects after
  // potential endif to substitute PHIs.

  // if C3 != 0 ...
  auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo);
  auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
  auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
  auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi});

  auto One64 = B.buildConstant(S64, 1);
  auto Add3 = B.buildAdd(S64, MulHi3, One64);

  auto C4 =
      B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi));
  auto C5 =
      B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo));
  auto C6 = B.buildSelect(
      S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4);

  // if (C6 != 0)
  auto Add4 = B.buildAdd(S64, Add3, One64);
  auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo);

  auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
  auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
  auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi});

  // endif C6
  // endif C3

  if (IsDiv) {
    auto Sel1 = B.buildSelect(
        S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3);
    B.buildSelect(DstReg,
                  B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel1, MulHi3);
  } else {
    auto Sel2 = B.buildSelect(
        S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2);
    B.buildSelect(DstReg,
                  B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel2, Sub1);
  }
}

bool AMDGPULegalizerInfo::legalizeUDIV_UREM(MachineInstr &MI,
                                            MachineRegisterInfo &MRI,
                                            MachineIRBuilder &B) const {
  const LLT S64 = LLT::scalar(64);
  const LLT S32 = LLT::scalar(32);
  const bool IsDiv = MI.getOpcode() == AMDGPU::G_UDIV;
  Register DstReg = MI.getOperand(0).getReg();
  Register Num = MI.getOperand(1).getReg();
  Register Den = MI.getOperand(2).getReg();
  LLT Ty = MRI.getType(DstReg);

  if (Ty == S32)
    legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsDiv);
  else if (Ty == S64)
    legalizeUDIV_UREM64Impl(B, DstReg, Num, Den, IsDiv);
  else
    return false;

  MI.eraseFromParent();
  return true;

}

bool AMDGPULegalizerInfo::legalizeSDIV_SREM(MachineInstr &MI,
                                            MachineRegisterInfo &MRI,
                                            MachineIRBuilder &B) const {
  const LLT S64 = LLT::scalar(64);
  const LLT S32 = LLT::scalar(32);

  Register DstReg = MI.getOperand(0).getReg();
  const LLT Ty = MRI.getType(DstReg);
  if (Ty != S32 && Ty != S64)
    return false;

  const bool IsDiv = MI.getOpcode() == AMDGPU::G_SDIV;

  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1);
  auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset);
  auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset);

  LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0);
  RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0);

  LHS = B.buildXor(Ty, LHS, LHSign).getReg(0);
  RHS = B.buildXor(Ty, RHS, RHSign).getReg(0);

  Register UDivRem = MRI.createGenericVirtualRegister(Ty);
  if (Ty == S32)
    legalizeUDIV_UREM32Impl(B, UDivRem, LHS, RHS, IsDiv);
  else
    legalizeUDIV_UREM64Impl(B, UDivRem, LHS, RHS, IsDiv);

  Register Sign;
  if (IsDiv)
    Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0);
  else
    Sign = LHSign.getReg(0); // Remainder sign is the same as LHS

  UDivRem = B.buildXor(Ty, UDivRem, Sign).getReg(0);
  B.buildSub(DstReg, UDivRem, Sign);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  uint16_t Flags = MI.getFlags();
  LLT ResTy = MRI.getType(Res);

  const MachineFunction &MF = B.getMF();
  bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
                            MI.getFlag(MachineInstr::FmAfn);

  if (!AllowInaccurateRcp)
    return false;

  if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
    // 1 / x -> RCP(x)
    if (CLHS->isExactlyValue(1.0)) {
      B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
        .addUse(RHS)
        .setMIFlags(Flags);

      MI.eraseFromParent();
      return true;
    }

    // -1 / x -> RCP( FNEG(x) )
    if (CLHS->isExactlyValue(-1.0)) {
      auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
      B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
        .addUse(FNeg.getReg(0))
        .setMIFlags(Flags);

      MI.eraseFromParent();
      return true;
    }
  }

  // x / y -> x * (1.0 / y)
  auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
    .addUse(RHS)
    .setMIFlags(Flags);
  B.buildFMul(Res, LHS, RCP, Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV64(MachineInstr &MI,
                                                   MachineRegisterInfo &MRI,
                                                   MachineIRBuilder &B) const {
  Register Res = MI.getOperand(0).getReg();
  Register X = MI.getOperand(1).getReg();
  Register Y = MI.getOperand(2).getReg();
  uint16_t Flags = MI.getFlags();
  LLT ResTy = MRI.getType(Res);

  const MachineFunction &MF = B.getMF();
  bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
                            MI.getFlag(MachineInstr::FmAfn);

  if (!AllowInaccurateRcp)
    return false;

  auto NegY = B.buildFNeg(ResTy, Y);
  auto One = B.buildFConstant(ResTy, 1.0);

  auto R = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
    .addUse(Y)
    .setMIFlags(Flags);

  auto Tmp0 = B.buildFMA(ResTy, NegY, R, One);
  R = B.buildFMA(ResTy, Tmp0, R, R);

  auto Tmp1 = B.buildFMA(ResTy, NegY, R, One);
  R = B.buildFMA(ResTy, Tmp1, R, R);

  auto Ret = B.buildFMul(ResTy, X, R);
  auto Tmp2 = B.buildFMA(ResTy, NegY, Ret, X);

  B.buildFMA(Res, Tmp2, R, Ret);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {
  if (legalizeFastUnsafeFDIV(MI, MRI, B))
    return true;

  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  uint16_t Flags = MI.getFlags();

  LLT S16 = LLT::scalar(16);
  LLT S32 = LLT::scalar(32);

  auto LHSExt = B.buildFPExt(S32, LHS, Flags);
  auto RHSExt = B.buildFPExt(S32, RHS, Flags);

  auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(RHSExt.getReg(0))
    .setMIFlags(Flags);

  auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
  auto RDst = B.buildFPTrunc(S16, QUOT, Flags);

  B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
    .addUse(RDst.getReg(0))
    .addUse(RHS)
    .addUse(LHS)
    .setMIFlags(Flags);

  MI.eraseFromParent();
  return true;
}

// Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
// to enable denorm mode. When 'Enable' is false, disable denorm mode.
static void toggleSPDenormMode(bool Enable,
                               MachineIRBuilder &B,
                               const GCNSubtarget &ST,
                               AMDGPU::SIModeRegisterDefaults Mode) {
  // Set SP denorm mode to this value.
  unsigned SPDenormMode =
    Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue();

  if (ST.hasDenormModeInst()) {
    // Preserve default FP64FP16 denorm mode while updating FP32 mode.
    uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue();

    uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
    B.buildInstr(AMDGPU::S_DENORM_MODE)
      .addImm(NewDenormModeValue);

  } else {
    // Select FP32 bit field in mode register.
    unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
                                    (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
                                    (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);

    B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
      .addImm(SPDenormMode)
      .addImm(SPDenormModeBitField);
  }
}

bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {
  if (legalizeFastUnsafeFDIV(MI, MRI, B))
    return true;

  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();

  uint16_t Flags = MI.getFlags();

  LLT S32 = LLT::scalar(32);
  LLT S1 = LLT::scalar(1);

  auto One = B.buildFConstant(S32, 1.0f);

  auto DenominatorScaled =
    B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
      .addUse(LHS)
      .addUse(RHS)
      .addImm(0)
      .setMIFlags(Flags);
  auto NumeratorScaled =
    B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
      .addUse(LHS)
      .addUse(RHS)
      .addImm(1)
      .setMIFlags(Flags);

  auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(DenominatorScaled.getReg(0))
    .setMIFlags(Flags);
  auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);

  // FIXME: Doesn't correctly model the FP mode switch, and the FP operations
  // aren't modeled as reading it.
  if (!Mode.allFP32Denormals())
    toggleSPDenormMode(true, B, ST, Mode);

  auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
  auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
  auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
  auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
  auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
  auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);

  if (!Mode.allFP32Denormals())
    toggleSPDenormMode(false, B, ST, Mode);

  auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
    .addUse(Fma4.getReg(0))
    .addUse(Fma1.getReg(0))
    .addUse(Fma3.getReg(0))
    .addUse(NumeratorScaled.getReg(1))
    .setMIFlags(Flags);

  B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
    .addUse(Fmas.getReg(0))
    .addUse(RHS)
    .addUse(LHS)
    .setMIFlags(Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {
  if (legalizeFastUnsafeFDIV64(MI, MRI, B))
    return true;

  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  uint16_t Flags = MI.getFlags();

  LLT S64 = LLT::scalar(64);
  LLT S1 = LLT::scalar(1);

  auto One = B.buildFConstant(S64, 1.0);

  auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
    .addUse(LHS)
    .addUse(RHS)
    .addImm(0)
    .setMIFlags(Flags);

  auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);

  auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
    .addUse(DivScale0.getReg(0))
    .setMIFlags(Flags);

  auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
  auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
  auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);

  auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
    .addUse(LHS)
    .addUse(RHS)
    .addImm(1)
    .setMIFlags(Flags);

  auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
  auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags);
  auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);

  Register Scale;
  if (!ST.hasUsableDivScaleConditionOutput()) {
    // Workaround a hardware bug on SI where the condition output from div_scale
    // is not usable.

    LLT S32 = LLT::scalar(32);

    auto NumUnmerge = B.buildUnmerge(S32, LHS);
    auto DenUnmerge = B.buildUnmerge(S32, RHS);
    auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
    auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);

    auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
                              Scale1Unmerge.getReg(1));
    auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
                              Scale0Unmerge.getReg(1));
    Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0);
  } else {
    Scale = DivScale1.getReg(1);
  }

  auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
    .addUse(Fma4.getReg(0))
    .addUse(Fma3.getReg(0))
    .addUse(Mul.getReg(0))
    .addUse(Scale)
    .setMIFlags(Flags);

  B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
    .addUse(Fmas.getReg(0))
    .addUse(RHS)
    .addUse(LHS)
    .setMIFlags(Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(2).getReg();
  Register RHS = MI.getOperand(3).getReg();
  uint16_t Flags = MI.getFlags();

  LLT S32 = LLT::scalar(32);
  LLT S1 = LLT::scalar(1);

  auto Abs = B.buildFAbs(S32, RHS, Flags);
  const APFloat C0Val(1.0f);

  auto C0 = B.buildConstant(S32, 0x6f800000);
  auto C1 = B.buildConstant(S32, 0x2f800000);
  auto C2 = B.buildConstant(S32, FloatToBits(1.0f));

  auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
  auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);

  auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);

  auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(Mul0.getReg(0))
    .setMIFlags(Flags);

  auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);

  B.buildFMul(Res, Sel, Mul1, Flags);

  MI.eraseFromParent();
  return true;
}

// Expand llvm.amdgcn.rsq.clamp on targets that don't support the instruction.
// FIXME: Why do we handle this one but not other removed instructions?
//
// Reciprocal square root.  The clamp prevents infinite results, clamping
// infinities to max_float.  D.f = 1.0 / sqrt(S0.f), result clamped to
// +-max_float.
bool AMDGPULegalizerInfo::legalizeRsqClampIntrinsic(MachineInstr &MI,
                                                    MachineRegisterInfo &MRI,
                                                    MachineIRBuilder &B) const {
  if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
    return true;

  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(2).getReg();
  auto Flags = MI.getFlags();

  LLT Ty = MRI.getType(Dst);

  const fltSemantics *FltSemantics;
  if (Ty == LLT::scalar(32))
    FltSemantics = &APFloat::IEEEsingle();
  else if (Ty == LLT::scalar(64))
    FltSemantics = &APFloat::IEEEdouble();
  else
    return false;

  auto Rsq = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty}, false)
    .addUse(Src)
    .setMIFlags(Flags);

  // We don't need to concern ourselves with the snan handling difference, since
  // the rsq quieted (or not) so use the one which will directly select.
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  const bool UseIEEE = MFI->getMode().IEEE;

  auto MaxFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics));
  auto ClampMax = UseIEEE ? B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
                            B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);

  auto MinFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics, true));

  if (UseIEEE)
    B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
  else
    B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
  MI.eraseFromParent();
  return true;
}

static unsigned getDSFPAtomicOpcode(Intrinsic::ID IID) {
  switch (IID) {
  case Intrinsic::amdgcn_ds_fadd:
    return AMDGPU::G_ATOMICRMW_FADD;
  case Intrinsic::amdgcn_ds_fmin:
    return AMDGPU::G_AMDGPU_ATOMIC_FMIN;
  case Intrinsic::amdgcn_ds_fmax:
    return AMDGPU::G_AMDGPU_ATOMIC_FMAX;
  default:
    llvm_unreachable("not a DS FP intrinsic");
  }
}

bool AMDGPULegalizerInfo::legalizeDSAtomicFPIntrinsic(LegalizerHelper &Helper,
                                                      MachineInstr &MI,
                                                      Intrinsic::ID IID) const {
  GISelChangeObserver &Observer = Helper.Observer;
  Observer.changingInstr(MI);

  MI.setDesc(ST.getInstrInfo()->get(getDSFPAtomicOpcode(IID)));

  // The remaining operands were used to set fields in the MemOperand on
  // construction.
  for (int I = 6; I > 3; --I)
    MI.RemoveOperand(I);

  MI.RemoveOperand(1); // Remove the intrinsic ID.
  Observer.changedInstr(MI);
  return true;
}

bool AMDGPULegalizerInfo::getImplicitArgPtr(Register DstReg,
                                            MachineRegisterInfo &MRI,
                                            MachineIRBuilder &B) const {
  uint64_t Offset =
    ST.getTargetLowering()->getImplicitParameterOffset(
      B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
  LLT DstTy = MRI.getType(DstReg);
  LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());

  Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
  if (!loadInputValue(KernargPtrReg, B,
                      AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
    return false;

  // FIXME: This should be nuw
  B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
  return true;
}

bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  if (!MFI->isEntryFunction()) {
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
  }

  Register DstReg = MI.getOperand(0).getReg();
  if (!getImplicitArgPtr(DstReg, MRI, B))
    return false;

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
                                              MachineRegisterInfo &MRI,
                                              MachineIRBuilder &B,
                                              unsigned AddrSpace) const {
  Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
  auto Unmerge = B.buildUnmerge(LLT::scalar(32), MI.getOperand(2).getReg());
  Register Hi32 = Unmerge.getReg(1);

  B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
  MI.eraseFromParent();
  return true;
}

// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
// offset (the offset that is included in bounds checking and swizzling, to be
// split between the instruction's voffset and immoffset fields) and soffset
// (the offset that is excluded from bounds checking and swizzling, to go in
// the instruction's soffset field).  This function takes the first kind of
// offset and figures out how to split it between voffset and immoffset.
std::tuple<Register, unsigned, unsigned>
AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B,
                                        Register OrigOffset) const {
  const unsigned MaxImm = 4095;
  Register BaseReg;
  unsigned TotalConstOffset;
  const LLT S32 = LLT::scalar(32);

  std::tie(BaseReg, TotalConstOffset) =
      AMDGPU::getBaseWithConstantOffset(*B.getMRI(), OrigOffset);

  unsigned ImmOffset = TotalConstOffset;

  // If the immediate value is too big for the immoffset field, put the value
  // and -4096 into the immoffset field so that the value that is copied/added
  // for the voffset field is a multiple of 4096, and it stands more chance
  // of being CSEd with the copy/add for another similar load/store.
  // However, do not do that rounding down to a multiple of 4096 if that is a
  // negative number, as it appears to be illegal to have a negative offset
  // in the vgpr, even if adding the immediate offset makes it positive.
  unsigned Overflow = ImmOffset & ~MaxImm;
  ImmOffset -= Overflow;
  if ((int32_t)Overflow < 0) {
    Overflow += ImmOffset;
    ImmOffset = 0;
  }

  if (Overflow != 0) {
    if (!BaseReg) {
      BaseReg = B.buildConstant(S32, Overflow).getReg(0);
    } else {
      auto OverflowVal = B.buildConstant(S32, Overflow);
      BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
    }
  }

  if (!BaseReg)
    BaseReg = B.buildConstant(S32, 0).getReg(0);

  return std::make_tuple(BaseReg, ImmOffset, TotalConstOffset);
}

/// Handle register layout difference for f16 images for some subtargets.
Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
                                             MachineRegisterInfo &MRI,
                                             Register Reg,
                                             bool ImageStore) const {
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  LLT StoreVT = MRI.getType(Reg);
  assert(StoreVT.isVector() && StoreVT.getElementType() == S16);

  if (ST.hasUnpackedD16VMem()) {
    auto Unmerge = B.buildUnmerge(S16, Reg);

    SmallVector<Register, 4> WideRegs;
    for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
      WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));

    int NumElts = StoreVT.getNumElements();

    return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0);
  }

  if (ImageStore && ST.hasImageStoreD16Bug()) {
    if (StoreVT.getNumElements() == 2) {
      SmallVector<Register, 4> PackedRegs;
      Reg = B.buildBitcast(S32, Reg).getReg(0);
      PackedRegs.push_back(Reg);
      PackedRegs.resize(2, B.buildUndef(S32).getReg(0));
      return B.buildBuildVector(LLT::vector(2, S32), PackedRegs).getReg(0);
    }

    if (StoreVT.getNumElements() == 3) {
      SmallVector<Register, 4> PackedRegs;
      auto Unmerge = B.buildUnmerge(S16, Reg);
      for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
        PackedRegs.push_back(Unmerge.getReg(I));
      PackedRegs.resize(6, B.buildUndef(S16).getReg(0));
      Reg = B.buildBuildVector(LLT::vector(6, S16), PackedRegs).getReg(0);
      return B.buildBitcast(LLT::vector(3, S32), Reg).getReg(0);
    }

    if (StoreVT.getNumElements() == 4) {
      SmallVector<Register, 4> PackedRegs;
      Reg = B.buildBitcast(LLT::vector(2, S32), Reg).getReg(0);
      auto Unmerge = B.buildUnmerge(S32, Reg);
      for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
        PackedRegs.push_back(Unmerge.getReg(I));
      PackedRegs.resize(4, B.buildUndef(S32).getReg(0));
      return B.buildBuildVector(LLT::vector(4, S32), PackedRegs).getReg(0);
    }

    llvm_unreachable("invalid data type");
  }

  return Reg;
}

Register AMDGPULegalizerInfo::fixStoreSourceType(
  MachineIRBuilder &B, Register VData, bool IsFormat) const {
  MachineRegisterInfo *MRI = B.getMRI();
  LLT Ty = MRI->getType(VData);

  const LLT S16 = LLT::scalar(16);

  // Fixup illegal register types for i8 stores.
  if (Ty == LLT::scalar(8) || Ty == S16) {
    Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
    return AnyExt;
  }

  if (Ty.isVector()) {
    if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
      if (IsFormat)
        return handleD16VData(B, *MRI, VData);
    }
  }

  return VData;
}

bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI,
                                              MachineRegisterInfo &MRI,
                                              MachineIRBuilder &B,
                                              bool IsTyped,
                                              bool IsFormat) const {
  Register VData = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(VData);
  LLT EltTy = Ty.getScalarType();
  const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
  const LLT S32 = LLT::scalar(32);

  VData = fixStoreSourceType(B, VData, IsFormat);
  Register RSrc = MI.getOperand(2).getReg();

  MachineMemOperand *MMO = *MI.memoperands_begin();
  const int MemSize = MMO->getSize();

  unsigned ImmOffset;
  unsigned TotalOffset;

  // The typed intrinsics add an immediate after the registers.
  const unsigned NumVIndexOps = IsTyped ? 8 : 7;

  // The struct intrinsic variants add one additional operand over raw.
  const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
  Register VIndex;
  int OpOffset = 0;
  if (HasVIndex) {
    VIndex = MI.getOperand(3).getReg();
    OpOffset = 1;
  }

  Register VOffset = MI.getOperand(3 + OpOffset).getReg();
  Register SOffset = MI.getOperand(4 + OpOffset).getReg();

  unsigned Format = 0;
  if (IsTyped) {
    Format = MI.getOperand(5 + OpOffset).getImm();
    ++OpOffset;
  }

  unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();

  std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset);
  if (TotalOffset != 0)
    MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize);

  unsigned Opc;
  if (IsTyped) {
    Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
                  AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
  } else if (IsFormat) {
    Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
                  AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
  } else {
    switch (MemSize) {
    case 1:
      Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
      break;
    case 2:
      Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
      break;
    default:
      Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
      break;
    }
  }

  if (!VIndex)
    VIndex = B.buildConstant(S32, 0).getReg(0);

  auto MIB = B.buildInstr(Opc)
    .addUse(VData)              // vdata
    .addUse(RSrc)               // rsrc
    .addUse(VIndex)             // vindex
    .addUse(VOffset)            // voffset
    .addUse(SOffset)            // soffset
    .addImm(ImmOffset);         // offset(imm)

  if (IsTyped)
    MIB.addImm(Format);

  MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
     .addImm(HasVIndex ? -1 : 0) // idxen(imm)
     .addMemOperand(MMO);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI,
                                             MachineRegisterInfo &MRI,
                                             MachineIRBuilder &B,
                                             bool IsFormat,
                                             bool IsTyped) const {
  // FIXME: Verifier should enforce 1 MMO for these intrinsics.
  MachineMemOperand *MMO = *MI.memoperands_begin();
  const int MemSize = MMO->getSize();
  const LLT S32 = LLT::scalar(32);

  Register Dst = MI.getOperand(0).getReg();
  Register RSrc = MI.getOperand(2).getReg();

  // The typed intrinsics add an immediate after the registers.
  const unsigned NumVIndexOps = IsTyped ? 8 : 7;

  // The struct intrinsic variants add one additional operand over raw.
  const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
  Register VIndex;
  int OpOffset = 0;
  if (HasVIndex) {
    VIndex = MI.getOperand(3).getReg();
    OpOffset = 1;
  }

  Register VOffset = MI.getOperand(3 + OpOffset).getReg();
  Register SOffset = MI.getOperand(4 + OpOffset).getReg();

  unsigned Format = 0;
  if (IsTyped) {
    Format = MI.getOperand(5 + OpOffset).getImm();
    ++OpOffset;
  }

  unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
  unsigned ImmOffset;
  unsigned TotalOffset;

  LLT Ty = MRI.getType(Dst);
  LLT EltTy = Ty.getScalarType();
  const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
  const bool Unpacked = ST.hasUnpackedD16VMem();

  std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset);
  if (TotalOffset != 0)
    MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize);

  unsigned Opc;

  if (IsTyped) {
    Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
                  AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
  } else if (IsFormat) {
    Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 :
                  AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
  } else {
    switch (MemSize) {
    case 1:
      Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
      break;
    case 2:
      Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
      break;
    default:
      Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD;
      break;
    }
  }

  Register LoadDstReg;

  bool IsExtLoad = (!IsD16 && MemSize < 4) || (IsD16 && !Ty.isVector());
  LLT UnpackedTy = Ty.changeElementSize(32);

  if (IsExtLoad)
    LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32);
  else if (Unpacked && IsD16 && Ty.isVector())
    LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy);
  else
    LoadDstReg = Dst;

  if (!VIndex)
    VIndex = B.buildConstant(S32, 0).getReg(0);

  auto MIB = B.buildInstr(Opc)
    .addDef(LoadDstReg)         // vdata
    .addUse(RSrc)               // rsrc
    .addUse(VIndex)             // vindex
    .addUse(VOffset)            // voffset
    .addUse(SOffset)            // soffset
    .addImm(ImmOffset);         // offset(imm)

  if (IsTyped)
    MIB.addImm(Format);

  MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
     .addImm(HasVIndex ? -1 : 0) // idxen(imm)
     .addMemOperand(MMO);

  if (LoadDstReg != Dst) {
    B.setInsertPt(B.getMBB(), ++B.getInsertPt());

    // Widen result for extending loads was widened.
    if (IsExtLoad)
      B.buildTrunc(Dst, LoadDstReg);
    else {
      // Repack to original 16-bit vector result
      // FIXME: G_TRUNC should work, but legalization currently fails
      auto Unmerge = B.buildUnmerge(S32, LoadDstReg);
      SmallVector<Register, 4> Repack;
      for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I)
        Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0));
      B.buildMerge(Dst, Repack);
    }
  }

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI,
                                               MachineIRBuilder &B,
                                               bool IsInc) const {
  unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC :
                         AMDGPU::G_AMDGPU_ATOMIC_DEC;
  B.buildInstr(Opc)
    .addDef(MI.getOperand(0).getReg())
    .addUse(MI.getOperand(2).getReg())
    .addUse(MI.getOperand(3).getReg())
    .cloneMemRefs(MI);
  MI.eraseFromParent();
  return true;
}

static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) {
  switch (IntrID) {
  case Intrinsic::amdgcn_raw_buffer_atomic_swap:
  case Intrinsic::amdgcn_struct_buffer_atomic_swap:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
  case Intrinsic::amdgcn_raw_buffer_atomic_add:
  case Intrinsic::amdgcn_struct_buffer_atomic_add:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
  case Intrinsic::amdgcn_raw_buffer_atomic_sub:
  case Intrinsic::amdgcn_struct_buffer_atomic_sub:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
  case Intrinsic::amdgcn_raw_buffer_atomic_smin:
  case Intrinsic::amdgcn_struct_buffer_atomic_smin:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
  case Intrinsic::amdgcn_raw_buffer_atomic_umin:
  case Intrinsic::amdgcn_struct_buffer_atomic_umin:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
  case Intrinsic::amdgcn_raw_buffer_atomic_smax:
  case Intrinsic::amdgcn_struct_buffer_atomic_smax:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
  case Intrinsic::amdgcn_raw_buffer_atomic_umax:
  case Intrinsic::amdgcn_struct_buffer_atomic_umax:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
  case Intrinsic::amdgcn_raw_buffer_atomic_and:
  case Intrinsic::amdgcn_struct_buffer_atomic_and:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
  case Intrinsic::amdgcn_raw_buffer_atomic_or:
  case Intrinsic::amdgcn_struct_buffer_atomic_or:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
  case Intrinsic::amdgcn_raw_buffer_atomic_xor:
  case Intrinsic::amdgcn_struct_buffer_atomic_xor:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
  case Intrinsic::amdgcn_raw_buffer_atomic_inc:
  case Intrinsic::amdgcn_struct_buffer_atomic_inc:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
  case Intrinsic::amdgcn_raw_buffer_atomic_dec:
  case Intrinsic::amdgcn_struct_buffer_atomic_dec:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
  case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
  case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
  case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
  case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
    return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
  default:
    llvm_unreachable("unhandled atomic opcode");
  }
}

bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI,
                                               MachineIRBuilder &B,
                                               Intrinsic::ID IID) const {
  const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
                         IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap;
  const bool HasReturn = MI.getNumExplicitDefs() != 0;

  Register Dst;

  int OpOffset = 0;
  if (HasReturn) {
    // A few FP atomics do not support return values.
    Dst = MI.getOperand(0).getReg();
  } else {
    OpOffset = -1;
  }

  Register VData = MI.getOperand(2 + OpOffset).getReg();
  Register CmpVal;

  if (IsCmpSwap) {
    CmpVal = MI.getOperand(3 + OpOffset).getReg();
    ++OpOffset;
  }

  Register RSrc = MI.getOperand(3 + OpOffset).getReg();
  const unsigned NumVIndexOps = (IsCmpSwap ? 8 : 7) + HasReturn;

  // The struct intrinsic variants add one additional operand over raw.
  const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
  Register VIndex;
  if (HasVIndex) {
    VIndex = MI.getOperand(4 + OpOffset).getReg();
    ++OpOffset;
  }

  Register VOffset = MI.getOperand(4 + OpOffset).getReg();
  Register SOffset = MI.getOperand(5 + OpOffset).getReg();
  unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm();

  MachineMemOperand *MMO = *MI.memoperands_begin();

  unsigned ImmOffset;
  unsigned TotalOffset;
  std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset);
  if (TotalOffset != 0)
    MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MMO->getSize());

  if (!VIndex)
    VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0);

  auto MIB = B.buildInstr(getBufferAtomicPseudo(IID));

  if (HasReturn)
    MIB.addDef(Dst);

  MIB.addUse(VData); // vdata

  if (IsCmpSwap)
    MIB.addReg(CmpVal);

  MIB.addUse(RSrc)               // rsrc
     .addUse(VIndex)             // vindex
     .addUse(VOffset)            // voffset
     .addUse(SOffset)            // soffset
     .addImm(ImmOffset)          // offset(imm)
     .addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
     .addImm(HasVIndex ? -1 : 0) // idxen(imm)
     .addMemOperand(MMO);

  MI.eraseFromParent();
  return true;
}

/// Turn a set of s16 typed registers in \p A16AddrRegs into a dword sized
/// vector with s16 typed elements.
static void packImageA16AddressToDwords(
    MachineIRBuilder &B, MachineInstr &MI,
    SmallVectorImpl<Register> &PackedAddrs, unsigned ArgOffset,
    const AMDGPU::ImageDimIntrinsicInfo *Intr, unsigned EndIdx) {
  const LLT S16 = LLT::scalar(16);
  const LLT V2S16 = LLT::vector(2, 16);

  for (unsigned I = Intr->VAddrStart; I < EndIdx; I++) {
    MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
    if (!SrcOp.isReg())
      continue; // _L to _LZ may have eliminated this.

    Register AddrReg = SrcOp.getReg();

    if (I < Intr->GradientStart) {
      AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0);
      PackedAddrs.push_back(AddrReg);
    } else {
      // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D,
      // derivatives dx/dh and dx/dv are packed with undef.
      if (((I + 1) >= EndIdx) ||
          ((Intr->NumGradients / 2) % 2 == 1 &&
           (I == static_cast<unsigned>(Intr->GradientStart +
                                       (Intr->NumGradients / 2) - 1) ||
            I == static_cast<unsigned>(Intr->GradientStart +
                                       Intr->NumGradients - 1))) ||
          // Check for _L to _LZ optimization
          !MI.getOperand(ArgOffset + I + 1).isReg()) {
        PackedAddrs.push_back(
            B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
                .getReg(0));
      } else {
        PackedAddrs.push_back(
            B.buildBuildVector(
                 V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
                .getReg(0));
        ++I;
      }
    }
  }
}

/// Convert from separate vaddr components to a single vector address register,
/// and replace the remaining operands with $noreg.
static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI,
                                     int DimIdx, int NumVAddrs) {
  const LLT S32 = LLT::scalar(32);

  SmallVector<Register, 8> AddrRegs;
  for (int I = 0; I != NumVAddrs; ++I) {
    MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
    if (SrcOp.isReg()) {
      AddrRegs.push_back(SrcOp.getReg());
      assert(B.getMRI()->getType(SrcOp.getReg()) == S32);
    }
  }

  int NumAddrRegs = AddrRegs.size();
  if (NumAddrRegs != 1) {
    // Round up to 8 elements for v5-v7
    // FIXME: Missing intermediate sized register classes and instructions.
    if (NumAddrRegs > 4 && !isPowerOf2_32(NumAddrRegs)) {
      const int RoundedNumRegs = NextPowerOf2(NumAddrRegs);
      auto Undef = B.buildUndef(S32);
      AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0));
      NumAddrRegs = RoundedNumRegs;
    }

    auto VAddr = B.buildBuildVector(LLT::vector(NumAddrRegs, 32), AddrRegs);
    MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
  }

  for (int I = 1; I != NumVAddrs; ++I) {
    MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
    if (SrcOp.isReg())
      MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister);
  }
}

/// Rewrite image intrinsics to use register layouts expected by the subtarget.
///
/// Depending on the subtarget, load/store with 16-bit element data need to be
/// rewritten to use the low half of 32-bit registers, or directly use a packed
/// layout. 16-bit addresses should also sometimes be packed into 32-bit
/// registers.
///
/// We don't want to directly select image instructions just yet, but also want
/// to exposes all register repacking to the legalizer/combiners. We also don't
/// want a selected instrution entering RegBankSelect. In order to avoid
/// defining a multitude of intermediate image instructions, directly hack on
/// the intrinsic's arguments. In cases like a16 addreses, this requires padding
/// now unnecessary arguments with $noreg.
bool AMDGPULegalizerInfo::legalizeImageIntrinsic(
    MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer,
    const AMDGPU::ImageDimIntrinsicInfo *Intr) const {

  const unsigned NumDefs = MI.getNumExplicitDefs();
  const unsigned ArgOffset = NumDefs + 1;
  bool IsTFE = NumDefs == 2;
  // We are only processing the operands of d16 image operations on subtargets
  // that use the unpacked register layout, or need to repack the TFE result.

  // TODO: Do we need to guard against already legalized intrinsics?
  const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
      AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);

  MachineRegisterInfo *MRI = B.getMRI();
  const LLT S32 = LLT::scalar(32);
  const LLT S16 = LLT::scalar(16);
  const LLT V2S16 = LLT::vector(2, 16);

  unsigned DMask = 0;

  // Check for 16 bit addresses and pack if true.
  LLT GradTy =
      MRI->getType(MI.getOperand(ArgOffset + Intr->GradientStart).getReg());
  LLT AddrTy =
      MRI->getType(MI.getOperand(ArgOffset + Intr->CoordStart).getReg());
  const bool IsG16 = GradTy == S16;
  const bool IsA16 = AddrTy == S16;

  int DMaskLanes = 0;
  if (!BaseOpcode->Atomic) {
    DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm();
    if (BaseOpcode->Gather4) {
      DMaskLanes = 4;
    } else if (DMask != 0) {
      DMaskLanes = countPopulation(DMask);
    } else if (!IsTFE && !BaseOpcode->Store) {
      // If dmask is 0, this is a no-op load. This can be eliminated.
      B.buildUndef(MI.getOperand(0));
      MI.eraseFromParent();
      return true;
    }
  }

  Observer.changingInstr(MI);
  auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); });

  unsigned NewOpcode = NumDefs == 0 ?
    AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;

  // Track that we legalized this
  MI.setDesc(B.getTII().get(NewOpcode));

  // Expecting to get an error flag since TFC is on - and dmask is 0 Force
  // dmask to be at least 1 otherwise the instruction will fail
  if (IsTFE && DMask == 0) {
    DMask = 0x1;
    DMaskLanes = 1;
    MI.getOperand(ArgOffset + Intr->DMaskIndex).setImm(DMask);
  }

  if (BaseOpcode->Atomic) {
    Register VData0 = MI.getOperand(2).getReg();
    LLT Ty = MRI->getType(VData0);

    // TODO: Allow atomic swap and bit ops for v2s16/v4s16
    if (Ty.isVector())
      return false;

    if (BaseOpcode->AtomicX2) {
      Register VData1 = MI.getOperand(3).getReg();
      // The two values are packed in one register.
      LLT PackedTy = LLT::vector(2, Ty);
      auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1});
      MI.getOperand(2).setReg(Concat.getReg(0));
      MI.getOperand(3).setReg(AMDGPU::NoRegister);
    }
  }

  unsigned CorrectedNumVAddrs = Intr->NumVAddrs;

  // Optimize _L to _LZ when _L is zero
  if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
          AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode)) {
    const ConstantFP *ConstantLod;

    if (mi_match(MI.getOperand(ArgOffset + Intr->LodIndex).getReg(), *MRI,
                 m_GFCst(ConstantLod))) {
      if (ConstantLod->isZero() || ConstantLod->isNegative()) {
        // Set new opcode to _lz variant of _l, and change the intrinsic ID.
        const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
            AMDGPU::getImageDimInstrinsicByBaseOpcode(LZMappingInfo->LZ,
                                                      Intr->Dim);

        // The starting indexes should remain in the same place.
        --CorrectedNumVAddrs;

        MI.getOperand(MI.getNumExplicitDefs())
            .setIntrinsicID(static_cast<Intrinsic::ID>(NewImageDimIntr->Intr));
        MI.RemoveOperand(ArgOffset + Intr->LodIndex);
        Intr = NewImageDimIntr;
      }
    }
  }

  // Optimize _mip away, when 'lod' is zero
  if (AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode)) {
    int64_t ConstantLod;
    if (mi_match(MI.getOperand(ArgOffset + Intr->MipIndex).getReg(), *MRI,
                 m_ICst(ConstantLod))) {
      if (ConstantLod == 0) {
        // TODO: Change intrinsic opcode and remove operand instead or replacing
        // it with 0, as the _L to _LZ handling is done above.
        MI.getOperand(ArgOffset + Intr->MipIndex).ChangeToImmediate(0);
        --CorrectedNumVAddrs;
      }
    }
  }

  // Rewrite the addressing register layout before doing anything else.
  if (IsA16 || IsG16) {
    if (IsA16) {
      // Target must support the feature and gradients need to be 16 bit too
      if (!ST.hasA16() || !IsG16)
        return false;
    } else if (!ST.hasG16())
      return false;

    if (Intr->NumVAddrs > 1) {
      SmallVector<Register, 4> PackedRegs;
      // Don't compress addresses for G16
      const int PackEndIdx = IsA16 ? Intr->VAddrEnd : Intr->CoordStart;
      packImageA16AddressToDwords(B, MI, PackedRegs, ArgOffset, Intr,
                                  PackEndIdx);

      if (!IsA16) {
        // Add uncompressed address
        for (unsigned I = Intr->CoordStart; I < Intr->VAddrEnd; I++) {
          int AddrReg = MI.getOperand(ArgOffset + I).getReg();
          assert(B.getMRI()->getType(AddrReg) == LLT::scalar(32));
          PackedRegs.push_back(AddrReg);
        }
      }

      // See also below in the non-a16 branch
      const bool UseNSA = PackedRegs.size() >= 3 && ST.hasNSAEncoding();

      if (!UseNSA && PackedRegs.size() > 1) {
        LLT PackedAddrTy = LLT::vector(2 * PackedRegs.size(), 16);
        auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs);
        PackedRegs[0] = Concat.getReg(0);
        PackedRegs.resize(1);
      }

      const unsigned NumPacked = PackedRegs.size();
      for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) {
        MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
        if (!SrcOp.isReg()) {
          assert(SrcOp.isImm() && SrcOp.getImm() == 0);
          continue;
        }

        assert(SrcOp.getReg() != AMDGPU::NoRegister);

        if (I - Intr->VAddrStart < NumPacked)
          SrcOp.setReg(PackedRegs[I - Intr->VAddrStart]);
        else
          SrcOp.setReg(AMDGPU::NoRegister);
      }
    }
  } else {
    // If the register allocator cannot place the address registers contiguously
    // without introducing moves, then using the non-sequential address encoding
    // is always preferable, since it saves VALU instructions and is usually a
    // wash in terms of code size or even better.
    //
    // However, we currently have no way of hinting to the register allocator
    // that MIMG addresses should be placed contiguously when it is possible to
    // do so, so force non-NSA for the common 2-address case as a heuristic.
    //
    // SIShrinkInstructions will convert NSA encodings to non-NSA after register
    // allocation when possible.
    const bool UseNSA = CorrectedNumVAddrs >= 3 && ST.hasNSAEncoding();

    if (!UseNSA && Intr->NumVAddrs > 1)
      convertImageAddrToPacked(B, MI, ArgOffset + Intr->VAddrStart,
                               Intr->NumVAddrs);
  }

  int Flags = 0;
  if (IsA16)
    Flags |= 1;
  if (IsG16)
    Flags |= 2;
  MI.addOperand(MachineOperand::CreateImm(Flags));

  if (BaseOpcode->Store) { // No TFE for stores?
    // TODO: Handle dmask trim
    Register VData = MI.getOperand(1).getReg();
    LLT Ty = MRI->getType(VData);
    if (!Ty.isVector() || Ty.getElementType() != S16)
      return true;

    Register RepackedReg = handleD16VData(B, *MRI, VData, true);
    if (RepackedReg != VData) {
      MI.getOperand(1).setReg(RepackedReg);
    }

    return true;
  }

  Register DstReg = MI.getOperand(0).getReg();
  LLT Ty = MRI->getType(DstReg);
  const LLT EltTy = Ty.getScalarType();
  const bool IsD16 = Ty.getScalarType() == S16;
  const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1;

  // Confirm that the return type is large enough for the dmask specified
  if (NumElts < DMaskLanes)
    return false;

  if (NumElts > 4 || DMaskLanes > 4)
    return false;

  const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
  const LLT AdjustedTy = Ty.changeNumElements(AdjustedNumElts);

  // The raw dword aligned data component of the load. The only legal cases
  // where this matters should be when using the packed D16 format, for
  // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>,
  LLT RoundedTy;

  // S32 vector to to cover all data, plus TFE result element.
  LLT TFETy;

  // Register type to use for each loaded component. Will be S32 or V2S16.
  LLT RegTy;

  if (IsD16 && ST.hasUnpackedD16VMem()) {
    RoundedTy = LLT::scalarOrVector(AdjustedNumElts, 32);
    TFETy = LLT::vector(AdjustedNumElts + 1, 32);
    RegTy = S32;
  } else {
    unsigned EltSize = EltTy.getSizeInBits();
    unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32;
    unsigned RoundedSize = 32 * RoundedElts;
    RoundedTy = LLT::scalarOrVector(RoundedSize / EltSize, EltSize);
    TFETy = LLT::vector(RoundedSize / 32 + 1, S32);
    RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32;
  }

  // The return type does not need adjustment.
  // TODO: Should we change s16 case to s32 or <2 x s16>?
  if (!IsTFE && (RoundedTy == Ty || !Ty.isVector()))
    return true;

  Register Dst1Reg;

  // Insert after the instruction.
  B.setInsertPt(*MI.getParent(), ++MI.getIterator());

  // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x
  // s16> instead of s32, we would only need 1 bitcast instead of multiple.
  const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
  const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32;

  Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy);

  MI.getOperand(0).setReg(NewResultReg);

  // In the IR, TFE is supposed to be used with a 2 element struct return
  // type. The intruction really returns these two values in one contiguous
  // register, with one additional dword beyond the loaded data. Rewrite the
  // return type to use a single register result.

  if (IsTFE) {
    Dst1Reg = MI.getOperand(1).getReg();
    if (MRI->getType(Dst1Reg) != S32)
      return false;

    // TODO: Make sure the TFE operand bit is set.
    MI.RemoveOperand(1);

    // Handle the easy case that requires no repack instructions.
    if (Ty == S32) {
      B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
      return true;
    }
  }

  // Now figure out how to copy the new result register back into the old
  // result.
  SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg);

  const int NumDataRegs = IsTFE ? ResultNumRegs - 1  : ResultNumRegs;

  if (ResultNumRegs == 1) {
    assert(!IsTFE);
    ResultRegs[0] = NewResultReg;
  } else {
    // We have to repack into a new vector of some kind.
    for (int I = 0; I != NumDataRegs; ++I)
      ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy);
    B.buildUnmerge(ResultRegs, NewResultReg);

    // Drop the final TFE element to get the data part. The TFE result is
    // directly written to the right place already.
    if (IsTFE)
      ResultRegs.resize(NumDataRegs);
  }

  // For an s16 scalar result, we form an s32 result with a truncate regardless
  // of packed vs. unpacked.
  if (IsD16 && !Ty.isVector()) {
    B.buildTrunc(DstReg, ResultRegs[0]);
    return true;
  }

  // Avoid a build/concat_vector of 1 entry.
  if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
    B.buildBitcast(DstReg, ResultRegs[0]);
    return true;
  }

  assert(Ty.isVector());

  if (IsD16) {
    // For packed D16 results with TFE enabled, all the data components are
    // S32. Cast back to the expected type.
    //
    // TODO: We don't really need to use load s32 elements. We would only need one
    // cast for the TFE result if a multiple of v2s16 was used.
    if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) {
      for (Register &Reg : ResultRegs)
        Reg = B.buildBitcast(V2S16, Reg).getReg(0);
    } else if (ST.hasUnpackedD16VMem()) {
      for (Register &Reg : ResultRegs)
        Reg = B.buildTrunc(S16, Reg).getReg(0);
    }
  }

  auto padWithUndef = [&](LLT Ty, int NumElts) {
    if (NumElts == 0)
      return;
    Register Undef = B.buildUndef(Ty).getReg(0);
    for (int I = 0; I != NumElts; ++I)
      ResultRegs.push_back(Undef);
  };

  // Pad out any elements eliminated due to the dmask.
  LLT ResTy = MRI->getType(ResultRegs[0]);
  if (!ResTy.isVector()) {
    padWithUndef(ResTy, NumElts - ResultRegs.size());
    B.buildBuildVector(DstReg, ResultRegs);
    return true;
  }

  assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16);
  const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;

  // Deal with the one annoying legal case.
  const LLT V3S16 = LLT::vector(3, 16);
  if (Ty == V3S16) {
    padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1);
    auto Concat = B.buildConcatVectors(LLT::vector(6, 16), ResultRegs);
    B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat);
    return true;
  }

  padWithUndef(ResTy, RegsToCover - ResultRegs.size());
  B.buildConcatVectors(DstReg, ResultRegs);
  return true;
}

bool AMDGPULegalizerInfo::legalizeSBufferLoad(
  LegalizerHelper &Helper, MachineInstr &MI) const {
  MachineIRBuilder &B = Helper.MIRBuilder;
  GISelChangeObserver &Observer = Helper.Observer;

  Register Dst = MI.getOperand(0).getReg();
  LLT Ty = B.getMRI()->getType(Dst);
  unsigned Size = Ty.getSizeInBits();
  MachineFunction &MF = B.getMF();

  Observer.changingInstr(MI);

  if (shouldBitcastLoadStoreType(ST, Ty, Size)) {
    Ty = getBitcastRegisterType(Ty);
    Helper.bitcastDst(MI, Ty, 0);
    Dst = MI.getOperand(0).getReg();
    B.setInsertPt(B.getMBB(), MI);
  }

  // FIXME: We don't really need this intermediate instruction. The intrinsic
  // should be fixed to have a memory operand. Since it's readnone, we're not
  // allowed to add one.
  MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD));
  MI.RemoveOperand(1); // Remove intrinsic ID

  // FIXME: When intrinsic definition is fixed, this should have an MMO already.
  // TODO: Should this use datalayout alignment?
  const unsigned MemSize = (Size + 7) / 8;
  const Align MemAlign(4);
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo(),
      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
          MachineMemOperand::MOInvariant,
      MemSize, MemAlign);
  MI.addMemOperand(MF, MMO);

  // There are no 96-bit result scalar loads, but widening to 128-bit should
  // always be legal. We may need to restore this to a 96-bit result if it turns
  // out this needs to be converted to a vector load during RegBankSelect.
  if (!isPowerOf2_32(Size)) {
    if (Ty.isVector())
      Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0);
    else
      Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0);
  }

  Observer.changedInstr(MI);
  return true;
}

// TODO: Move to selection
bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI,
                                                MachineRegisterInfo &MRI,
                                                MachineIRBuilder &B) const {
  // Is non-HSA path or trap-handler disabled? then, insert s_endpgm instruction
  if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
      !ST.isTrapHandlerEnabled()) {
    B.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
  } else {
    // Pass queue pointer to trap handler as input, and insert trap instruction
    // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
    MachineRegisterInfo &MRI = *B.getMRI();

    Register LiveIn =
      MRI.createGenericVirtualRegister(LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
    if (!loadInputValue(LiveIn, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
      return false;

    Register SGPR01(AMDGPU::SGPR0_SGPR1);
    B.buildCopy(SGPR01, LiveIn);
    B.buildInstr(AMDGPU::S_TRAP)
        .addImm(GCNSubtarget::TrapIDLLVMTrap)
        .addReg(SGPR01, RegState::Implicit);
  }

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic(
    MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
  // Is non-HSA path or trap-handler disabled? then, report a warning
  // accordingly
  if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
      !ST.isTrapHandlerEnabled()) {
    DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(),
                                     "debugtrap handler not supported",
                                     MI.getDebugLoc(), DS_Warning);
    LLVMContext &Ctx = B.getMF().getFunction().getContext();
    Ctx.diagnose(NoTrap);
  } else {
    // Insert debug-trap instruction
    B.buildInstr(AMDGPU::S_TRAP).addImm(GCNSubtarget::TrapIDLLVMDebugTrap);
  }

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeBVHIntrinsic(MachineInstr &MI,
                                               MachineIRBuilder &B) const {
  MachineRegisterInfo &MRI = *B.getMRI();
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);

  Register DstReg = MI.getOperand(0).getReg();
  Register NodePtr = MI.getOperand(2).getReg();
  Register RayExtent = MI.getOperand(3).getReg();
  Register RayOrigin = MI.getOperand(4).getReg();
  Register RayDir = MI.getOperand(5).getReg();
  Register RayInvDir = MI.getOperand(6).getReg();
  Register TDescr = MI.getOperand(7).getReg();

  bool IsA16 = MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
  bool Is64 =  MRI.getType(NodePtr).getSizeInBits() == 64;
  unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
                                 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
                          : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
                                 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;

  SmallVector<Register, 12> Ops;
  if (Is64) {
    auto Unmerge = B.buildUnmerge({S32, S32}, NodePtr);
    Ops.push_back(Unmerge.getReg(0));
    Ops.push_back(Unmerge.getReg(1));
  } else {
    Ops.push_back(NodePtr);
  }
  Ops.push_back(RayExtent);

  auto packLanes = [&Ops, &S32, &B] (Register Src) {
    auto Unmerge = B.buildUnmerge({S32, S32, S32, S32}, Src);
    Ops.push_back(Unmerge.getReg(0));
    Ops.push_back(Unmerge.getReg(1));
    Ops.push_back(Unmerge.getReg(2));
  };

  packLanes(RayOrigin);
  if (IsA16) {
    auto UnmergeRayDir = B.buildUnmerge({S16, S16, S16, S16}, RayDir);
    auto UnmergeRayInvDir = B.buildUnmerge({S16, S16, S16, S16}, RayInvDir);
    Register R1 = MRI.createGenericVirtualRegister(S32);
    Register R2 = MRI.createGenericVirtualRegister(S32);
    Register R3 = MRI.createGenericVirtualRegister(S32);
    B.buildMerge(R1, {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
    B.buildMerge(R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
    B.buildMerge(R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
    Ops.push_back(R1);
    Ops.push_back(R2);
    Ops.push_back(R3);
  } else {
    packLanes(RayDir);
    packLanes(RayInvDir);
  }

  auto MIB = B.buildInstr(AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY)
    .addDef(DstReg)
    .addImm(Opcode);

  for (Register R : Ops) {
    MIB.addUse(R);
  }

  MIB.addUse(TDescr)
     .addImm(IsA16 ? 1 : 0)
     .cloneMemRefs(MI);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
                                            MachineInstr &MI) const {
  MachineIRBuilder &B = Helper.MIRBuilder;
  MachineRegisterInfo &MRI = *B.getMRI();

  // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
  auto IntrID = MI.getIntrinsicID();
  switch (IntrID) {
  case Intrinsic::amdgcn_if:
  case Intrinsic::amdgcn_else: {
    MachineInstr *Br = nullptr;
    MachineBasicBlock *UncondBrTarget = nullptr;
    bool Negated = false;
    if (MachineInstr *BrCond =
            verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
      const SIRegisterInfo *TRI
        = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());

      Register Def = MI.getOperand(1).getReg();
      Register Use = MI.getOperand(3).getReg();

      MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();

      if (Negated)
        std::swap(CondBrTarget, UncondBrTarget);

      B.setInsertPt(B.getMBB(), BrCond->getIterator());
      if (IntrID == Intrinsic::amdgcn_if) {
        B.buildInstr(AMDGPU::SI_IF)
          .addDef(Def)
          .addUse(Use)
          .addMBB(UncondBrTarget);
      } else {
        B.buildInstr(AMDGPU::SI_ELSE)
            .addDef(Def)
            .addUse(Use)
            .addMBB(UncondBrTarget);
      }

      if (Br) {
        Br->getOperand(0).setMBB(CondBrTarget);
      } else {
        // The IRTranslator skips inserting the G_BR for fallthrough cases, but
        // since we're swapping branch targets it needs to be reinserted.
        // FIXME: IRTranslator should probably not do this
        B.buildBr(*CondBrTarget);
      }

      MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
      MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
      MI.eraseFromParent();
      BrCond->eraseFromParent();
      return true;
    }

    return false;
  }
  case Intrinsic::amdgcn_loop: {
    MachineInstr *Br = nullptr;
    MachineBasicBlock *UncondBrTarget = nullptr;
    bool Negated = false;
    if (MachineInstr *BrCond =
            verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
      const SIRegisterInfo *TRI
        = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());

      MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
      Register Reg = MI.getOperand(2).getReg();

      if (Negated)
        std::swap(CondBrTarget, UncondBrTarget);

      B.setInsertPt(B.getMBB(), BrCond->getIterator());
      B.buildInstr(AMDGPU::SI_LOOP)
        .addUse(Reg)
        .addMBB(UncondBrTarget);

      if (Br)
        Br->getOperand(0).setMBB(CondBrTarget);
      else
        B.buildBr(*CondBrTarget);

      MI.eraseFromParent();
      BrCond->eraseFromParent();
      MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
      return true;
    }

    return false;
  }
  case Intrinsic::amdgcn_kernarg_segment_ptr:
    if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) {
      // This only makes sense to call in a kernel, so just lower to null.
      B.buildConstant(MI.getOperand(0).getReg(), 0);
      MI.eraseFromParent();
      return true;
    }

    return legalizePreloadedArgIntrin(
      MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  case Intrinsic::amdgcn_implicitarg_ptr:
    return legalizeImplicitArgPtr(MI, MRI, B);
  case Intrinsic::amdgcn_workitem_id_x:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_X);
  case Intrinsic::amdgcn_workitem_id_y:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
  case Intrinsic::amdgcn_workitem_id_z:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
  case Intrinsic::amdgcn_workgroup_id_x:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
  case Intrinsic::amdgcn_workgroup_id_y:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
  case Intrinsic::amdgcn_workgroup_id_z:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
  case Intrinsic::amdgcn_dispatch_ptr:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::DISPATCH_PTR);
  case Intrinsic::amdgcn_queue_ptr:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::QUEUE_PTR);
  case Intrinsic::amdgcn_implicit_buffer_ptr:
    return legalizePreloadedArgIntrin(
      MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
  case Intrinsic::amdgcn_dispatch_id:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::DISPATCH_ID);
  case Intrinsic::amdgcn_fdiv_fast:
    return legalizeFDIVFastIntrin(MI, MRI, B);
  case Intrinsic::amdgcn_is_shared:
    return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
  case Intrinsic::amdgcn_is_private:
    return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
  case Intrinsic::amdgcn_wavefrontsize: {
    B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
    MI.eraseFromParent();
    return true;
  }
  case Intrinsic::amdgcn_s_buffer_load:
    return legalizeSBufferLoad(Helper, MI);
  case Intrinsic::amdgcn_raw_buffer_store:
  case Intrinsic::amdgcn_struct_buffer_store:
    return legalizeBufferStore(MI, MRI, B, false, false);
  case Intrinsic::amdgcn_raw_buffer_store_format:
  case Intrinsic::amdgcn_struct_buffer_store_format:
    return legalizeBufferStore(MI, MRI, B, false, true);
  case Intrinsic::amdgcn_raw_tbuffer_store:
  case Intrinsic::amdgcn_struct_tbuffer_store:
    return legalizeBufferStore(MI, MRI, B, true, true);
  case Intrinsic::amdgcn_raw_buffer_load:
  case Intrinsic::amdgcn_struct_buffer_load:
    return legalizeBufferLoad(MI, MRI, B, false, false);
  case Intrinsic::amdgcn_raw_buffer_load_format:
  case Intrinsic::amdgcn_struct_buffer_load_format:
    return legalizeBufferLoad(MI, MRI, B, true, false);
  case Intrinsic::amdgcn_raw_tbuffer_load:
  case Intrinsic::amdgcn_struct_tbuffer_load:
    return legalizeBufferLoad(MI, MRI, B, true, true);
  case Intrinsic::amdgcn_raw_buffer_atomic_swap:
  case Intrinsic::amdgcn_struct_buffer_atomic_swap:
  case Intrinsic::amdgcn_raw_buffer_atomic_add:
  case Intrinsic::amdgcn_struct_buffer_atomic_add:
  case Intrinsic::amdgcn_raw_buffer_atomic_sub:
  case Intrinsic::amdgcn_struct_buffer_atomic_sub:
  case Intrinsic::amdgcn_raw_buffer_atomic_smin:
  case Intrinsic::amdgcn_struct_buffer_atomic_smin:
  case Intrinsic::amdgcn_raw_buffer_atomic_umin:
  case Intrinsic::amdgcn_struct_buffer_atomic_umin:
  case Intrinsic::amdgcn_raw_buffer_atomic_smax:
  case Intrinsic::amdgcn_struct_buffer_atomic_smax:
  case Intrinsic::amdgcn_raw_buffer_atomic_umax:
  case Intrinsic::amdgcn_struct_buffer_atomic_umax:
  case Intrinsic::amdgcn_raw_buffer_atomic_and:
  case Intrinsic::amdgcn_struct_buffer_atomic_and:
  case Intrinsic::amdgcn_raw_buffer_atomic_or:
  case Intrinsic::amdgcn_struct_buffer_atomic_or:
  case Intrinsic::amdgcn_raw_buffer_atomic_xor:
  case Intrinsic::amdgcn_struct_buffer_atomic_xor:
  case Intrinsic::amdgcn_raw_buffer_atomic_inc:
  case Intrinsic::amdgcn_struct_buffer_atomic_inc:
  case Intrinsic::amdgcn_raw_buffer_atomic_dec:
  case Intrinsic::amdgcn_struct_buffer_atomic_dec:
  case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
  case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
  case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
  case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
    return legalizeBufferAtomic(MI, B, IntrID);
  case Intrinsic::amdgcn_atomic_inc:
    return legalizeAtomicIncDec(MI, B, true);
  case Intrinsic::amdgcn_atomic_dec:
    return legalizeAtomicIncDec(MI, B, false);
  case Intrinsic::trap:
    return legalizeTrapIntrinsic(MI, MRI, B);
  case Intrinsic::debugtrap:
    return legalizeDebugTrapIntrinsic(MI, MRI, B);
  case Intrinsic::amdgcn_rsq_clamp:
    return legalizeRsqClampIntrinsic(MI, MRI, B);
  case Intrinsic::amdgcn_ds_fadd:
  case Intrinsic::amdgcn_ds_fmin:
  case Intrinsic::amdgcn_ds_fmax:
    return legalizeDSAtomicFPIntrinsic(Helper, MI, IntrID);
  case Intrinsic::amdgcn_image_bvh_intersect_ray:
    return legalizeBVHIntrinsic(MI, B);
  default: {
    if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
            AMDGPU::getImageDimIntrinsicInfo(IntrID))
      return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr);
    return true;
  }
  }

  return true;
}